THE PREVALENCE OF CARIOGENIC SALIVARY MICRO-ORGANISMS IN CHILDREN OF VARIOUS AGES

ENITA NAKAŠ¹*, AMILA ZUKANOVIĆ²

1 Department of Orthodontics, Faculty of Stomatology, University of Sarajevo Bolička 4, 71 000 Sarajevo Bosnia and Herzegovina
2 Department of Preventive and Pediatric Dentistry Faculty of Stomatology, University of Sarajevo Bolička 4a, 71 000 Sarajevo Bosnia and Herzegovina

* Corresponding author

ABSTRACT

The objective of the research was to obtain data on the values of salivary Streptococcus mutans and Lactobacillus spp. in 12 years old children and teenagers (13 – 18 years old children), and to compare the values of these cariogenic microorganisms in children of various ages, for the purpose of valuating the risk of caries. The sample comprised 32 persons divided into two groups. The first group included 17 children of the age of 12. The second group included 15 teenagers. The specimen of stimulated saliva, needed for the purpose of establishing the quantities of Streptococcus mutans and Lactobacillus spp., was taken by the method of CRT®-bacteria, according to manufacturer’s instruction.

In the group of 12 years old children, the distribution of salivary Lactobacillus spp. was as follows: very low values 41.1%, low values 35.2%, high values 17.6%, very high values 5.8%, while in the group of teenagers, the results were the following: very low values 26.6%, low values 33.3%, high values 40%, very high values 0%. The levels of Streptococcus mutans were the following: 12 years old children had very low values in 41.7% cases, low values in 11.7% cases, high values in 41.7% cases, very high values in 5.8% cases, while the group of teenagers had very low values in 0%, low values in 33.3%, high values in 33.3%, and very high values in 33.3% cases.

The levels of Streptococcus mutans are higher in our teenage children than in younger children, while the differences in levels of Lactobacillus spp. among children of various ages do not exist. In terms of global distribution, the levels of Streptococcus mutans and Lactobacillus spp. are higher in our population than in other countries in both control groups.

KEY WORDS: Streptococcus mutans, Lactobacillus, children
INTRODUCTION

Mutans streptococci are a heterogeneous group of microorganisms divided into 6 species and 8 serotypes (1,2). They make normal micro flora in oral cavity. There exist several types of Streptococca, isolated from human dental plaque. The most common type is Streptococcus mutans (serotypes c, e and f), and Streptococcus sobrinus (serotypes d, g). They are connected with the development of caries in humans and animals (3, 4). Streptococcus mutans belongs to the group of Alfa hemolytic streptococci. Mutans streptococci are related to the occurrence of early demineralization, i.e., initial phases of the development of caries (5). In consequence of some of their vital characteristics, mutans streptococci are regarded potentially highly cariogenic: they are acidogenic (capable of producing acids that melt the tooth substance), aciduric (able to survive, grow and perform metabolic processes in the environment of very low pH), they have the capacity of creating extracellular polysaccharides, capability to transport sugar, capability to adhere to dental surfaces (6). Mutans streptococci infections are globally distributed. These microorganisms can be found in almost all humans in a population; however, in different persons, the levels of mutans streptococci vary from low to very high values. Their values in individuals are determined by the irregularities on the surface of tooth enamel, retention areas, as well as genetic and immuno-biological factors. Mutans streptococci are microorganisms that primarily colonize dental surfaces. In the concentration of 10^4-10^6 CFU/ml in saliva, Streptococcus mutans is able to colonise clean, smooth surface of a tooth. The presence of mutans streptococci on tooth surfaces increases the possibility that caries would develop thereon. Lactobacilli belong to the group of Gram-positive microorganisms. They are isolated as a part of normal human microflora. They are acidogenic and aciduric. As early as 1890, W.D. Miller proved the presence of lactobacilli in oral flora, and their capacity of producing acids. There are several kinds of lactobacilli, but the most common types found in oral flora are Lactobacillus rhamnosus and Lactobacillus casei. Lactobacilli alone have no important role in the initiation of caries (7). Lactobacillus is a secondary invasive bacteria connected with the progression of caries lesion. It is most commonly found in the dentine, in deep portions of carious lesion, in open cavities, but also in retention areas on teeth like, for example, poorly made edges of dental fillings. The saliva of persons that have active carious lesions, usually contains a large number of Lacobacilli spp; however, lacobacilli as a part of normal flora can also be found in persons that have no caries (8). Infection with Lactobacilli has a global distribution. The levels of lactobacilli vary in different persons. The persons with a high level of Lacobacilli spp. have, or develop more carious lesions than those with lower levels of lactobacilli (9,10). The levels of Lactobacillus spp. and Streptococcus mutans in saliva indirectly point towards the risk that a new carious lesion would develop (11), so they are used as parameters in the assessment of caries risk. The objective of the research was to obtain data on the values of salivary Streptococcus mutans and Lactobacillus spp. in 12 years old children and teenagers (13 – 18 years old children), and to compare the values of these cariogenic microorganisms in children of various ages, for the purpose of assessing the risk of caries in these population groups.

MATERIALS AND METHODS

The sample comprised 32 persons divided into two groups. The first group included 17 children of the age of 12. The second group included 15 teenagers (13 – 18 years old children). The following criteria were applied in the selection of participants: - Patient did not use antibiotics 3 weeks before the testing. - No changes exist in the structure of tooth enamel. - No active carious lesion exists

Both groups of patients were the children coming from good-income families, who regularly maintain oral hygiene by brushing their teeth at least twice a day. All respondents had their teeth sanitized with dental fillings, without a single carious lesion. The levels of salivary Streptococcus mutans and Lactobacillus spp. were determined for each individual patient. The sample of stimulated saliva, needed for the purpose of establishing the quantities of Streptococcus mutans and Lactobacillus spp., was taken by the method of CRT-bacteria (Ivoclar-Vivadent clinical), according to manufacturer instruction. Patients were given a piece of (factory-made) wax, which they chewed for 5 minutes in order to collect enough stimulated saliva (during wax chewing, the process of bacteria mobilization happens, from the plaque into saliva). While chewing, the respondents collected saliva into disposable plastic cups. After 5 minutes, disposable pipettes were used to take saliva and seed it on slides for Streptococci mutans and Lactobacilli spp. Firstly, after the protective coat was removed from sterile slides, 5 drops were neatly dripped on the slide (until its entire surface was cov-
RESULTS

The results showed no differences in the levels of salivary Lactobacillus spp. between the group of 12-year-old children and the group of teenagers (p=0.4297) (Table 1). A significant difference exists between the group of 12-year-old children and the group of teenagers in the levels of salivary Streptococcus mutans, where the teenagers have significantly higher values of Streptococcus mutans in the saliva (p= 0.0147) (Table 2).

DISCUSSION

The 2003 research by A. Zukanović about the prevalence of lactobacilli among 12-year-old children in Sarajevo, conducted on a random sample of 109 children, showed that 38.5% children had very low values, 25.7% had low values, 23.9% high values, and 11.9% had very high values of salivary Lactobacillus spp. (13). The results of the study conducted among young people of various ages, where the level of salivary Lactobacillus spp. has the same distribution among 12-year-old children and teenagers, and 60% of children have low and very low values of Lactobacillus spp., Comparing the results obtained in children from Sarajevo with those obtained in their Swedish age-fellows in the research by Hänsel-Peterson et al. (14), we see that 51.6% 12-year-old children in Sweden have very low values, 19.6% low values, 20.4% have high values and 8.4% very high values of Lactobacilli in saliva. The study conducted among 12-year-old children in Estonia shows that 47% children have very low values, 28% low, 18% and 7% very high values of Lactobacilli (15).

Comparing the values of Lactobacilli in saliva among Sarajevo children with the above researches, we see that our children have higher levels of lactobacilli in saliva, which indicates a higher risk of the development of caries.

The results of the research by A. Zukanović of 2003 concerning the values of Streptococcus mutans in saliva among 109 12-year-old children in Sarajevo, selected by the method of random sample, prove that most 12-year-old children have high values of Streptococcus mutans in saliva. In 25.7% of children we have very low, in 24.8% low, in 34.9% high, and in 14.6% very high values of Streptococcus mutans (13). The following table displays the values of Streptococcus mutans in 12-year-old children in several countries (Table 3):

The results of our research show that the finding of the prevalence of salivary Streptococcus mutans in 12-year-old children, whose dental status includes no active carious lesion, remains the same as that in their age-fellows selected by the method of random sample, where the dental status presented no criterion for participation in the study. In our research, twelve-year olds had no carious tooth, unlike the research of A. Zukanović, where the respondents had KEP-index 4.81, where caries component was 2.13, which means that each child in that participants’ group had 2.13 carious teeth on average (13). Comparing the values of Streptococcus mutans found in our children of various ages, we see that teenagers have significantly higher values of salivary Streptococcus mutans. S. Bjarnason et alia (1993) (20) made a longitudinal study that followed the levels of Streptococcus mutans, Lactobacillus spp and KEP index through a three-

TABLE 1: The prevalence of Lactobacillus spp. in 12 years old children and teenagers

<table>
<thead>
<tr>
<th>Streptococcus mutans Group 1 – 12 years old children</th>
<th>Group 2 – teenagers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1: very low values 7</td>
<td>41,17</td>
</tr>
<tr>
<td>Class 2: low values 2</td>
<td>11,76</td>
</tr>
<tr>
<td>Class 3: high values 7</td>
<td>41,17</td>
</tr>
<tr>
<td>Class 4: very high values 1</td>
<td>5,88</td>
</tr>
</tbody>
</table>

TABLE 2: The prevalence of Streptococcus mutans in 12 years old children and teenagers

<table>
<thead>
<tr>
<th>Lactobacillus Group 1 – 12 years old children</th>
<th>Group 2 – teenagers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1: very low values 7</td>
<td>41,17</td>
</tr>
<tr>
<td>Class 2: low values 6</td>
<td>35,29</td>
</tr>
<tr>
<td>Class 3: high values 3</td>
<td>17,64</td>
</tr>
<tr>
<td>Class 4: very high values 1</td>
<td>5,88</td>
</tr>
</tbody>
</table>
year period. Through their work we see that 41% of 18 years old participants have very high levels of *Streptococcus mutans* (10), while 21% of participants have high level of *Lactobacillus spp.* (10). The above authors found the increase in the levels of examined microorganisms, in comparison with 15-16 years old children. When we compare these details with ours, we see a higher level of *Streptococcus mutans* in the group of our teenagers, too; however, when we compare the levels, we perceive a lower level of *Streptococcus mutans*, but much higher level of *Lactobacillus spp.* in our population, which can be explained with a higher consumption of carbohydrates and higher number of meals than in the Swedish population. The work of Steckens-Blicks reveals correlation between a higher consumption of carbohydrates and the levels of *Streptococcus mutans* and *Lactobacillus spp.* (21). It has been proved that the number of *Lactobacillus spp.* in saliva depends on the type of food consumed during the day, and especially on the frequency of consumption of carbohydrates. Restricted consumption of carbohydrates brings to decline in the number of lactobacilli in saliva. Therefore, recent practices of monitoring the dietary habits in humans and active participation of patients in preventive programs include measuring of the levels of *Lactobacillus spp.*. Hence, the level of *Lactobacillus spp.* in saliva indirectly points to the risk of the development of new carious lesion (11). On the sample of 101 teenage participants, I. Zickert et al. (1982) found *Streptococcus mutans* in 89% participants, among them 21% had very high levels thereof (22). The same authors also give details on the level of *Lactobacillus spp.* the presence of *Lactobacillus spp.* was found in 79% participants, among them 11% had high values. In our study, 100% of participants had the presence of *Streptococcus mutans*, among them 33.33% very high levels thereof, which is almost twice as much as in Swedish teenagers. Similar are the data on *Lactobacillus spp.*, where the presence of lactobacilli was found in 100% of our teenagers, with 40% having high values thereof (22).

Similar results were publicized by B. Kohler et al. (1992) on the sample of 155 participants, *Streptococcus mutans* was isolated in 85% cases; among them, 17.7% had very high values (23). *Lactobacillus spp.* was found in 81% participants, where 14.3% had a high level thereof (23). Neither of the above authors gives explanation for the increased levels of *Streptococcus mutans* in children of older age. When it comes to the global distribution of salivary *Streptococcus mutans*, the research by authors El-Nadeef and Bratthall (24) is interesting. They compared the values of *Streptococcus mutans* in children of various areas, which had different levels of fluoride in water. The authors found higher levels of *Streptococcus mutans* in those areas where drinking water contained lower concentration of fluoride. Drinking water in the area of Sarajevo contains minimal quantities of fluoride (less than 0.1 ppm). This detail is another proof that the fluoridisation of drinking water in BH remains a desirable preventive method for the improvement of oral health of the population because, among other effects, it brings to the reduction of the number of salivary *Streptococcus mutans*. Our study has shown that, in the control group of children, the levels of *Streptococcus mutans* and *Lactobacillus spp.* are higher in comparison with the global distribution of these cariogenic microorganisms. The detection of population groups, but also individuals, with the higher levels of *Lactobacillus spp.* and *Streptococcus mutans* effectively points to high-risk groups/individuals in terms of caries development. For persons and groups that bear a high risk of caries development, it will be necessary to design targeted programs of prevention based on the high-risk strategy, which will reduce caries risk to minimum. It should be noted that both the level of *Streptococcus mutans* and the level of *Lactobacillus spp.* present considerable risk-factors of caries, but whether and when caries would develop depends on many other factors as well, because caries is a complex infective condition of multi-causal etiology.

TABLE 3. The values of *Streptococcus mutans* in 12 years old children in different countries:

<table>
<thead>
<tr>
<th>Country</th>
<th>Very low values of Streptococcus mutans</th>
<th>Low values of Streptococcus mutans</th>
<th>High values of Streptococcus mutans</th>
<th>Very high values of Streptococcus mutans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangkok</td>
<td>17%</td>
<td>32%</td>
<td>13.3%</td>
<td>18%</td>
</tr>
<tr>
<td>Songpaisan Y. (16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambodia</td>
<td>7%</td>
<td>27%</td>
<td>14.1%</td>
<td>25%</td>
</tr>
<tr>
<td>Bratthall D. (17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pakistan</td>
<td>22%</td>
<td>22%</td>
<td>31%</td>
<td>25%</td>
</tr>
<tr>
<td>Maher R. (18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>14%</td>
<td>28%</td>
<td>13.5%</td>
<td>23%</td>
</tr>
<tr>
<td>Shy Y. (19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>39%</td>
<td>16.3%</td>
<td>23.5%</td>
<td>21.2%</td>
</tr>
<tr>
<td>Hänsel Petersson G. (14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>25.7%</td>
<td>24.8%</td>
<td>34.9%</td>
<td>14.6%</td>
</tr>
<tr>
<td>Zukanović A. (13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:

1. Hänsel Petersson G. (14)
2. Songpaisan Y. (16)
3. Zukanović A. (13)
4. Bratthall D. (17)
5. Maher R. (18)
6. Shy Y. (19)
7. BangaloK
8. Cambodia
9. Pakistan
10. China
11. Sweden
12. Bosnia and Herzegovina
13. Zukanović A. (13)
14. Hänsel Petersson G. (14)
15. Songpaisan Y. (16)
16. Bratthall D. (17)
17. Maher R. (18)
18. Shy Y. (19)
20. Cambodia
21. Pakistan
22. China
23. Sweden
24. Bosnia and Herzegovina
25. Zukanović A. (13)
26. Hänsel Petersson G. (14)
27. Songpaisan Y. (16)
28. Bratthall D. (17)
29. Maher R. (18)
30. Shy Y. (19)
31. BangaloK
32. Cambodia
33. Pakistan
34. China
35. Sweden
36. Bosnia and Herzegovina
37. Zukanović A. (13)
38. Hänsel Petersson G. (14)
39. Songpaisan Y. (16)
40. Bratthall D. (17)
41. Maher R. (18)
42. Shy Y. (19)
CONCLUSION

The level of *Streptococcus mutans* in our children is higher in teenagers than in the younger children, while the differences in the level of *Lactobacillus spp.* in children of various ages do not exist. In view of the global distribution, the levels of *Streptococcus mutans* and *Lactobacillus spp.* are higher in our population than in other countries in both age groups concerned. The above data should be taken into consideration in the creating and implementing preventive programs for the improvement of oral health at all levels (individually, within families, schools, communities and similar).

REFERENCES