Dystrophin hydrophobic regions in the pathogenesis of Duchenne and Becker muscular dystrophies

Authors

  • Yingyin Liang Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province
  • Songlin Chen Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province
  • Jianzong Zhu Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province
  • Xiangxue Zhou Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province
  • Chen Yang Physical examination center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
  • Lu Yao Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province
  • Cheng Zhang Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province

DOI:

https://doi.org/10.17305/bjbms.2015.300

Keywords:

DMD, BMD, dystrophin, Kyte-Doolittle scale mean hydrophobicity profile, 3D model, genotype–phenotype analysis

Abstract

The aim of our study was to determine the role of dystrophin hydrophobic regions in the pathogenesis of Duchenne (DMD) and Becker (BMD) muscular dystrophies, by the Kyte-Doolittle scale mean hydrophobicity profile and 3D molecular models. A total of 1038 cases diagnosed with DMD or BMD with the in-frame mutation were collected in our hospital and the Leiden DMD information database in the period 2002-2013. Correlation between clinical types and genotypes were determined on the basis of these two sources. In addition, the Kyte-Doolittle scale mean hydrophobicity of dystrophin was analyzed using BioEdit software and the models of the hydrophobic domains of dystrophin were constructed. The presence of four hydrophobic regions is confirmed. They include the calponin homology CH2 domain on the actin-binding domain (ABD), spectrin-type repeat 16, hinge III and the EF Hand domain. The severe symptoms of DMD usually develop as a result of the mutational disruption in the hydrophobic regions I, II and IV of dystrophin – those that bind associated proteins of the dystrophin-glycoprotein complex (DGC). On the other hand, when the hydrophobic region III is deleted, the connection of the ordered repeat domains of the central rod domain remains intact, resulting in the less severe clinical presentation. We conclude that mutational changes in the structure of hydrophobic regions of dystrophin play an important role in the pathogenesis of DMD.

References

Danieli GA, Mostacciuolo ML, Bonfante A, Angelini C. Duchenne muscular dystrophy. A population study. Hum Genet 1977; 35(2):225-231.DOI: 10.1007/BF00393974.

Pane M, Lombardo ME, Alfieri P, D'Amico A, Bianco F, Vasco G, et al. Attention deficit hyperactivity disorder and cognitive function in Duchenne muscular dystrophy: phenotype-genotype correlation. J Pediatr 2012; 161(4):705-709. DOI: 10.1016/j.jpeds.2012.03.020.

Magri F, Govoni A, D'Angelo MG, Del Bo R, Ghezzi S, Sandra G, et al. Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow-up. J Neurol 2011; 258(9):1610-1623. DOI: 10.1007/s00415-011-5979-z.

Escolar DM, Zimmerman A, Bertorini T, Clemens PR, Connolly AM, Mesa L, et al. Pentoxifylline as a rescue treatment for DMD: a randomized double-blind clinical trial. Neurology 2012; 78(12):904-913.DOI: 10.1212/WNL.0b013e31824c46be.

Bonilla E, Samitt CE, Miranda AF. Duchenne muscular dystrophy: deficiency of dystrophin at the muscle cell surface. Cell 1988; 54(4): 447-452. DOI: 10.1016/0092-8674(88)90065-7.

López-Hernández LB, van Heusden D, Soriano-Ursúa MA, Figuera-Villanueva L, Vázquez-Cárdenas NA, Canto P, et al. Genotype-phenotype discordance in a Duchenne muscular dystrophy patient due to a novel mutation: insights into the shock absorber function of dystrophin. Rev Neurol 2011; 52(12):720-724.

Bushby K, Connor E. Clinical outcome measures for trials in Duchenne muscular dystrophy: report from International Working Group meetings. Clin Investig (Lond) 2011;1(9):1217-1235. DOI: 10.4155/cli.11.113.

Scully MA, Cwik VA, Marshall BC, Ciafaloni E, Wolff JM, Getchius TS, et al. Can outcomes in Duchenne muscular dystrophy be improved by public reporting of data? Neurology 2013; 80(6):583-589. DOI: 10.1212/WNL.0b013e318282334e.

Soltanzadeh P, Friez MJ, Dunn D, von Niederhausern A, Gurvich OL, Swoboda KJ, et al. Clinical and genetic characterization of manifesting carriers of DMD mutations. Neuromuscul Disord 2010; 20(8):499-504. DOI: 10.1016/j.nmd.2010.05.010.

Basumatary LJ, Das M, Goswami M, Kayal AK. Deletion pattern in the dystrophin gene in Duchenne muscular dystrophy patients in northeast India. J Neurosci Rural Pract 2013; 4(2):227-229. DOI: 10.4103/0976-3147.112777.

Hoffman EP, Brown RH Jr, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987;51(6):919-928. DOI: 0.1016/0092-8674(87)90579-4.

Moore CJ, Winder SJ. The inside and out of dystroglycan post-translational modification. Neuromuscul Disord 2012; 22(11):959-965. DOI: 10.1016/j.nmd.2012.05.016.

Janke A, Upadhaya R, Snow WM, Anderson JE. A new look at cytoskeletal NOS-1 and β-dystroglycan changes in developing muscle and brain in control and mdx dystrophic mice. Dev Dyn 2013; 242(12):1369-1381. DOI: 10.1002/dvdy.24031.

Kalman L, Leonard J, Gerry N, Tarleton J, Bridges C, Gastier-Foster JM, et al. Quality assurance for Duchenne and Becker muscular dystrophy genetic testing: development of a genomic DNA reference material panel. J Mol Diagn 2011; 13(2):167-174. DOI: 10.1016/j.jmoldx.2010.11.018.

Rani AQ, Sasongko TH, Sulong S, Bunyan D, Salmi AR, Zilfalil BA, et al. Mutation spectrum of dystrophin gene in malaysian patients with Duchenne/Becker muscular dystrophy. J Neurogenet 2013; 27(1-2):11-15. DOI: 10.3109/01677063.2012.762580.

Lee BL, Nam SH, Lee JH, Ki CS, Lee M, Lee J. Genetic analysis of dystrophin gene for affected male and female carriers with Duchenne/Becker muscular dystrophy in Korea. J Korean Med Sci 2012; 27(3):274-280. DOI: 10.3346/jkms.2012.27.3.274.

de Brouwer AP, Nabuurs SB, Verhaart IE, Oudakker AR, Hordijk R, Yntema HG, et al. A 3-base pair deletion, c.9711_9713del, in DMD results in intellectual disability without muscular dystrophy. Eur J Hum Genet 2014; 22(4):480-485. DOI: 10.1038/ejhg.2013.169.

Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988; 2(1):90-95. DOI: 10.1016/0888-7543(88)90113-9.

Kesari A, Pirra LN, Bremadesam L, McIntyre O, Gordon E, Dubrovsky AL, et al. Integrated DNA, cDNA, and protein studies in Becker muscular dystrophy show high exception to the reading frame rule. Hum Mutat 2008;29(5):728-737. DOI: 10.1002/humu.20722.

Zhang D, Cui S, Guo H, Jiang S. Genomic structure, characterization and expression analysis of a manganese superoxide dismutase from pearl oyster Pinctada fucata. Dev Comp Immunol 2013; 41(4):484-490. DOI: 10.1016/j.dci.2013.07.010.

Tran VK, Ta VT, Vu DC, Nguyen ST, Do HN, Ta MH, et al. Exon Deletion Patterns of the Dystrophin Gene in 82 Vietnamese Duchenne/Becker Muscular Dystrophy Patients. J Neurogenet 2013; 27(4):170-175. DOI: 10.3109/01677063.2013.830616.

Hassan MJ, Mahmood S, Ali G, Bibi N, Waheed I, Rafiq MA, et al. Intragenic deletions in the dystrophin gene in 211 Pakistani Duchenne muscular dystrophy patients. Pediatr Int 2008; 50(2):162-166. DOI: 10.1111/j.1442-200X.2008.02538.x.

KyteJ, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Bio 1982; 157(1):105-132. DOI: 10.1016/0022-2836(82)90515-0.

Ghose S, Tao Y, Conley L, Cecchini D. Purification of monoclonal antibodies by hydrophobic interaction chromatography under no-salt conditions. MAbs 2013; 5(5):795-800. DOI: 10.4161/mabs.25552.

Fokkema IF, den Dunnen JT, Taschner PE. LOVD: easy creation of a locus-specific sequence variation database using an "LSDB-in-a-box" approach. Hum Mutat 2005; 26(2):63-68. DOI: 10.1002/humu.20201.

Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT. LOVD v.2.0: the next generation in gene variant databases. Hum Mutat 2011; 32(5):557-563. DOI: 10.1002/humu.21438.

Jennekens FG, ten Kate LP, de Visser M, Wintzen AR. Diagnostic criteria for Duchenne and Becker muscular dystrophy and myotonic dystrophy. Neuromuscul Disord 1991; 1(6):389-391. DOI: 10.1016/0960-8966(91)90001-9.

Norwood FL, Sutherland-Smith AJ, Keep NH. The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure 2000; 8:481-491. DOI: 10.1016/S0969-2126(00)00132-5.

Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 2009; 37(Database issue):D387-392. DOI: 10.1093/nar/gkn750.

Goodsell DS. Representing structural information with RasMol. Curr Protoc Bioinformatics 2005; Chapter 5:Unit 5.4. DOI: 10.1002/0471250953.bi0504s11.

Kretsinger RH, Nockolds CE. Carp muscle calcium-binding protein II. Structure determination and general description. J Biol Chem 1973; 248(9):3313-3326.

Heidarsson PO, Otazo MR, Bellucci L, Mossa A, Imparato A, Paci E, et al. Single-Molecule Folding Mechanism of an EF-Hand Neuronal Calcium Sensor. Structure 2013; 21(10):1812-1821. DOI: 10.1016/j.str.2013.07.022.

Bork P, Sudol M. The WW domain: a signaling site in dystrophin? Trends Biochem Sci 1994; 19(12):531-533. DOI: 10.1016/0968-0004(94)90053-1.

Hiraki T, Abe F. Overexpression of Sna3 stabilizes tryptophan permease Tat2, potentially competing for the WW domain of Rsp5 ubiquitin ligase with its binding protein Bul1. FEBS Lett 2010; 584(1):55-60.DOI: 10.1016/j.febslet.2009.11.076.

Koenig M, Monaco AP, Kunkel LM. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 1988; 53(2):219–226. DOI: 10.1016/0092-8674(88)90383-2.

Gumerson JD, Michele DE. The dystrophin-glycoprotein complex in the prevention of muscle damage. J Biomed Biotechnol 2011; 2011:210797.DOI: 10.1155/2011/210797.

Mondal J, Morrone JA, Berne BJ. How hydrophobic drying forces impact the kinetics of molecular recognition. Proc Natl Acad Sci U S A 2013;110(33):13277-13282. DOI: 10.1073/pnas.1312529110.

Singh SM, Mallela KM. The N-terminal actin-binding tandem calponin-homology (CH) domain of dystrophin is in a closed conformation in solution and when bound to F-actin. Biophys J 2012; 103(9):1970-1978. DOI: 10.1016/j.bpj.2012.08.066.

Legrand B, Giudice E, Nicolas A, Delalande O, Le Rumeur E. Computational study of the human dystrophin repeats: interaction properties and molecular dynamics. PLoS One 2011; 6(8):e23819.DOI: 10.1371/journal.pone.0023819.

Acsadi G, Moore SA, Chéron A, Delalande O, Bennett L, Kupsky W, et al. Novel mutation in spectrin-like repeat 1 of dystrophin central domain causes protein misfolding and mild Becker muscular dystrophy. J Biol Chem 2012; 287(22):18153-18162.DOI: 10.1074/jbc.M111.284521.

Mirza A, Menhart N. Stability of dystrophin STR fragments in relation to junction helicity. Biochim Biophys Acta 2008; 1784(9):1301-1309.DOI: 10.1016/j.bbapap.2008.05.010.

Lai Y, Zhao J, Yue Y, Duan D. α2 and α3 helices of dystrophin R16 and R17 frame a microdomain in the α1 helix of dystrophin R17 for neuronal NOS binding. Proc Natl Acad Sci U S A 2013; 110(2):525-530.DOI: 10.1073/pnas.1211431109.

Harper SQ. Molecular dissection of dystrophin identifies the docking site for nNOS. Proc Natl Acad Sci U S A 2013;110(2):387-388. DOI: 10.1073/pnas.1220256110.

Cazzella V, Martone J, Pinnarò C, Santini T, Twayana SS, Sthandier O, et al. Exon 45 skipping through U1-snRNA antisense molecules recovers the Dys-nNOS pathway and muscle differentiation in human DMD myoblasts. Mol Ther 2012; 20(11):2134-2142.DOI: 10.1038/mt.2012.178.

Sahni N, Mangat K, Le Rumeur E, Menhart N. Exon edited dystrophin rods in the hinge 3 region. Biochim Biophys Acta 2012; 1824(10):1080-1089.DOI: 10.1016/j.bbapap.2012.06.011.

Banks GB, Judge LM, Allen JM, Chamberlain JS. The polyproline site in hinge 2 influences the functional capacity of truncated dystrophins. PLoS Genet 2010; 6(5):e1000958.DOI: 10.1371/journal.pgen.1000958.

Carsana A, Frisso G, Tremolaterra MR, Lanzillo R, Vitale DF, Santoro L, et al. Analysis of dystrophin gene deletions indicates that the hinge III region of the protein correlates with disease severity. Ann Hum Genet 2005; 69(Pt 3):253-259.DOI: 10.1046/J.1469-1809.2005.00160.x.

Nicholson LV, Johnson MA, Bushby KM, Gardner-Medwin D, Curtis A, Ginjaar IB, et al. Integrated study of 100 patients with Xp21 linked muscular dystrophy using clinical, genetic, immunochemical, and histopathological data. Part 2. Correlations within individual patients. J Med Genet 1993; 30(9):737-744.DOI: 10.1136/jmg.30.9.737.

Chung W, Campanelli JT. WW and EF hand domains of dystrophin-family proteins mediate dystroglycan binding. Mol Cell Biol Res Commun 1999; 2(3):162-171.DOI: 10.1006/mcbr.1999.0168.

Hnia K, Zouiten D, Cantel S, Chazalette D, Hugon G, Fehrentz JA, et al. ZZ domain of dystrophin and utrophin: topology and mapping of a beta-dystroglycan interaction site. Biochem J 2007; 401(3):667-677. DOI: 10.1042/BJ20061051.

Huang X, Poy F, Zhang R, Joachimiak A, Sudol M, Eck MJ. Structure of a WW domain containing fragment of dystrophin in complex with beta-dystroglycan. Nat Struct Biol 2000; 7(8):634-638.DOI: 10.1038/77923.

Constantin B. Dystrophin complex functions as a scaffold for signalling proteins. Biochim Biophys Acta 2014; 1838(2):635-642.DOI: 10.1016/j.bbamem.2013.08.023.

Cirak S, Feng L, Anthony K, Arechavala-Gomeza V, Torelli S, Sewry C, et al. Restoration of the dystrophin-associated glycoprotein complex after exon skipping therapy in Duchenne muscular dystrophy. Mol Ther 2012; 20(2):462-467. DOI: 10.1038/mt.2011.248.

Mendell J, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L, Lowes LP, et al.The Eteplirsen Study Group. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 2013; 74(5):637-647. DOI: 10.1002/ana.23982.

Dystrophin hydrophobic regions in the pathogenesis of Duchenne and Becker muscular dystrophies

Downloads

Additional Files

Published

20-05-2015

Issue

Section

Molecular Biology

Categories

How to Cite

1.
Dystrophin hydrophobic regions in the pathogenesis of Duchenne and Becker muscular dystrophies. Biomol Biomed [Internet]. 2015 May 20 [cited 2024 Mar. 28];15(2):42-9. Available from: https://www.bjbms.org/ojs/index.php/bjbms/article/view/300