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R E S E A R C H A R T I C L E

PARP9 affects myocardial function through TGF-β/Smad
axis and pirfenidone
Nannan Chen #, Lianzhi Zhang #, Zhang Zhong , Wenjia Zhang , Qunlin Gong , Nan Xu , Yimeng Zhou ∗ ,
Jiahong Wang ∗ , and Pengxiang Zheng ∗

Cardiac arrhythmias are often linked to the overactivity of cardiac fibroblasts (CFs). Investigating the impact of poly (ADP-ribose)
polymerase 9 (PARP9) on Angiotensin II (Ang II)-induced fibroblast activation and the therapeutic effects of pirfenidone (PFD) offers
valuable insights into cardiac arrhythmias. This study utilized weighted gene co-expression network analysis (WGCNA), differential
gene expression (DEG) analysis, protein–protein interaction (PPI), and receiver operating characteristic (ROC) analysis on the
GSE42955 dataset to identify the hub gene with a significant diagnostic value. The ImmuCellAI tool revealed an association between
PARP9 and immune cell infiltration. Our in vitro assessments focused on the influence of PFD on myofibroblast differentiation,
transforming growth factor-beta (TGF-β) expression, and Ang II-induced proliferation and migration in CFs. Additionally, we explored
the impact on fibrosis markers and the TGF-β/Smad signaling pathway in the context of PARP9 overexpression. Analysis of the
GSE42955 dataset revealed PARP9 as a central gene with high clinical diagnostic value, linked to seven types of immune cells. The in
vitro studies demonstrated that PFD significantly mitigates Ang II-induced CF proliferation, migration, and fibrosis. It also reduces Ang
II-induced PARP9 expression and decreases fibrosis markers, including TGF-β, collagen I, collagen III, and α-SMA. Notably, PARP9
overexpression can partially counteract PFD’s inhibitory effects on CFs and modify the expression of fibronectin, CTGF, α-SMA,
collagen I, collagen III, MMP2, MMP9, TGF-β, and p-Smad2/3 in the TGF-β/Smad signaling pathway. In summary, our findings suggest
that PFD effectively counteracts the adverse effects of Ang II-induced CF proliferation and fibrosis, and modulates the TGF-β/Smad
signaling pathway and PARP9 expression. This identifies a potential therapeutic approach for managing myocardial fibrosis.
Keywords: Cardiac arrhythmias, poly (ADP-ribose) polymerase 9 (PARP9), pirfenidone (PFD), TGF-β/Smad signaling pathway,
myocardial fibrosis.

Introduction
Cardiac arrhythmias, characterized by deviations in normal
heart rhythm [1], have garnered significant attention given
their association with increased morbidity and mortality [2].
Originating from disruptions in the cardiac electrical con-
duction pathway or aberrations in the myocardial action
potential [3, 4], these arrhythmias can manifest in a plethora
of ways, from benign palpitations to life-threatening ventricu-
lar fibrillation [5, 6]. In contrast, heart failure (HF) is a debil-
itating clinical condition that represents the inability of the
heart to meet the metabolic needs of the body, primarily caused
by pathologies, such as hypertension, coronary artery disease,
and myocardial infarction [7]. A notable nexus between car-
diac arrhythmias and HF has been discerned in contemporary
research [8, 9]. Not only are HF patients more susceptible to
arrhythmias, but sustained arrhythmias, in turn, can amplify
HF severity by diminishing cardiac efficiency and fostering
detrimental cardiac remodeling [10]. This bidirectional intri-
cacy is further accentuated by common risk determinants, such

as age, obesity, and diabetes [11]. Presently, while a myriad
of treatments ranging from pharmacological interventions to
device implantations exists for both conditions [12], the coexis-
tence of arrhythmia and HF often complicates clinical manage-
ment, making prognostication challenging [13].

Within the scope of the detrimental cardiac remodeling
associated with cardiac arrhythmias, fibrotic processes have
emerged as crucial culprits [14]. Cardiac fibrosis is charac-
terized by excessive accumulation of extracellular matrix
proteins in the interstitial cells of the heart, and in its etiology,
angiotensin II (Ang II) is an important player [15]. The
activation of cardiac fibroblasts (CFs) and their differentia-
tion into myofibroblasts, highlighted by α-SMA, collagen I,
and fibronectin expression, underscores this pathological
remodeling [16]. Notably, Ang II not only fuels fibroblast
proliferation and migration but also instigates the release of
profibrotic factors, with transforming growth factor-beta 1
(TGF-β1) at its forefront [17]. This cytokine, acting through
intracellular mediators, such as Smad2 and Smad3, further
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amplifies the fibrotic cascade [18]. Pirfenidone (PFD) is an
antifibrotic drug that is widely used in the treatment of diseases
associated with fibrosis in organs, such as the lungs, renal
tubular mesenchyme, and liver [19–21]. Research suggests
that PFD primarily mitigates pressure overload-induced
cardiac fibrosis and dysfunction by preventing the signaling
pathway of TGF-β1/Smad3 [22]. A Study by Fu et al. [23]
also proposed a promising therapeutic strategy involving
PFD-loaded nanodroplets combined with an acellular peritoneal
matrix for alleviating myocardial fibrosis post-myocardial
infarction in rats. Although the deleterious effects of Ang II
and its downstream TGF-β signaling in cardiac fibrosis have
been demonstrated, a comprehensive understanding of the
regulators, such as PFD, that counteract this transition remains
an uncharted frontier in cardiovascular research.

A member of the poly (ADP-ribose) polymerase (PARP) fam-
ily, the PARP9 gene is becoming more and more known for
its involvement in a number of illnesses, mostly inflammatory
and cancerous conditions [24–26]. According to recent stud-
ies, PARP9 regulates immune cell activities and inflammatory
responses [27, 28]. It may also control the activity of different
immune cells and have an impact on the generation of inflam-
matory cytokines [29]. Additionally, recent studies suggested
that PARP9 affects immune function and may influence the
response of the body to viral infection [30, 31]. Although these
fields are not well researched, PARP9 may be implicated in other
disease processes since it is involved in DNA repair and cel-
lular stress responses [32, 33]. In addition, since fibrotic and
inflammatory processes are associated with the etiology and
development of various heart diseases, the role of PARP9 in
fibrosis and inflammation suggests it could be a promising ther-
apeutic target for managing cardiac diseases. This hypothesis
necessitates further research for confirmation.

Building on the established links between cardiac arrhyth-
mias, HF, PFD, and the pivotal roles of TGF-β signaling and
Ang II in cardiac fibrosis, to delve deeper into the molecular
underpinnings that may serve as mitigators in this pathogenic
cascade is still necessary. This study sets forth the intention of
clarifying the function of PARP9 in the setting of Ang II-induced
cardiac fibrosis with or without PFD. By probing its poten-
tial implications and regulatory capacities, we aim to uncover
whether PARP9 overexpression can affect the fibrotic transfor-
mations instigated by Ang II with or without the addition of
PFD. Unraveling this relationship not only deepens our under-
standing of the complex interplay at the molecular level but also
paves the way for novel therapeutic strategies in managing the
intertwined challenges of arrhythmias, and fibrosis.

Materials and methods
Data source and collection
The GSE42955 dataset was the main source of data used in
the investigation. It was obtained from the public genomics
data repository, Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/). The dataset encompasses a total
of 24 cardiac samples categorized as the case group and
five samples as the control group. Within the case group,

there are 12 samples from patients diagnosed with dilated
cardiomyopathy (DCM) and another 12 samples from individ-
uals with ischemic cardiomyopathy (ICM). In contrast, cardiac
samples from people who do not appear to have any myocardial
disease make up the control group.

Weighted gene co-expression network analysis (WGCNA) on
GSE42955 dataset
To elucidate intricate gene interactions and delineate gene mod-
ules strongly associated with ischemic cardiomyopathy (ICM),
we employed WGCNA on the comprehensive GSE42955 dataset.
Specifically, gene expression data covering the entire gene pro-
file in the GSE42955 dataset was transformed into a scale-free
network of co-expression. Applying the “WGCNA” program in
R, we ensure strict adherence to the scale-free topology crite-
rion, a hallmark of biologically meaningful networks. In this
construct, each module contains a set of co-expressed genes,
represented by different colors for clarity and identification.
By aligning these gene modules with clinical phenotypes (case
and control samples), we identified modules with significant
associations with ICM.

Differential expression and functional analysis
Utilizing the GEO2R tool, we analyzed the GSE42955 dataset
to identify differentially expressed genes (DEGs). Our selec-
tion criteria for upregulated DEGs mandated a fold change (FC)
exceeding 1.3, while downregulated DEGs required an FC below
0.77, both with a significance level of P < 0.05. Following DEG
determination, the R VennDiagram tool was used to find the
common genes between the yellow module and the GSE42955-
downregulated DEGs. The Database for Annotation, Visual-
ization, and Integrated Discovery (DAVID) database (http://
david.abcc.ncifcrf.gov/) was then used to perform functional
enrichment on these common genes. Extensive investigations
using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) revealed related pathways and functions.
Only results that had P values less than 0.05 were considered
noteworthy.

Protein–protein interaction (PPI) analysis and clinical
diagnostic evaluation
Following the identification of the overlapping genes, we
directed our analysis toward the proteins encoded by these
85 genes. A PPI network was constructed using Cytoscape soft-
ware. Subsequently, the Cytohubba plugin within Cytoscape
was employed, utilizing its molecular complex detection
(MCODE), density of maximum neighborhood component
(DMNC), and maximal clique centrality (MCC) algorithms
to identify three pivotal network modules. To pinpoint key
overlapping genes within these modules, an integrated analysis
was performed using the “VennDiagram” package. Next,
samples from the case and control groups of the GSE42955
dataset were evaluated to determine the expression levels of
these overlapping genes. These key overlapping genes were
subjected to a receiver operating characteristic (ROC) curve
analysis using the R “timeROC” tool. The potential clinical
diagnostic usefulness of the obtained results was evaluated by
calculating area under the curve (AUC) values.
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Assessment of immune cell infiltration and correlation with
PARP9 via ImmuCellAI
An immune cell infiltration abundance tool called ImmuCellAI
(http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/) uses gene
expression data to properly assess the relative abundance of
several immune cell subtypes [34]. In this study, we used the
ImmuCellAI program to analyze the infiltrating abundance of
24 immune cell subtypes in the GSE42955 dataset. The associ-
ation between PARP9 expression and the level of infiltration of
various immune cell subsets was next investigated. The signif-
icance and strength of these connections were assessed using
correlation coefficients and P values.

Cell culture and treatment
CFs play a crucial role in heart development, function, and
response to injury. In the present study, we utilized CFs induced
by 1 μM of Ang II to emulate a pathological condition. The
American Type Culture Collection (ATCC, American) was the
initial source of the cells. Then, during varying lengths of
time (24, 48, and 72 h), CFs were treated with PFD at vari-
ous doses (0.5, 1.0, and 1.5 mg/mL). The cells were grown in
DMEM supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin–streptomycin at 37 °C and 5% CO2 for the best possible
growth and maintenance.

Transfection assay
To probe the potential implications of PARP9 in the context
of Ang II-induced cardiac fibrosis, the CFs were subjected
to transfection procedures. A PARP9 overexpression plasmid
(pcDNA3.1), along with a control vector, was utilized. Lipo-
fectamine 2000 was used for transfections, and the manufac-
turer’s procedure was followed. Post-transfection, cells were
incubated for a further 48 h before subsequent assays and anal-
yses, ensuring sample time for optimal levels.

Quantitative real-time-polymerase chain reaction (qRT-PCR)
assay
Ang II-induced CFs were subjected to total RNA extrac-
tion utilizing the TRIzol Reagent. RNA purity and concen-
tration were ascertained via spectrophotometric analysis.
SuperScript III First-Strand Synthesis System assisted cDNA
synthesis by reverse transcription of 1 g of the recovered
RNA. Then, quantitative real-time PCR was performed
using the Applied Biosystems 7500 Fast Real-Time PCR
System, utilizing primers specific for PARP9 (Forward: 5′-
GAAATGTCCTGTGCCTCCAACT-3′ , Reverse: 5′- ACCTCATTG
TCTATCTTCTCCACCTT-3′ ), α-SMA (Forward: 5′-GGGACATCA
AGGAGAAACTGTGT-3′, Reverse: 5′-TCTCTGGGCAGCGGAA
AC-3′), TGF-β (Forward: 5′-TATGAGAGAATGTTGGTATG-3′,
Reverse: 5′-CAATATCCTTCTGTTCCC-3′) as well as GAPDH
(Forward: 5′-CGAGATCCCTCCAAAATCAA-3′, Reverse: 5′-TTC
ACACCCATGACGAACAT-3′), and the GAPDH as an internal ref-
erence. Computation of relative gene expression was executed
employing the 2-ΔΔCt methodology.

Western blot (WB) assay
Protease inhibitor-supplemented RIPA buffer (1% Triton X-100,
1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M
sodium phosphate, pH 7.2) was used to produce cell lysates

for protein analysis. A BCA protein assay kit (Pierce, Rock-
ford, IL, USA) was used to measure the amounts of proteins.
Comparable protein amounts were separated by SDS-PAGE
and then put on PVDF membranes. Membranes were blocked
and then treated with primary antibodies (1:1000 dilution)
against PARP9, fibronectin, CTGF, α-SMA, collagen I, collagen
III, MMP2, MMP9, TGF-β, Smad2, p-Smad2, Smad3, and p-
Smad3 (all from Abcam, Cambridge, UK) overnight at 4 °C, then
the relevant secondary antibodies (1:5000; Cell Signaling Tech-
nology, Danvers, MA, USA). The enhanced chemiluminescence
(ECL) was used to view the signals.

Cell counting kit-8 (CCK-8) assay
CFs stimulated with 1-μM Ang II, treated with different con-
centrations of PFD, or transfected with PARP9 overexpression
were cultured for 12 h. The CCK-8 test was used to measure cell
viability at 24, 48, and 72 h following this incubation. A density
of 5×103 cells per well was used to seed cells in 96-well plates.
Each well was given 10 μl of CCK-8 solution after the foregoing
procedures, and it was incubated for two hours at 37 °C. The
optical density (OD) at 450 nm was measured using a microplate
reader to assess the viability of cell proliferation.

Enzyme-linked immunosorbent assay (ELISA)
CFs were exposed to various PFD concentrations (0, 0.5, 1.0, and
1.5 mg/mL) during 48 h. The secretion of TGF-β in the culture
supernatant of CFs, either treated or untreated with PFD, was
quantified using commercial ELISA detection kits. The supplier
of ELISA detection kits was R&D Systems in Minneapolis, Min-
nesota, USA. A microplate reader was used to detect absorbance
at 450 nm after the proper processes of incubation and washing.

Assay for cell migration
The migration potential of the CFs post-treatment was
assessed using transwell chambers. In the migration test,
cells were plated in serum-free media in the upper chamber
and chemoattractant-supplied medium in the lower chamber
containing 10% FBS. Non-migrated cells on the top surface
were removed after incubation for 12 h. Rather, migrating cells
on the bottom surface were labeled with DAPI, fixed with 4%
paraformaldehyde, and counted under a microscope.

Ethical statement
The data sourced from the public database are freely accessible,
therefore, this study was not required to obtain authorization
from a clinical ethics committee. The study adhered to the rele-
vant regulations of the public database.

Statistical analysis
Statistical analyses were performed using SPSS 25.0 soft-
ware. Data from three independent biological experiments were
presented as mean ± standard deviation (SD). Graphs were
generated using GraphPad Prism 8.0. Student’s t-test was uti-
lized for pairwise comparisons, with statistical significance set
at P < 0.05. Each experiment was conducted in triplicate. R
language packages were employed for statistical analyses, with
differences between groups assessed using the student’s t-test,
and significance determined at P < 0.05 for the mean.
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Results
Identification of the yellow module as a key module in the
GSE42955 dataset
As demonstrated in Figure 1A, the optimal soft-thresholding
power, which ensures a scale-free topology model fit, was
determined to be 18. Following the establishment of this

soft-thresholding power, we proceeded to analyze the cluster-
ing of the 29 samples from the GSE42955 dataset (Figure 1B).
Utilizing the WGCNA approach, based on their patterns of
co-expression across the samples, genes were grouped into
different modules, each of which was assigned a distinct
color (Figure 1C). To decipher the interrelationships between
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Figure 1. (continued) Analysis of the GSE42955 dataset through WGCNA. (A) Determination of the optimal soft-thresholding power, showcasing a value
of 18 that ensures a scale-free topology model fit; (B) Sample dendrogram of the 29 samples from the GSE42955 dataset, illustrated with and without trait
heatmap; (C) Clustering dendrogram showing the classification of genes into different modules according to their co-expression patterns, each module
is represented by a different color; (D) Eigenegene adjacency heatmap, visualizing the relationship between the identified seven modules; (E) Correlation
heatmap, correlation analysis between gene modules of different colors and two groups of samples of GSE42955. WGCNA: Weighted gene co-expression
network analysis.

these identified modules, eigengene adjacency was scrutinized
(Figure 1D). Among the different modules, the correlation coef-
ficient between the yellow module and the sample was 0.654,
indicating a significant relationship (Figure 1E). This significant
correlation underscored the potential biological relevance of
the genes within the yellow module to the GSE42955 dataset.

Enrichment analysis of 85 overlapping genes
From the GSE42955 dataset, we identified 660 DEGs, compris-
ing 184 upregulated and 476 downregulated DEGs (Figure 2A).
The subsequent analysis highlighted an intersection of 85
overlapping genes between the downregulated DEGs of the
GSE42955 dataset and the yellow module containing 167 genes
(Figure 2B). Through enrichment analysis, these genes were
found to be predominantly associated with several KEGG path-
ways, including Staphylococcus aureus infection, Phagosome,
Leishmaniasis, Malaria, and Influenza A (Figure 2C). In terms
of GO annotations, the 85 genes were related to biological
processes (BPs) like antigen processing and presentation of
exogenous peptide antigen via MHC class II and inflammatory
response, cell components (CCs), such as MHC class II protein
complex and lysosome, and molecular function (MF) like MHC
class II receptor activity and others (Figure 2D).

Identification of PARP9 as a key diagnostic biomarker through
PPI and ROC curve analyses
After the identification of the 85 overlapping genes, a PPI net-
work analysis was executed, leading to the derivation of three
significant gene modules based on the MCODE (26 nodes and

120 edges), MCC (10 nodes and 25 edges), and DMMC (10 nodes
and 16 edges) algorithms (Figures 3A–3C). From these mod-
ules, a set of four key overlapping genes emerged (Figure 3D).
ICAM1, PARP9, SAMD9L, and SELE were mostly downregulated
in the case group, according to further analysis of the expres-
sion levels of these genes within the GSE42955 samples, indi-
cating their possible roles in the etiology or development of
cardiac illness (Figure 3E). In the ROC curve analysis for these
genes (Figures 3F–3I), PARP9 exhibited the highest AUC value
of 0.95, followed by SELE (AUC = 0.94), ICAM1 (AUC = 0.88),
and SAMD9L (AUC = 0.80). These high AUC values indicated
the strong predictive capability and potential diagnostic signif-
icance of these genes, especially PARP9. Given its exceptional
performance in the ROC analysis, PARP9 was selected as the hub
gene for further investigation in this study.

PARP9 expression correlates with infiltration of seven immune
cell types
Utilizing the ImmuCellAI tool, the infiltration abundance of 24
distinct immune cell types was assessed in the GSE42955 sam-
ples. As illustrated in Figure 4A, a notably higher infiltra-
tion level was observed for immune cells, such as B cells,
Neutrophils, CD8 T, Th2, and Tc. We investigated the con-
nection between the previously described immune cells and
PARP9 expression. Remarkably, PARP9 exhibited significant
correlations with seven of these immune cell types. Specif-
ically, PARP9 demonstrated a significant negative correla-
tion with cytotoxic (r = −0.49), B cell (r = −0.46), CD8_T
(r = −0.41), and neutrophil (r = −0.71). On the contrary,
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Figure 2. (continued) Identification and enrichment analysis of overlapping genes in the GSE42955 dataset. (A) Volcano map, the distribution of
660 DEGs in the GSE42955 dataset. Upregulated DEGs (184 in total) are shown in red, while downregulated DEGs (476 in total) are shown in green; (B)
Venn diagram, overlap (middle) between genes of the yellow module (left) and downregulated DEGs in the GSE42955 dataset (right); (C) KEGG pathway
enrichment study bubble graphic for 85 common genes. Each bubble represents a specific KEGG pathway. The y-axis displays the enriched pathways, the
x-axis shows the gene ratio, and the size of the bubbles indicates how many enriched genes are present in each route; (D) Bubble plot of GO enrichment
analysis of 85 overlapping genes covering BP, CC, and MF. The x-axis shows the percentage of genes, the y-axis displays the enriched GO terms, and the
bubble size indicates how many genes are linked to each term. DEG: Differential gene expression; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes
and Genomes; BP: Biological processes; MF: Molecular function.

significant positive correlations were noted between PARP9
and DC (r = 0.39), macrophage (r = 0.65), and monocyte
(r = 0.54) (Figures 4B–4H). These results imply that PARP9 may
be essential for regulating the immune microenvironment in
the GSE42955 dataset samples.

Effects of pirfenidone (PFD) on the proliferation activity,
myofibroblast differentiation, and TGF-β expression of cardiac
fibroblasts (CFs)
In this investigation, we assessed the impact of various PFD
concentrations on the viability of CFs at various time inter-
vals using the CCK-8 test (Figure 5A). Notably, treatment with
1.5-mg/mL PFD for 48 h showed the most significant inhibi-
tion of cell viability, prompting the selection of this condition
for further studies. A sign of myofibroblast differentiation is
the expression and organization of α-SMA. We used qRT-PCR
(Figure 5B) and WB (Figures 5C and 5D) assays to assess the
expression levels of α-SMA in CFs treated with different con-
centrations of PFD. The results showed significant downreg-
ulation at 1.0 and 1.5 mg/mL. At the mRNA level, studies of
TGF-β expression in CFs under different concentrations of PFD
revealed that TGF-β transcription was significantly reduced
after exposure to PFD, as shown in Figure 5E. This finding was
further validated through ELISA assay of TGF-β secretion in the
cell culture supernatant (Figure 5F), supporting the conclusion
that PFD influenced CF proliferation and TGF-β expression.

PFD inhibits Ang II-induced proliferation and migration of CFs
TGF-β expression levels were significantly upregulated when
1-μM Ang II was used to stimulate CFs. It is significant that the
elevation of TGF-β expression brought on by Ang II was suc-
cessfully suppressed by concurrently treating cells with several
doses of PFD (0.5, 1.0, and 1.5 mg/mL) for 48 h (Figure 6A).
This inhibitory effect was further confirmed by subsequent
experimental validation by ELISA (Figure 6B). The CCK-8 and
transwell assays were then used to measure cell migration and
proliferation (Figures 6C–6E). The Ang II group exhibited a con-
siderable increase in both cell proliferation activity and migra-
tion number as compared to the control group. However, there
was a dose-dependent reduction in cell migration number and
proliferation activity when Ang II was coupled with various PFD
doses. These findings suggested that PFD reduced the prolifera-
tion and migratory reactions in CFs caused by Ang II. WB exper-
iments then evaluated the levels of migration-related proteins
and extracellular matrix synthesis-related proteins, especially
MMP2 and MMP9 (Figures 6F–6H). After Ang II induction,
MMP2 and MMP9 protein levels significantly increased in
CFs. Interestingly, PFD administration was found to inhibit
the impacts of Ang II on MMP2 and MMP9 expression. This

observation suggested a potential role for PFD in regulating
matrix remodeling and migration of Ang II-stimulated CFs.

PFD inhibits Ang II-induced CF fibrosis and downregulates
PARP9 expression
To evaluate the degree of cellular fibrosis, WB assay was used
to detect the level of α-SMA, collagen I, collagen III, CTGF, and
fibronectin in CFs after Ang II induction and treatment with
different concentrations of PFD. As shown in Figures 7A–7F,
compared with the control group, the expression of α-SMA,
collagen I, collagen III, fibronectin, and CTGF increased notably
in the Ang II group. However, when comparing the Ang II
group to the groups treated with 0.5, 1.0, and 1.5-mg/mL PFD,
there was a substantial decrease in protein expression. This
decreasing trend was most evident in the Ang II + 1.5-mg/mL
PFD group. Subsequently, we evaluated the expression of PARP9
in CFs treated with different concentrations of PFD under
Ang II induction. When comparing the Ang II group to the
control group, the results revealed a substantial increase in
PARP9 expression. As opposed to Ang II induction alone, PARP9
expression was dose-dependently decreased following treat-
ment with Ang II in conjunction with 0.5, 1.0, and 1.5-mg/mL
PFD (Figures 7G–7I). These findings collectively indicate that
PFD inhibits Ang II-induced CF fibrosis and downregulates
PARP9 expression, with the PFD concentration being most sig-
nificant at 1.5 mg/mL, so this concentration was selected for
subsequent experiments.

PARP9 overexpression reverses the inhibitory effects of PFD on
Ang II-induced cell proliferation, migration, and fibrosis
qRT-PCR analyzed the significant overexpression efficiency of
PARP9 in CFs, and WB experiments further confirmed this
observation at the protein level (Figures 8A and 8B). CCK-8
assay found that the proliferative activity of CFs induced by
Ang II was greatly elevated. However, with the introduction
of PFD (1.5 mg/mL), the promoting effect on cell proliferation
was significantly inhibited. Notably, PARP overexpression had
a synergistic protective effect when Ang II and PFD were
treated simultaneously. Although the inhibition of prolifer-
ation was reduced relative to Ang II induction alone, pro-
liferation rates were still elevated compared with controls
(Figure 8D). Similarly, transwell experiments confirmed the
CCK-8 assay results, indicating that PARP9 overexpression reg-
ulates the migration of CFs induced by Ang II combined with
PFD (Figures 8E and 8F). In addition, WB analysis also evalu-
ated the protein expression levels of MMP2 and MMP9 under
different conditions. The results showed that PARP9 overex-
pression could reverse the PFD-induced suppression of MMP2
and MMP9 expression to some extent in the presence of Ang II
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Figure 4. Analysis of immune cell infiltration and its correlation with PARP9 expression in GSE42955 samples. (A) Infiltration abundance of
24 immune cell types across the 29 samples from the GSE42955 dataset. The x-axis denotes the individual samples, while the y-axis indicates the infiltration
abundance. Different immune cell types are represented by different colors. (B–H) Scatterplots, correlations between PARP9 expression and seven immune
cell infiltrations, with the matching P value and Pearson correlation coefficient displayed in the top left corner for each. PARP9: Polymerase 9.

(Figures 8G–8I). Taken together, these results indicated a com-
plex interplay between PARP9, Ang II, and PFD in CF cellular
processes.

Effects of PARP9 overexpression and PFD on fibrosis markers
and TGF-β signaling in Ang II-stimulated CFs
To gain further insights into the impact of PARP9 on CF
fibrosis, WB analysis was employed. In comparison to the
control group, induction by Ang II resulted in elevated protein
expression levels of α-SMA, collagen I, collagen III, CTGF, and
fibronectin. However, the addition of PFD effectively inhibited

this induction. Moreover, the inhibitory effect was reversed
upon the subsequent introduction of PARP9 overexpression
(Figures 9A–9F). TGF-β is a critical cytokine that induces
fibroblast activation and differentiation, thereby promoting
fibrogenesis [35]. Smad2 and Smad3 are intracellular mediators
of the TGF-β signaling pathway [36]. Further delving into the
signaling cascade, TGF-β and its downstream effectors, Smad2,
p-Smad2, Smad3, and p-Smad3, are paramount in elucidating
fibrotic pathways and the ensuing fibroblast activation [37]. The
expression of the TGF-β/Smad signaling pathway was evalu-
ated by WB analysis. Following Ang II induction, CFs exhibited
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Figure 5. Effects of PFD on CF proliferation and TGF-β expression. *P < 0.05, **P < 0.01. (A) CCK-8 assay to examine the impact of different PFD
concentrations on CF vitality over specified time intervals. The proportion of viable cells is shown on the y-axis, while various concentrations (0, 0.5, 1.0,
and 1.5 mg/mL) during specified time intervals are represented on the x-axis; (B–D) qRT-PCR (B) and WB (C) analysis evaluating α-SMA mRNA expression
levels and protein expression levels, respectively, in CFs treated with different concentrations of PFD. Visualization using Image J (D); (E) qRT-PCR to
detect mRNA expression levels of TGF-β in CFs treated with different concentrations of PFD (F) ELISA to quantify TGF-β secretion in the cell culture
supernatant. The x-axis represents different concentrations (0, 0.5, 1.0, 1.5 mg/mL), and the y-axis displays the concentration of TGF-β. CF: Cardiac fibroblast;
PFD: Pirfenidone; qRT-PCR: Quantitative real-time polymerase chain reaction; WB: Western blot; CCK-8: Cell Counting Kit-8; ELISA: Enzyme-linked
immunosorbent assay.

a noticeable increase in protein levels of p-Smad2, p-Smad3,
and TGF-β compared to the control group. The addition of
PFD effectively suppressed this elevation. Furthermore, the
introduction of PARP9 overexpression reversed this suppres-
sion (Figures 9G–9J). These results emphasized the regulating
effects of PFD and overexpression of PARP9 on the TGF-β/Smad
signaling pathway and Ang II-stimulated CF fibrosis.

Discussion
Within this research, we delved deeper into the molecular
intricacies associated with cardiac fibrosis, particularly focus-
ing on the critical function of PARP9 in the framework of
fibrotic pathways generated by Ang II. The prominence of the
yellow module in the GSE42955 dataset and its substantial
correlation provided a foundation to explore the potential
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regulatory genes that regulate the course or pathophysiol-
ogy of cardiac disease. The identification of PARP9, among
other genes, stood out not only for its diagnostic signifi-
cance but also for its potential therapeutic implications in
cardiac fibrosis [38, 39]. Our findings shed light on how
PARP9 can function as a moderator in the complex interplay
between Ang II-induced proliferative activities, fibrosis

marker elevation, and TGF-β signaling pathway activation.
Furthermore, PARP9 has not only regulated immune cell
infiltration but has also strategically controlled the migra-
tion and proliferation of CFs after Ang II induction. New
insights into cardiac fibrosis emerged from the notable
connection between PARP9, immunological regulation, and
fibrotic transformation. This implies broader implications
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for the understanding of heart disease development and
progression.

By conducting an in-depth bioinformatics analysis of the
GSE42955 dataset, we discerned 85 overlapping genes between
its yellow module and the downregulated DEGs. Remarkably,
these genes manifested significant associations with multiple
KEGG pathways, most prominently with Staphylococcus aureus
infection and the phagosome pathway. Such pathways have
historically been interlinked with immunomodulatory roles
across diverse cardiac ailments. For instance, Staphylococcus
aureus infections are known to provoke systemic inflammatory
responses, potentially exacerbating myocardial injury and
subsequent dysfunction [40]. In a similar vein, the role of

the phagosome pathway, especially in orchestrating cardiac
immune responses post-ischemic events, underscores its per-
tinence to our findings [41]. Beyond this, the elucidated GO
annotations spotlight key BPs, suggesting a nuanced interplay
between immune mechanisms and cardiac fibrotic events. A
case in point is the dysregulation of MHC class II presentation,
which has been linked to autoimmune manifestations in con-
ditions like myocarditis [42]. In summation, these insights hint
that the identified genes, alongside their intertwined pathways,
might play a pivotal role in bridging immune dynamics with the
evolution of cardiac pathologies.

Following the elucidation of co-expression modules and the
identification of 85 intersecting genes, our analysis took a
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Figure 9. Regulation of CF fibrosis and TGF-β/Smad signaling axis by PARP9 overexpression and PFD. *P < 0.05, #P < 0.05. (A–F) WB analysis assessing
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deeper dive into the intricate PPI network. This meticulous
exploration identified three pivotal gene modules, leading to
the spotlight on four overlapping genes: ICAM1, PARP9, SAMD9L,
and SELE. When contextualized with the GSE42955 samples,
there was a marked downregulation of these genes in the
case group, with PARP9 especially drawing attention due to
its pronounced downregulation and its robust AUC value of
0.95 in the ROC analysis. Part of the PARP family, PARP9 is
involved in DNA damage repair, gene transcription, and cellular
stress response [43]. The study by Szántó M. et al. pointed
to the association of PARP9 with lipid metabolism and liver
function [44]. Interestingly, a study by Iwata H. et al., which
revealed a link between the PARP9–PARP14 axis and coronary
artery disease in humans, highlighted the role of PARP9 in
regulating macrophage activation [45]. These findings further
emphasize the importance of PARP9 in the cardiac domain.
Utilizing the ImmuCellAI tool, we delved into the immune cell
infiltration patterns in the GSE42955 samples. Notably, height-
ened infiltration levels were observed for B cells, neutrophils,
and CD8_T cells. The expression of PARP9 manifested nega-
tive correlations with cytotoxic and neutrophil cells, but pos-
itive correlations with DC, macrophage, and monocyte cells.
Lymphocytes, including T and B cells, have been linked to
post-injury cardiac remodeling and autoimmune disorders like
myocarditis [46]. Such intricate interplays between immune
cells and cardiomyocytes significantly influenced the trajec-
tory of various cardiac conditions. This multifaceted relation-
ship underscores the central role of PARP9 in shaping the
immune microenvironment. In light of this, exploring immune
cell-based interventions opens new horizons for heart disease
management.

PFD, recognized as a broad-spectrum antifibrotic agent, has
been extensively investigated in various studies. Avila et al. [47]
highlighted its promising therapeutic role in cardiac diseases,
particularly in diabetic cardiomyopathy, addressing structural
concerns such as fibrosis and stiffness. A study by Lopez-de
la Mora DA et al. emphasized the potential of PFD to alleviate
scar tissue deposition by reducing key fibrotic markers like
TGF-β1, TNF-α, PDGF, and COL1A1, underscoring its positive
effects on inflammation and fibrogenesis [48]. Li et al. [49]
further demonstrated the cardiac protective effects of PFD
by attenuating fibrosis via the AT1R/p38 MAPK/RAS path-
way and activating liver X receptor-α (LXR-α) after myocar-
dial infarction. In our subsequent in vitro experiments, PFD
exhibited dose-dependent inhibition of CF proliferation, and
it suppressed α-SMA and TGF-β expression, hindering myofi-
broblast differentiation. Notably, PFD hindered Ang II-caused
CF migration, proliferation, and fibrosis while downregulating
PARP9 expression. According to Zhang et al. [50] PFD may have
inhibitory impacts on fibroblast adhesion, migration, and pro-
liferation that are mediated by the PI3K/AKT signaling path-
way. Moreover, local application of PFD effectively reduced
epidural fibrosis induced by laminectomy, indicating its poten-
tial as a safe and effective intervention. Hall et al. [51] also
found that PFD exhibits potential as an antifibrotic agent in
dermal fibrosis by inhibiting TGF-β1-induced myofibroblast
differentiation, cell proliferation, and migration. The research

of Vu et al. [52] indicated that inhaled interferon-gamma (IFN-
γ) and PFD demonstrate distinct and complementary antifi-
brotic effects on normal and idiopathic pulmonary fibrosis
(IPF) lung fibroblasts. The combination of these agents showed
potential synergistic or additive effects, inhibiting fibroblast
proliferation, migration, and differentiation induced by TGF-
β1 and PDGF-BB. These findings collectively suggested the ver-
satility of PFD as an agent of therapy with the potential for
combination therapies targeting fibrotic disorders in different
organ systems.

In further in vitro experiments, our findings emphasized
that Ang II induction led to a decrease in PARP9 mRNA and
protein levels in CFs. Interestingly, while PFD attenuated the
proliferative activity of CFs produced by Ang II, overexpres-
sion of PARP9 reversed the detrimental impact of PFD on
Ang II-induced cell proliferation, migration, and fibrosis. This
discovery underscored the ability of PARP9 overexpression to
counteract the proliferative impact of PFD in the context of
Ang II induction. Delving deeper into the regulatory role of
PARP9, its overexpression also mitigated the inhibiting impact
of PFD on key fibrotic markers induced by Ang II, namely,
collagen I, collagen III, α-SMA, CTGF, and fibronectin. In addi-
tion, the TGF-β1 signaling pathway stands out as a pivotal
player in this fibrotic narrative. TGF-β, a potent cytokine,
is intricately involved in diverse cellular activities, includ-
ing fostering fibrosis via driving the transition of fibrob-
lasts to myofibroblasts [53]. The downstream effectors of this
pathway, p-Smad2 and p-Smad3, are intracellular mediators
essential to this transformation process [54]. In our study,
these proteins exhibited a significant increase after Ang II
induction, which was markedly modulated by PFD. Notably,
PARP9 overexpression reversed the protein level reduction
induced by the addition of PFD. These results illuminated the
intricate interplay between PFD, PARP9, and the TGF-β/Smad
signaling pathway in modulating CF behavior and fibrotic
responses.

Conclusion
Our comprehensive study elucidated the significant role of
PARP9 in CF function and fibrotic remodeling, particularly in
the context of Ang II induction. We observed the efficacy of
PFD in mitigating CF proliferation, migration, and fibrosis,
and notably, its influence on TGF-β expression. The mitiga-
tive effect of PARP9 overexpression on pivotal fibrosis mark-
ers, such as α-SMA, collagen 1, and fibronectin, further under-
scores its regulatory significance. Central to our findings is the
identification of the TGF-β signaling pathway, and its down-
stream effectors, p-Smad2 and p-Smad3, as being paramount
in fibrotic regulation. Additionally, the inhibitory effects of PFD
on Ang II-induced fibroblast activation, migration, and fibrosis
were reversed by PARP9 overexpression, further emphasizing
the regulatory role of PARP9 in CF behavior. These insights
collectively highlighted the potential therapeutic value of tar-
geting PARP9, particularly in cardiac conditions exacerbated
by fibrotic remodeling. However, there are some limitations
in our study, such as the absence of data displaying the
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extent and distribution of cellular fibrosis by immunofluo-
rescence microscopy or electron microscopy, and the absence
of corresponding histological examinations. Future research
could further explore the mechanistic intricacies and poten-
tial applications of PARP9 modulation in arrhythmia-associated
disorders.
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