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R E S E A R C H A R T I C L E

Linking renal hypoxia and oxidative stress in chronic
kidney disease: Based on clinical subjects and
animal models
Yizeng Xu 1,2,3,4, Fang Lu 5, Meng Wang 1,2,3,4, Lingchen Wang 1,2,3,4, Chaoyang Ye 1,2,3,4, Shuohui Yang 6∗ ,
and Chen Wang 1,2,3,4∗

The prevalence of chronic hypoxia and oxidative stress plays a key role in the progression of chronic kidney disease (CKD), but the
underlying correlations between them need further elucidation. This study aims to explore the relationships between renal function,
hypoxia, and oxidative stress in CKD. Seventy-six non-dialysis patients with CKD stages 1–5 and 8 healthy subjects were included in the
clinical research. They were divided into 3 groups: healthy subjects, CKD stages 1–3, and CKD stages 4–5. In the animal study, 16 rat
models of CKD were established through 5/6 renal ablation/infarction (A/I) surgery, and 8 normal rats were split into 3 groups: Sham,
CKD, and losartan groups. Blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) was used to measure cortical
and medullary T2∗ values (COT2∗ and MET2∗) in all subjects and rats to evaluate renal oxygenation. Biochemical indicators were used
to assess renal function and antioxidant capacity. Furthermore, the effects of losartan on renal fibrosis, hypoxia, and oxidative stress
were examined using immunoblotting, colorimetric, and fluorometric assays. The results demonstrated significant positive associations
between COT2* and MET2* with estimated glomerular filtration rate (eGFR). Patients with CKD stages 4–5 showed significantly lower
serum superoxide dismutase (SOD) levels, which also had positive correlations with eGFR, COT2*, and MET2*. Furthermore, losartan
treatment resulted in improved renal function and fibrosis, leading to increased levels of COT2*, MET2*, and SOD levels in 5/6 A/I rats.
This was accompanied by reduced levels of hypoxia-inducible factor-1 alpha (HIF-1α) and malondialdehyde (MDA). Furthermore,
losartan restored the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and suppressed the
expression of Kelch-like ECH-associated protein 1 (Keap1) in 5/6 A/I kidneys. The study indicates that a decline in renal oxygenation and
antioxidant capacity is associated with the severity of renal failure in CKD. Losartan can potentially alleviate renal hypoxia and
oxidative stress in the treatment of CKD via the Keap1-Nrf2/HO-1 pathway.
Keywords: Renal hypoxia, oxidative stress, chronic kidney disease (CKD), blood oxygenation level-dependent magnetic resonance
imaging (BOLD-MRI).

Introduction
Chronic kidney disease (CKD) remains a global health prob-
lem with significant morbidity and mortality [1]. Renal fibro-
sis is a common pathological basis of CKD, regardless of the
initial causative factors [2]. Accumulating evidence suggests
that renal hypoxia plays an important role in the progres-
sion of CKD and renal fibrosis [3]. Owing to the unique bor-
derline hypoxia of the kidney in a physiological state, it is
sensitive to oxygenation dyshomeostasis. In addition, vari-
ous pathological conditions across CKD progression, such as
oxidative stress, inflammation, and dysregulated angiogenesis,
aggravate renal hypoxia [4, 5]. Several studies have found that
renal hypoxia was present in different rat models of CKD, such
as unilateral ureteral obstruction (UUO), 5/6 nephrectomy,

and adenine-induced models [6–8]. Thus, renal hypoxia may
be an independent predictor of renal injury in patients
with CKD.

Oxidative stress, defined as an imbalance between oxidants
and antioxidants, is prevalent during CKD progression and pro-
motes renal injury. The kidney is a highly metabolic organ with
abundant mitochondria, which makes it vulnerable to damage
from oxidative stress [9]. It is difficult to separate oxidative
stress and hypoxia in CKD because oxidative stress increases
renal oxygen consumption. In turn, chronic hypoxia induces
overproduction of reactive oxygen species (ROS), which aggra-
vates oxidative stress [10]. Therefore, oxidative stress and
hypoxia are marked features of CKD and major mediators of
CKD progression.
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Inclusion criteria: Aged 18-75 years, non-dialysis,with stable vital signs, and

no contraindications for MRI.

Exclusion criteria: Patients with diabetes mellitus, atherosclerotic

nephropathy, renal arterial stenosis, autosomal dominant polycystic kidney

disease or presence of multiple acquired cysts.

Total participants (n = 90) Excluded participants:

Unable to cooperate the inspection (n = 2)▪

Insufficient clinical datas (n = 1)▪

Withdraw consent (n = 3)▪Enrolled participants (n = 84)

Healthy controls (n = 8) CKD stages 1-3 (n = 49) CKD stages 4-5 (n = 27)

Patients with CKD stages 1-5 (n = 76)

Figure 1. Flowchart for the inclusion of subjects. CKD: Chronic kidney disease; MRI: Magentic resonance imaging.

Blood oxygenation level-dependent magnetic resonance
imaging (BOLD-MRI) offers a noninvasive and real-time
method to evaluate renal oxygenation using MR parameters,
including the effective transverse relaxation time T2∗ and
effective transverse relaxation rate R2∗ (R2∗ = 1/T2∗) [11].
In previous clinical studies, we demonstrated the correlation
between renal function and renal oxygenation in patients
with CKD using BOLD-MRI [12, 13]. Next, we focused on
the pathological factors that induce renal hypoxia in the
progression of CKD. Hence, in the current study, we used both
patients with CKD in the clinical trial and rodent models of CKD
in the experiment to evaluate renal oxygenation by BOLD-MRI
and detect antioxidant capacity and renal function through
biochemical indices, in order to further explore the associ-
ations among hypoxia, oxidative stress, and renal function
in CKD.

Materials and methods
Participant characteristics
CKD was diagnosed according to the National Kidney
Foundation’s Kidney Disease Outcomes Quality Initiative
(K/DOQI) [14]. The detailed inclusion and exclusion criteria
are shown in (Figure 1).

A total of 76 adult patients with CKD and 8 healthy controls
(HCs) were recruited between July 2020 and December 2021 at
the Department of Nephrology in Shanghai Shuguang Hospital.

All participants were asked to maintain a low dietary sodium
intake within three days of MRI preparation. Biochemical indi-
cators, including kidney function, serum superoxide dismutase
(SOD), and hemoglobin, were measured prior to MRI scanning.
The estimated glomerular filtration rate (eGFR) was calculated
using the CKD Epidemiology Collaboration (CKD-EPI) equation.

Animal and drug preparation
Male Wistar rats weighing 160–180 g were purchased from the
SLAC Laboratory Animal Co., Ltd., (License No. SYXK 2022-
0012) and raised in the experimental animal center of SHUTCM
with a standard laboratory environment and diet. Losartan
(100 mg/tablet) was purchased from Merck Sharp & Dohme
Pharmaceutical Co., Ltd. (Hangzhou, China).

Animal study protocol
Following a week of adaptive feeding, a rat model of CKD
was established using the previously described 5/6 renal abla-
tion/infarction (A/I) surgery [15]. Briefly, rats were anes-
thetized with pentobarbital sodium (40 mg/kg, i.p.) and placed
on a thermostatic table. To expose the left kidney, a 1.0 cm long
incision was made 0.5 cm below the left costal arch. The left
renal artery and vein were carefully separated and two-thirds
of the renal artery branches (posterior and anterior descending)
were ligated. One week later, the right kidney was removed.
The surgical procedure is depicted in Figure 2. Four weeks after
surgery, 16 rat models of CKD underwent blood routine, and

Xu et al.
Linking renal hypoxia and oxidative stress in CKD 1320 www.biomolbiomed.com

http://www.biomolbiomed.com
http://www.biomolbiomed.com


Wistar rat

Two branches of renal
artery were ligated

5/6 A/I surgery

Left

MRI diagram

Right

Removed
after one week

Figure 2. Establishment of the 5/6 A/I rat model of CKD. The MRI diagram was the T2∗WI in the coronal plane of the 5/6 A/I kidney. A/I: Ablation/in-
farction; CKD: Chronic kidney disease; MRI: Magentic resonance imaging; T2*WI: Bold T2-weighted imaging.

liver and kidney function tests, and were randomly assigned
to either the CKD group (n = 8) or the CKD + losartan (LOS)
group (n = 8). The remaining eight rats were divided into a
sham-operated (Sham) group. The Sham rats received anes-
thesia and manipulated both renal pedicles, without damaging
any renal parenchyma and vessels. The drug administration of
losartan (20 mg/kg/day) was determined according to a previ-
ous study [15], and the Sham and CKD groups were treated with
the same amount of distilled water as a control. The drugs were
given by daily gavage for eight weeks.

At the end of the 8-week intervention, all rats underwent
BOLD-MRI scanning, and 24-h total urine was collected using
metabolic cages to detect 24-h urinary protein (24-h Upr) and
the urinary albumin:creatinine ratio (UACR). Kidney function,
serum SOD levels, and routine blood tests were performed at
the same time. The creatinine clearance rate (Ccr), which is
the eGFR, was calculated as follows: Ccr (mL/min) = urine
creatinine (μmol/L) × 24-h urine volume (mL)/[serum crea-
tinine (μmol/L) × 1440 (min)] [16]. Finally, all animals were
anesthetized with pentobarbital sodium (40 mg/kg, i.p.), and
remnant kidney tissues were acquired for histological and
molecular studies.

MRI acquisition and analysis
Before undergoing an MRI examination, the participants and
rats fasted for 4–6 h. Rats were anesthetized by intraperi-
toneal injection of pentobarbital sodium and fixed with an
animal-specific coil to maintain a prone position (Figure 4A).
T1-weighted imaging (T1WI), T2-weighted imaging (T2WI),
and T2∗WI (BOLD) imaging of all kidneys were performed
on a 3.0 T magnetic resonance scanner (MAGNETOM Skyra;
Siemens Healthcare, Erlangen, Germany), as previously
reported [12, 13]. A coronal multi-echo (7 echoes) gradient echo
sequence was used for all subjects with echo times of 2.46, 4.92,
7.38, 9.84, 12.30, 14.76, and 17.22 ms; repetition time, 232 ms;
slice thickness, 3.5 mm; flip angle, 60°; bandwidth, 470 Hz/Px;
field of view, 380 mm; and 168 × 256 matrix. Rats used a coronal
multi-echo (5 echoes) gradient-echo sequence with echo times
of 4.36, 11.90, 19.44, 29.68, and 34.52 ms; a repetition time of
417 ms; a voxel size of 0.2 mm × 0.2 mm × 2 mm; flip angle, 60°;

bandwidth, 260 Hz/Px; field of view, 120 mm; 205 × 256 matrix;
and scanning time, 47 s.

After acquiring T2∗WI maps of each kidney, T2∗ values of
renal cortex and medulla (COT2∗ and MET2∗) were evaluated
by two experienced radiologists using six regions of interest
(ROIs) with 0.01 cm2 placed at the upper, middle, and lower
areas of the central slice, as shown in (Figures 3B and 4B). For
participants, COT2∗ and MET2∗ were obtained from bilateral
kidneys (average), and for rats, from the left kidneys. Both
radiologists were blinded to the information on all participants
and rats, including history, laboratory test results, staging of
patients, and intervention of rats.

Histopathological and immunofluorescence staining
examination
The excised rat kidneys were fixed in 4% paraformaldehyde
and embedded in paraffin. Paraffin-embedded sections (3-μm
thickness) were subjected to hematoxylin–eosin (HE) and Mas-
son’s trichrome staining according to the standard protocol,
and observed under a microscope (Nikon Eclipse 80i, Japan) at
200× magnification. A semiquantitative scoring method was
used to assess tubular injury in HE-stained sections, including
tubular dilatation, atrophy, and detachment of tubular epithe-
lial cells [17]: 0 represents no tubular injury; scores 1, 2, 3,
and 4 represent injury involving < 25%, 25%–50%, 51%–75%,
and > 75% of injured tubules, respectively. The severity of renal
fibrosis was evaluated using ImageJ v.1.53 (National Institutes
of Health, USA) according to the % fibrotic area in four ran-
domly selected fields in each Masson’s trichrome section of
the kidney.

For immunofluorescence staining, antigens were retrieved
using the microwave EDTA buffer antigen retrieval method
and blocked with 3% bovine serum albumin (BSA) and 0.1%
Triton-100 after quenching autofluorescence. Sections (3-μm
thick) were incubated with anti-hypoxia-inducible factor-1
alpha (HIF-1α) (1:200) overnight at 4 °C, followed by staining
with FITC-labeled goat anti-rabbit IgG (Beyotime, China) as
the secondary antibody. Positive staining was observed using
fluorescence microscopy (Nikon Eclipse 80i, Japan) at 200×
magnification.
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Figure 3. Correlations of renal oxygenation and antioxidant capacity with renal function in patients with CKD. (A) Schematic diagram of the evaluation
of renal oxygenation by BOLD-MRI in participants; (B) BOLD-MRI T2∗WI and T2∗ map in the coronal plane of participants; (C) Comparisons of BOLD-MRI
parameters and SOD among three groups (analyzed by one-way ANOVA); (D) Correlation of BOLD-MRI parameters, SOD, and eGFR (analyzed by Pearson’s
correlation coefficient). Values for comparison are mean ± SD. ***P < 0.001, ****P < 0.0001. HC: Healthy controls; COT2∗: Cortical T2∗; MET2∗:
Medullary T2∗; SOD: Serum superoxide dismutase; eGFR: Estimated glomerular filtration rate; CKD: Chronic kidney disease; BOLD-MRI: Blood oxygenation
level-dependent magnetic resonance imaging; ANOVA: Analysis of variance.

Western blot analysis
To extract proteins from the left kidney tissues, RIPA lysis
buffer with protease and phosphatase inhibitors was used. The
concentration of proteins was determined through the bicin-
choninic acid (BCA) method. Protein samples were separated

on 8% sodium dodecyl sulfate-polyacrylamide gels and elec-
trotransferred onto polyvinylidene difluoride (PVDF) mem-
branes. After incubation with blocking buffer for 1 h, the
PVDF membranes were incubated with anti-FN (1:2000),
anti-Col-I (1:2000), anti-α-SMA (1:2000), anti-HIF-1α (1:2000),
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Figure 4. Correlations of renal oxygenation and antioxidant capacity with renal function in CKD rats. (A) Schematic diagram of the evaluation of renal
oxygenation by BOLD-MRI in rats; (B) BOLD-MRI T2∗WI and T2∗ map in the coronal plane of the Sham and 5/6 A/I kidneys; (C) Comparisons of BOLD-MRI
parameters and SOD among three groups (analyzed by one-way ANOVA); (D) Correlation of BOLD-MRI parameters, SOD, and Ccr (analyzed by Pearson’s
correlation coefficient). Values for comparison are mean ± SD. ∗P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. LOS: Losartan; COT2∗: Cortical T2∗;
MET2∗: Medullary T2∗; SOD: Serum superoxide dismutase; Ccr: Creatinine clearance rate; CKD: Chronic kidney disease; A/I: Ablation/infarction; BOLD-MRI:
Blood oxygenation level-dependent magnetic resonance imaging; ANOVA: Analysis of variance.

anti-Mn-SOD (1:2000), anti-Kelch-like ECH-associated protein
1 (Keap1) (1:1000), anti-Nrf2 (1:1000), anti-heme oxygenase-
1 (HO-1) (1:2000), and anti-GAPDH (1:3000) overnight at 4
°C. The signals were detected using the Luminescent Imag-
ing Workstation (Tanon, China) and quantified by the ImageJ
software.

Measurement of SOD activity and lipid peroxidation
We used the Total Superoxide Dismutase Assay Kit with WST-
8 (Beyotime Biotechnology) to determine the SOD activity in
kidney tissues. Briefly, 20 μL of tissue lysate supernatant,
quantified using the BCA method, was reacted with 160 μL of
WST-8/enzyme working solution and 20 μL of reaction starter
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working solution at 37 °C for 30 min. The absorbance was
detected at 450 nm using a microplate reader (Biotek), and the
total SOD (T-SOD) activity was expressed as units per milligram
of protein (U/mgprot). Lipid peroxidation in kidney tissues
was evaluated by measuring the malondialdehyde (MDA) con-
tent using a thiobarbituric acid assay kit (Nanjing Jiancheng
Bioengineering Institute, China), and the optical density was
detected at 532 nm using a microplate reader (Biotek). MDA
content was expressed as nanomoles per milligram protein
(nmoL/mgprot).

Ethical statement
The clinical study was conducted in accordance with the Dec-
laration of Helsinki and approved by the Ethics Committee of
the Shuguang Hospital affiliated to SHUTCM (protocol code
2019-703-58-01). Written informed consent and clinical infor-
mation of all participants were collected at the time of enrol-
ment. The animal study protocol was approved by the Animal
Experiment Ethics Committee of the SHUTCM (protocol code
PZSHUTCM220725008).

Statistical analysis
Analyses were performed with SPSS 26.0, and the results were
visualized using GraphPad Prism 9.3. Normal distributions for
continuous variables were determined using the Shapiro–Wilk
test. All data are presented as mean ± SD or median with
interquartile range and analyzed by one-way analysis of vari-
ance (ANOVA), Kruskal–Wallis H test, and Student’s t-test, as
appropriate. The intraclass correlation coefficient (ICC) was
used to analyze the reproducibility of the BOLD-MRI. The
relationships between T2∗ values and biochemical indicators
were tested using the Pearson’s correlation coefficient. P < 0.05
was considered to be statistically significant.

Results
Reproducibility of BOLD-MRI in participants and rats
The high reproducibility (ICC > 0.89) of COT2∗ and MET2∗ in
healthy individuals and patients with CKD has been demon-
strated in our previous studies [12, 13]. In this study, COT2∗ and
MET2∗ of all rats were analyzed by two radiologists, and the
high reproducibility of both COT2∗ (ICC = 0.917, n = 20) and
MET2∗ (ICC = 0.888, n = 20).

Clinical characteristics of subjects
A total of 76 patients with CKD stages 1–5 and eight healthy
subjects were included in the study. Participants were divided
into three groups: HC (n = 8), CKD 1–3 (n = 49), and CKD 4–5
(n = 27). Their clinical characteristics are shown in (Table 1 and
Figure 3C). There were significant differences among the three
groups of COT2∗ (F = 89.45, P < 0.0001), MET2∗ (F = 36.73,
P < 0.0001), and eGFR (F = 88.10, P < 0.0001). Moreover, sig-
nificant differences in SCr, BUN, CysC, and Hemoglobin levels
were also found among the three groups (all P < 0.0001). It is
noteworthy that serum SOD was significantly different in the
HC and CKD 1–3 groups compared to the CKD 4–5 group (HC vs
CKD 4–5, t = 7.593, P < 0.0001; CKD 1–3 vs CKD 4–5, t = 5.618,
P < 0.0001). However, there was no statistical difference in the

serum SOD levels between the HC and CKD 1–3 groups (t = 1.774,
P = 0.0815).

Association of renal oxygenation, serum SOD, and eGFR in CKD
In previous studies, we found that renal oxygenation, evaluated
by BOLD-MRI as COT2∗ and MET2∗, showed good correlations
with eGFR in CKD [12, 13]. To further explore the relationships
among hypoxia, oxidative stress, and renal function, Pearson
correlations of COT2∗, MET2∗, eGFR, and serum SOD in patients
with CKD are presented in (Figure 3D). The correlation coef-
ficient was annotated as follows: 0.8–1.0, very strong correla-
tion; 0.6–0.8, strong correlation; 0.4–0.6, moderate correlation;
0.2–0.4, weak correlation; and 0.0–0.2, very weak or no corre-
lation. eGFR was significantly positively correlated with COT2∗
(r = 0.8199, P < 0.0001), MET2∗ (r = 0.7295, P < 0.0001), and
serum SOD (r = 0.5541, P < 0.0001). Furthermore, there were
strong positive correlations between serum SOD with COT2∗
(r = 0.4911, P < 0.0001) and MET2∗ (r = 0.4331, P < 0.0001)
levels.

To avoid the effects of individualized clinical medication,
we used 5/6 A/I rats to further investigate the relationship
between renal hypoxia and oxidative stress in CKD. As shown
in (Table 2 and Figure 4C), there were significant differences
among the three groups of COT2∗ (F = 19.74, P < 0.0001), MET2∗
(F = 10.74, P = 0.0008), serum SOD (F = 16.64, P < 0.0001),
and Ccr (F = 10.12, P = 0.0008). Ccr was positively associated
with COT2∗ (r = 0.7027, P = 0.0003), MET2∗ (r = 0.7014,
P = 0.0003), and serum SOD (r = 0.7771, P < 0.0001) lev-
els. Additionally, serum SOD levels were positively associated
with COT2∗ (r = 0.7927, P < 0.0001) and MET2∗ (r = 0.6792,
P = 0.0005) levels (Figure 4D).

Renal protection of losartan in CKD rats
In this study, we first assessed kidney function and proteinuria
in rats from the three groups after an 8-week intervention
to verify the renoprotective effect of losartan. As shown in
(Figure 5A), SCr, BUN, 24-h Upr, and UACR in the CKD group
were significantly higher than those in the Sham group (all
P < 0.001), and Ccr and hemoglobin levels were significantly
lower than those in the Sham group (P < 0.001). However,
SCr, BUN, 24-h Upr, UACR, and hemoglobin levels of 5/6 A/I
rats were significantly improved by losartan treatment (all
P < 0.05).

Immunoblotting results showed that the expression of FN,
Col-I, and α-SMA, markers for fibrosis, was significantly upreg-
ulated in the CKD group, but losartan treatment decreased the
expression of FN, Col-I, and α-SMA in 5/6 A/I rats (Figure 5B).
Additionally, HE and Masson staining analysis revealed more
tubular injury and interstitial fibrosis in the CKD group, and
losartan significantly attenuated the severity of renal fibrosis in
5/6 A/I rats (Figure 5C and 5D).

Focus on renal hypoxia and oxidative stress in CKD treatment
To determine whether the renoprotective effect of losar-
tan is consistent with the improvement in renal hypoxia
and oxidative injury, we further evaluated the expression of
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Table 1. Clinical characteristics of 84 subjects

HC (n = 8) CKD 1–3 (n = 49) CKD 4–5 (n = 27) P value

Age (years) 40.13 ± 8.46 48.24 ± 10.85 60.19 ± 7.54 <0.0001

Gender (male/female) 5/3 24/25 13/14 0.7568

SCr (μmol/L) 60.88 ± 6.06 101.88 ± 31.20 276.63 ± 146.84 <0.0001

BUN (mmol/L) 4.06 ± 0.94 6.62 ± 1.98 14.55 ± 6.01 <0.0001

CysC (mg/L) 0.68 ± 0.02 1.22 ± 0.39 2.73 ± 0.61 <0.0001

eGFR (mL/min/1.73 m2) 112.75 ± 7.07 69.24 ± 24.90 20.64 ± 6.46 <0.0001

Hemoglobin (g/L) 142.46 ± 14.66 131.77 ± 20.02 116.90 ± 15.72 <0.0001

SOD (U/mL) 157.50 ± 9.86 143.73 ± 21.45 113.63 ± 23.95 <0.0001

COT2∗ (ms) 70.15 ± 6.26 55.42 ± 6.42 40.24 ± 5.85 <0.0001

MET2∗ (ms) 40.86 ± 3.94 30.99 ± 6.30 19.28 ± 3.78 <0.0001

24-h Upr (g/day) — 0.69 (0.07–4.88) 2.16 (0.37–6.29) <0.0001

Cause of CKD (n)

Chronic glomerulonephritis — 35 17 —

Hypertensive nephropathy — 6 5 —

Other or unknown etiology — 8 5 —

Data are presented as counts, mean (SD) or median (IQR). Data of gender and 24-h Upr were analyzed by Kruskal–Wallis H test
and Student’s t-test, respectively, the others were analyzed by one-way ANOVA. HC: Healthy controls; SCr: Serum creatinine;
BUN: Blood urea nitrogen; CysC: Serum cystatin C; SOD: Serum superoxide dismutase; eGFR: Estimated glomerular filtration rate;
COT2∗: Cortical T2∗; MET2∗: Medullary T2∗; Upr: Urinary protein; UACR: Urinary albumin:creatinine ratio; CKD: Chronic kidney
disease; ANOVA: Analysis of variance.

Table 2. Comparison of COT2∗, MET2∗, SOD, and Ccr from rats among the three groups

Sham (n = 8) CKD (n = 8) LOS (n = 8) F P value

COT2∗ (ms) 53.64 ± 4.24 33.25 ± 5.60 43.60 ± 7.40 19.74 <0.0001

MET2∗ (ms) 35.91 ± 2.16 23.26 ± 4.54 29.69 ± 7.05 10.74 0.0008

SOD (U/mL) 143.88 ± 11.43 102.38 ± 21.13 126.13 ± 6.96 16.64 <0.0001

Ccr (mL/min) 1.56 ± 0.30 0.79 ± 0.44 1.11 ± 0.27 10.12 0.0008

LOS: Losartan; COT2∗: Cortical T2∗; MET2∗: Medullary T2∗; SOD: Serum superoxide dismutase; Ccr: Creatinine clearance rate;
CKD: Chronic kidney disease.

hypoxia-related proteins and antioxidant capacity in the kid-
neys of the three groups. As shown in Figure 6A, the posi-
tive staining area of HIF-1α, a marker for hypoxia, in the CKD
group was significantly larger than that in the Sham group,
and losartan alleviated the expression of HIF-1α, which is con-
sistent with the results of renal oxygenation evaluated by
BOLD-MRI (Figure 4C). In addition, we performed immunoblot-
ting to compare the expression of HIF-1α and MN-SOD in the
three groups. Compared with the Sham group, the expression of
HIF-1α protein was increased in the CKD group but was down-
regulated by losartan treatment. In contrast, the expression
of MN-SOD protein decreased in the CKD group, and losartan
treatment upregulated its expression (Figure 6B). In line with
the above observations, T-SOD activity decreased and MDA
content increased in 5/6 A/I kidneys (all P < 0.01), which

was attenuated by losartan treatment (Figure 6C). These results
indicate that the alleviation of renal injury in CKD is consis-
tent with improvements in renal oxygenation and antioxidant
capacity.

The nuclear factor erythroid 2-related factor 2 (Nrf2)-
mediated antioxidant mechanism plays a critical role in
defense against oxidative stress. We next explored whether
losartan treatment enhances antioxidant capacity via the
Keap1-Nrf2/HO-1 signaling pathway. Immunoblotting analysis
showed that the expression of Nrf2 and HO-1 proteins was
reduced in the CKD group, along with increased levels of Keap1,
compared to those in the Sham group, which was attenuated
by losartan treatment (Figure 6D). Therefore, the inhibition
of oxidative stress by losartan in CKD rats may involve the
activation of the Keap1-Nrf2/HO-1 signaling pathway.
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Discussion
This study was the first to thoroughly investigate the link
between renal hypoxia, oxidative stress, and renal function
in the progression and treatment of CKD in both clinical sub-
jects and rat models. Accumulating evidence has revealed that
chronic hypoxia and oxidative stress play important roles
in the progression of CKD [3, 18]; however, the underlying
relationship between them has not been well elucidated. In the
present study, we quantified renal oxygenation in both patients
with CKD and 5/6 A/I rats through BOLD-MRI and explored
the relationship between hypoxia, oxidative stress, and renal
function during the course of CKD. The results of the clinical
study suggested that COT2∗ and MET2∗ gradually declined as
CKD progressed, and eGFR had a significant positive correlation
with COT2∗ and MET2∗. These findings agree with those of our
previous studies showing that the severity of renal failure is
associated with the degree of renal hypoxia [12, 13]. Further-
more, the serum SOD levels of the subjects also had significant
positive correlations with eGFR, COT2∗, and MET2∗, suggesting
that lower antioxidant capacity might be associated with renal
failure and hypoxia.

Subsequently, we used 5/6 A/I rats, a typical intrarenal
hypoxia model of CKD [15, 16], to study the role of renal hypoxia
and oxidative stress in CKD progression. In line with the clinical
findings, the levels of COT2∗, MET2∗, and serum SOD were
decreased in CKD rats, and there were still positive correla-
tions between serum SOD, COT2∗ and MET2∗ and Ccr, indicat-
ing that renal oxygenation and antioxidant capacity decreased
with the deterioration of renal function. Additionally, we found
that the levels of serum SOD, COT2∗, and MET2∗ increased with
the improvement in renal function and fibrosis after losartan
treatment. Next, we measured the expression of HIF-1α and
SOD in renal tissues to focus on local hypoxia and oxidative
stress in the treatment of CKD. HIF-1α is the main mediator of
the hypoxic response, and increased HIF-1α levels can be used as
a diagnostic marker for tissue hypoxia [19]. The results showed
that the expression of HIF-1α protein was increased in 5/6 A/I
kidneys but was reduced after losartan treatment. Oxidative
stress is caused by a combination of increased ROS production
and decreased antioxidant capacity [20]. As an antioxidant
enzyme, a reduction in SOD activity has been linked to impaired
antioxidant capacity. In this study, we found that T-SOD activ-
ity and MN-SOD protein expression were reduced in 5/6 A/I
kidneys but were increased by losartan treatment. Further-
more, increased MDA content was detected in 5/6 A/I kidneys,
which was also reduced by losartan treatment. MDA, a product
of lipid peroxidation, is considered a biological marker of oxida-
tive stress [21]. These findings demonstrate that renal hypoxia
and oxidative stress were prevalent during the course of CKD,
and losartan had some therapeutic effects on the improvement
of renal oxygenation and antioxidant capacity.

Numerous antioxidant enzymes, such as SOD and HO-1,
are regulated by Nrf2 and play a critical role in the defense
against oxidative stress [22, 23]. Under oxidative stress, Nrf2
is released from bound Keap1 and translocates to the nucleus,
activating the transcription of its target antioxidant genes to
protect against oxidative damage [22]. Notably, our clinical

data indicated that the level of serum SOD significantly
declined from CKD stages 4–5, which was consistent with the
downregulation of Nrf2, as reported in a study [24], suggesting
that antioxidant capacity was reduced in severe kidney function
impairment, especially in patients with CKD stages 4–5, and
this could be reflected in decreased Nrf2. Aminzadeh et al. [25]
reported increased oxidative stress with marked decreases
in Nrf2 and its target proteins (HO-1 and MN-SOD) in 5/6
nephrectomy rats. Similarly, in the present study, decreased
Nrf2 and HO-1 levels accompanied by an increase in Keap1
levels were also found in 5/6 A/I rat models of CKD, which is
in line with the expression of these proteins in patients with
severe renal injury as reported [26]. To some extent, this finding
provides evidence for defining the severity of renal injury in a
5/6 A/I rat model of CKD.

Angiotensin II (Ang II), considered a crucial mediator of
oxidative stress, stimulates ROS overproduction that aggra-
vates inflammation, mitochondrial dysfunction, and renal
fibrosis in the progression of CKD [27, 28]. Losartan, an Ang II
antagonist, has been widely used and shown effective reno-
protection in patients with CKD. In this study, we found that
losartan restored Nrf2, HO-1, and SOD expression and down-
regulated Keap1 and HIF-1α expression in 5/6 A/I kidneys, indi-
cating that the protective effects of losartan in renal hypoxia
and oxidative stress may be associated with the activation of
the Keap1-Nrf2/HO-1 signaling pathway. Mounting evidence
suggests that Nrf2 activation improves GFR, vascular calcifi-
cation, and renal fibrosis in CKD [29, 30]. Zhu et al. [28] also
demonstrated the protective effect of Nrf2 activation on Ang
II-induced mitochondrial injury in podocytes.

The present study has several limitations. First, the sample
size of the clinical participants was relatively small, which could
require more subjects in future studies to support the current
findings. Second, we did not strictly limit drug administration
in the enrolled patients, which could be more consistent with
clinical reality. However, the administration of several drugs,
such as diuretics and hypotensors, might affect renal oxy-
genation and oxidative stress. Third, the BOLD MR technique
with breath-holding was used in this study to evaluate renal
oxygenation, which could be difficult for children and elderly
individuals to endure. We trained each participant carefully
before MRI scanning, and subjects younger than 18 years or
older than 75 years were excluded. Fourth, in order to keep
a low-sodium diet before MRI scanning to prevent additional
oxygen consumption from excessive sodium transport, the sub-
jects’ diets were offered by the hospital cafeteria, and meal
preparation followed the low-sodium dietary standards for CKD
patients established by the Nutrition department during the
study. However, their 24-h urinary sodium (UNa) data were
not collected to be statistically analyzed. Finally, all rats were
anesthetized by pentobarbital sodium before MRI scanning, and
pentobarbital sodium might influence renal oxygenation [31].
Lastly, all rats were sedated with pentobarbital sodium prior
to MRI scanning, which may have influenced renal oxygena-
tion. However, the differences in dose among the rats were
negligible and had minimal impact on the results of group
comparisons.
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Conclusion
This study utilized BOLD-MRI to measure renal oxygenation
in both CKD patients and rat models. Our findings confirm a
correlation between renal hypoxia, oxidative stress, and renal
function in CKD. Furthermore, the results demonstrate that
losartan can partially improve reduced renal oxygenation and
antioxidant capacity in CKD through the Keap1-Nrf2/HO-1 sig-
naling pathway.
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