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R E S E A R C H A R T I C L E

Sirtuin 1, as a potential prognosis marker in clear cell
renal cell carcinoma, regulates lipid metabolism and
immune infiltration
Xuefei Wang 1,2#, Fangqi Deng 1,2#, Jiexi Liu 1,3#, Jiayu Wang1,2, Qing Chen 2, and Jiabin Lu 1,2∗

Clear cell renal cell carcinoma (ccRCC) is a malignancy with a dismal prognosis, caused by the buildup of fat and glycogen. Sirtuin 1
(Sirt1) is a deacetylase that regulates lipid metabolism. In this study, we collected tumor and paracancer tissues from 386 ccRCC
patients and followed their prognosis over an extended time period. The expression of Sirt1 in these tissues was assessed using
immunohistochemistry, and LinkedOmics database analysis identified differentially expressed genes associated with Sirt1. The survival
curve was generated using the Kaplan–Meier method, and immune infiltration was analyzed using the Tumor Immune Estimation
Resource (TIMER) web tool. Our findings revealed that Sirt1 was expressed in tumor tissues, but not in normal tissues, and its high
expression was associated with a worse prognosis. Furthermore, we observed a positive correlation between high Sirt1 expression and
perirenal fat (PF) invasion and necrosis, leading to poorer survival outcomes. We established a nomogram to predict prognosis, and a
correlation was observed with immune infiltration. In conclusion, our results suggest that high Sirt1 expression is associated with lipid
metabolism disorder and immune infiltration, ultimately contributing to a dismal prognosis in ccRCC.
Keywords: Renal clear cell carcinoma (ccRCC), Sirtuin 1 (Sirt1), prognosis, lipid metabolism disorder, immune infiltration.

Introduction
The incidence of renal cell carcinoma (RCC) has been on the
rise, with over 400,000 new cases reported worldwide in 2020,
particularly in males [1]. In China, the incidence and mortality
rates of RCC were 66,800 and 23,400, respectively, in 2015, with
males accounting for almost two-thirds of cases [2]. Despite
advances in treatment, RCC remains highly lethal. The majority
of primary renal cancers can be classified into three subtypes:
clear cell RCC (ccRCC), papillary RCC, and chromophobe RCC.
ccRCC and papillary RCC arise from proximal tubule epithelial
cells, whereas chromophobe RCC and collecting duct tumors
arise from the distal tubules [3]. Moreover, 80% of RCC is ccRCC,
which is characterized by lipid and glycogen accumulation. So,
lipid metabolism remodeling is significant in ccRCC [4]. The loss
of chromosome 3p and von Hippel–Lindau (VHL) function are
well-known causes of ccRCC [5]. The deletion of chromosome
3p causes lots of essential genes related to lipid metabolism to be
lost or haploinsuffcient. And VHL protein is a main ubiquitase
ligand for ubiquitinylating and degradation of hypoxia-induced
factors (HIFs) under hypoxia conditions. The reduction of VHL
and increase of HIFs cause lipid droplets (LDs) accumulation
in ccRCC [4, 5]. Additionally, perirenal fat (PF) surrounds the
kidney and plays a crucial role in kidney function. According

to reports, PF invasion (PFI) occurs in 26% of cases of ccRCC
and has a poor prognosis [6]. Wei et al. report that bidirectional
communication between ccRCC tumor cells and perinephric fat
promotes the growth, invasion, and metastasis of the former [7].
Despite the importance of the connection between ccRCC and
lipid metabolism, this area of research has not received suffi-
cient attention. Therefore, investigating novel pathways of lipid
metabolism modification in ccRCC is essential to prevent the
oncogenesis and progression of this disease.

Sirtuins, a family of nicotinamide adenine dinucleotide
(NAD)-dependent protein deacetylases, have been extensively
studied due to their catalytic activities [8]. And Sirt1, 2,
3, 4, 5, and 6 are members of this family and have these
catalytic activities [9]. Among them, Sirtuin 1 (Sirt1) is a
highly conserved mammalian homolog of Sir2 [10] and has
been the subject of numerous research studies. The link
between Sirt1 and energy metabolism has been extensively
investigated, particularly in relation to fat accumulation and
gluconeogenesis. For example, Sirt1 represses Peroxisome
proliferator-activated receptor gamma (PPARG) in adipocytes
and influences fat accumulation [11, 12]. And in the liver, it is
discovered that Sirt1 modulates different pathways to modify
gluconeogenesis [13]. Recently, there have been many studies
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that focus on the relationship between Sirt1 and inflammation,
especially on nuclear factor kappa B (NF-κB). The NF-κB is a
family of transcription factors and is considered a major regu-
lator of the inflammatory responses due to its ability to regu-
late the transcription of genes involved in the establishment of
immune and inflammatory response in many types of cells [14].
On the one hand, Sirt1 has been shown to acetylate and suppress
NF-κB, thereby repressing inflammation in the liver [15]. On the
other hand, Sirt1 protein levels are downregulated by IL1β/NF-
κB signaling in acetaminophen (APAP) hepatotoxicity, result-
ing in inflammation and oxidative stress [16]. Additionally,
Sirt1 has been implicated in various types of cancer, including
lung cancer, breast cancer, gastric cancer, colon cancer, liver
cancer, pancreatic cancer, ovarian carcinoma, cervical cancers,
prostate cancer, lymphoma, and leukemia, carcinoma of the
head and neck, brain glioma, soft tissue sarcomas, and skin
cancer [17]. However, the role of Sirt1 in RCC remains poorly
understood. Given that ccRCC is a cancer with abnormal lipid
accumulation and Sirt1 is considered an influencing factor of
metabolism, this article aims to investigate the effect of Sirt1 in
ccRCC and provide new ideas and methods for the diagnosis and
treatment of ccRCC.

Materials and methods
Patients and clinical materials
This study included a total of 386 patients diagnosed with
ccRCC who underwent surgical resection at Sun Yat-sen Uni-
versity Cancer Center between 2010 and 2015. The diagnosis
of ccRCC was confirmed by a pathological examination of the
surgical specimen’s clinical data, including age, sex, and tumor
stage, which were collected from medical records. The tumor
stage was determined according to the International Society of
Urological Pathology’s international consensus conference in
2012 [18].

Immunohistochemistry (IHC)
The paraffin-embedded tissue samples are made into chips
with tumor and paracancer tissues. These chips were cut
into 4-μm-thick sections and mounted on poly-L-lysine-coated
slides. The sections were deparaffinized in xylene and rehy-
drated in a graded series of ethanol solutions. Antigen retrieval
was performed by heating the sections in 10 mM EDTA buffer
(pH 9.0) in a 100 °C pressure cooker for 3 min. Endogenous
peroxidase activity was blocked by incubating the sections in
3% hydrogen peroxide for 10 min. The sections were then
incubated with primary antibodies against Sirt1 (1:100 dilu-
tion, OriGene, US) at 37 °C for 50 min. After washing with
phosphate-buffered saline (PBS), the sections were incubated
with horseradish peroxidase-conjugated secondary antibod-
ies (DAKO, Denmark) for 30 min at room temperature. The
sections were then stained with 3,3’-diaminobenzidine (DAB)
and counterstained with hematoxylin. The stained sections
were observed under a light microscope and images were cap-
tured using a digital camera. Staining intensity was scored 0
(negative), 1 (weak), 2 (moderate), and 3 (strong). Staining
range was scored on a 4-point scale (0 = 0%, 1 = 1%∼24%,

2 = 25%∼49%, 3 = 50%∼74%, and 4 = 75%∼100%). The final
staining score is the staining intensity score × the staining
range score.

Bioinformatics analyses
We utilized the “rms” package in R to develop nomograms.
Receiver operating characteristic curve (ROC) analysis was car-
ried out using the “pROC” package and “timeROC” package, and
the analysis results were visualized with the “ggplot2” package.
Protein–protein interaction networks functional enrichment
analysis was built using the Search Tool (STRING) (version 11.5)
(https://string-db.org/) to search for interacting genes [19].

Web analytics
Tumor Immune Estimation Resource (TIMER, cistrome.
shinyapps.io/timer) allows users to explore the relationship
between the expression of certain genes and the degree of
immune infiltration in various cancer types [20]. It utilizes data
from The Cancer Genome Atlas (TCGA) database. By using the
TIMER database, we analyzed the relationship between Sirt1
expression and immune infiltration.

The LinkedOmics portal provides access to multi-omics data
from all 32 TCGA cancer types [21]. Through this website,
RNA-seq datasets for clear cell RCC (ccRCC) from TCGA can
be easily accessed. We chose all 533 RNA high-throughput
sequencing samples from the TCGA database that had a ccRCC
histological categorization. Based on the determination of
Sirt1’s Spearman correlation coefficients with other genes, the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set
Enrichment Analysis (GSEA) identified significant associations
between gene sets and specific biological pathways.

Ethical statement
This study was approved by the Ethics Committee of Sun
Yat-sen University Cancer Center, China. The number of Ethics
Approval is B2023-117-01. The informed consent was obtained
from all subjects and/or their legal guardian(s). All methods
were carried out in accordance with relevant guidelines and
regulations.

Statistical analysis
The majority of statistical analysis was calculated by Graph-
Pad Prism. Data are presented as the mean ± standard error.
Unpaired two-tailed t-tests yielding a P value <0.05 indicated
a statistically significant difference. Overall survival (OS) anal-
ysis and progression-free survival (PFS) analysis were per-
formed by Kaplan–Meier plots and the differences were com-
pared using the log-rank test. The best cut-points were analyzed
by X-tile [22].

Results
Sirt1 expression in ccRCC
We first detected the expression of Sirt1 in ccRCC. Aimed at
this purpose, we collected the paraffin blocks from 386 patients
suffering from ccRCC. Two cancer tissue and paracancer tissue
paraffin blocks were selected from each patient according to
microscopical morphology. These paraffin blocks were made
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Figure 1. Sirt1 expression in ccRCC. (A) Representative immunohistochemistry images of Sirt1 in different expression intensities of ccRCC cancer tissues;
(B) The proportion of Sirt1 different staining intensities; (C) Immunohistochemistry images of Sirt1 in normal tissues. Sirt1: Sirtuin 1; ccRCC: Clear cell renal
cell carcinoma.

into chips and IHC stained. Two professional pathologists read
these Sirt1 IHC stain sheets. To standardize IHC staining results,
the staining strength was evaluated as negative (scored 0),
weak (scored 1), moderate (scored 2), and strong (scored 3)
(Figure 1A). The staining range was evaluated as 0% (scored 0),
1%∼24% (scored 1), 25%∼49% (scored 2), 50%∼74% (scored 3),
and 75%∼100% (scored 4). Multiplying the numbers in paren-
theses between the two evaluated items gets the final evaluated
score (0–12). The results of the two pathologists were averaged
for statistical purposes. In cancer tissue, Sirt1 was expressed
in 79% (Figure 1B) whereas it was scarcely present in nearly all
normal tissue (Figure 1C).

High expression of Sirt1 is associated with a poor progno-
sis. We present experimental evidence on the survival out-
comes of patients with varying Sirt1 expression levels. Based
on the latest follow-up data in 2022, we conducted a survival
analysis and found that using the median score as a cut-off
to divide patients into two groups did not yield statistically
significant results. To determine the most appropriate cut-off
point, we utilized X-tile software for analysis. The software
divided patients into two groups based on a score of <=3.5
(low expression, n = 288) and >3.5 (high expression, n = 98).

Applying this grouping, patients exhibiting a tumor expressing
high levels of Sirt1 had lower OS (Figure 2A) and lower PFS
(Figure 2B).

Upon further analysis, we observed no significant difference
in Sirt1 expression levels among patients in different stages.
However, we did observe significant differences in OS and PFS
among patients with varying Sirt1 expression levels and stages.
Specifically, patients in stage 1 (low expression, n = 201; high
expression, n = 64) ccRCC with low mortality did not exhibit
any significant influence of Sirt1 expression on their survival
outcomes. In contrast, patients in stages 2 (low expression,
n = 28; high expression, n = 9) and 3 (low expression, n = 39;
high expression, n = 19) with higher Sirt1 expression levels had
significantly poorer prognoses than those with lower expres-
sion levels. Due to the limited number of cases and high mor-
tality rates in severe cases, it was difficult to obtain statistically
significant results for stage 4 (low expression, n = 11; high
expression, n = 6) patients (Figure 2C). The trend observed in
the PFS results was similar to that of the OS results across dif-
ferent stages (Figure 2D). Overall, our findings suggest that Sirt1
expression levels only affect the survival outcomes of patients
in the middle stages.
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Figure 2. Poor prognosis for patients with high Sirt1 expression. (A) The different levels of Sirt1 expression were analyzed using Kaplan–Meier survival
analysis to determine OS; (B) PFS in relation to varying levels of Sirt1 expression was determined by Kaplan–Meier survival analysis. Kaplan–Meier survival
analysis shows OS (C) and PFS (D) in different Sirt1 expression groups and different stages; (E) Sirt1 expression is higher in PFI patients; (F) Kaplan–Meier
survival analysis reveals OS in different Sirt1 expression groups and with or without PFI; (G) Kaplan–Meier survival analysis reveals OS in different Sirt1
expression groups and with or without PFI; (H) Sirt1 expression is higher in necrosis patients; (I) Kaplan–Meier survival analysis reveals OS in different
Sirt1 expression groups and with or without necrosis; (J) Kaplan–Meier survival analysis reveals OS in different Sirt1 expression groups and with or without
necrosis. P value <0.05 indicates a statistically significant difference. Sirt1: Sirtuin 1; OS: Overall survival; PFS: Progression-free survival; PFI: Perirenal fat
invasion.

Other factors influencing prognosis and construction of clinical
prognostic model
PFI serves as a crucial prognostic indicator in the TMN stage
(AJCC, 8th edition). Its association with a poorer prognosis
has been well-established [23]. And our study shows the same
results in the OS and PFS. Sirt1 functions as a deacetylase
and regulates fat metabolism [8]. To elucidate the relationship
between PFI and Sirt1 expression, we conducted a comparative
analysis of Sirt1 expression levels in patients with and without
PFI. Our findings indicate that patients with PFI exhibit higher

levels of Sirt1 expression (Figure 2E). Furthermore, combined
with OS and PFS in different patients, high expressing Sirt1 is
related to PFI occurrence and with a worse prognosis (Figure 2F
and 2G) (Low expression and PFI −, n = 253; Low expression
and PFI +, n = 17; High expression and PFI −, n = 82; High
expression and PFI +, n = 13).

Tumor necrosis is an independent poor prognostic
indicator [24] and a higher necrosis rate is associated with a
significantly higher risk of recurrence [25]. According to the
study, the regulation of Sirt1 levels and its activation play a
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Table 1. The relevant parameters for each variable in the nomogram of overall survival

Coef S.E. Wald Z Pr (>|Z|) HR

Age −0.0352 0.0131 −2.69 0.0071 1.0357025

Gender = male −0.5141 0.3460 −1.49 0.1373 1.9361806

Stage −0.9151 0.1617 −5.66 <0.0001 2.5292246

Necrosis = yes −1.1250 0.3502 3.21 0.0013 2.5863738

PFI = yes 0.9438 0.4956 1.90 0.0569 0.3641643

Sirt1 = High_exp −0.2483 0.3166 −0.78 0.4330 1.6491216

Nuclear_grade −0.7329 0.2845 −2.58 0.0100 1.9708272

Coef: Coefficients; S.E.: Standard error; Wald Z: Wald test critical value; Pr: Probability; HR: Hazard ratio; PFI: Perirenal fat invasion.

Table 2. The relevant parameters for each variable in the nomogram of progression-free survival

Coef S.E. Wald Z Pr (>|Z|) HR

Age −0.0463 0.0162 −2.87 0.0042 1.0455270

Gender = male 0.1069 0.3578 0.30 0.7652 0.8069903

Stage −1.0540 0.1760 −5.99 <0.0001 3.0162504

Necrosis = yes −0.5208 0.3960 −1.32 0.1885 1.3143747

PFI = yes 1.1523 0.5910 1.95 0.0512 0.3411541

Sirt1_expression_score −0.1233 0.0651 −1.89 0.0584 1.1568529

Nuclear_grade −1.0183 0.3264 −3.12 0.0018 3.0878866

Coef: Coefficients; S.E.: Standard error; Wald Z: Wald test critical value; Pr: Probability; HR: Hazard ratio; PFI: Perirenal fat invasion.

crucial role in mediating the multistep process of drug-induced
liver injury (DILI), which contributes to the development
of DILI, and subsequently triggers severe oxidative stress,
inflammation, and apoptosis. These processes collectively
lead to hepatocellular necrosis and ultimately result in liver
damage [26]. Nevertheless, the impact of Sirt1 on tumor
necrosis in ccRCC remains unexplored. Our observations have
revealed a significant association between Sirt1 expression
and necrosis (Figure 2H). And both lead to worse prognosis
(Figure 2I and 2J) (Low expression and Necrosis −, n = 244;
Low expression and Necrosis +, n = 43; High expression and
Necrosis − n = 73; High expression and Necrosis +, n = 36).

We subsequently devised a prognostic nomogram based
on the outcomes of a multivariate Cox analysis of patients’
OS data (Figure 3A). The time-dependent ROC curve area for
prognoses at the 1-year, 3-year, and 5-year marks were 0.931,
0.913, and 0.877, respectively (Figure 3B). Moreover, the reli-
ability of this model in 3-year and 5-year periods was con-
firmed by calibration analysis (Figure 3C). Using the same
methodology, we constructed a nomogram for PFS (as shown
in Figure 3D). The time-dependent ROC curve area for prog-
noses at the 1-year, 3-year, and 5-year marks were 0.904,
0.868, and 0.871, respectively (Figure 3E). Calibration analy-
sis further confirmed the reliability of this model for prog-
noses at 1-year, 3-year, and 5-year marks (Figure 3F). The
coefficients, standard deviations, Wald values, P-values, and
risk ratios for each variable are shown in Tables 1 and 2.

These clinical models can help doctors and researchers bet-
ter assess patients’ health risks, and improve the accuracy
and efficiency of diagnosis, resulting in better healthcare for
patients.

Potential mechanisms associated with Sirt1 affecting the
prognosis
The excess fatty acids are stored as LDs in the kidney. The
accumulation of LD is one of the phenotypes of ccRCC [27].
Sirt1 is associated with lipid metabolism and it is reported
that it increases lipophagy and promotes LD catabolism in the
liver [28]. The next section of the survey was concerned with
the correlation between Sirt1 and lipid metabolism. The Linke-
domics database was used to illustrate it [21]. Figure 4 presents
the summary statistics for GSEA. There are a series of pathways
related to lipid metabolism, such as the TGF-beta signaling path-
way, FoxO signaling pathway, and oxidative phosphorylation.
At the same time, the protein–protein interaction networks
functional enrichment analysis showed part of the functional
partners known or predicted to interact with Sirt1 (Figure 5).
Among the partners, Peroxisome proliferator-activated recep-
tor gamma coactivator 1-alpha (PPARGC1A) and PPARG con-
trol the peroxisomal beta-oxidation pathway of fatty acid and
are key regulators of adipocyte differentiation and glucose
homeostasis. They have all been proven to be related to Sirt1
(Figure 5). Overall, these results suggest that Sirt1 is highly
expressed and regulates the lipid metabolism in ccRCC.
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Figure 3. (Continued) Predicting the prognosis of ccRCC patients. (A) Nomogram prediction model based on the OS data of ccRCC patients; (B) ROC
analysis based on nomogram prediction model of OS; (C) Calibration analysis in different time frames based on nomogram prediction model of OS; (D)
Nomogram prediction model based on the PFS data of ccRCC patients; (E) ROC analysis based on nomogram prediction model of PFS; (F) Calibration
analysis in different time frames based on nomogram prediction model of PFS. OS: Overall survival; PFS: Progression-free survival; ROC: Receiver operating
characteristics; ccRCC: Clear cell renal cell carcinoma; AUC: Area under the curve.
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Necrosis is a common occurrence in solid tumor tissue
and is often indicative of a poor prognosis [29]. And it is
related to inflammation [30]. In order to delve deeper into
this relationship, we conducted an analysis of the correlation
between Sirt1 expression and immune infiltration in ccRCC

using the TIMER website [20]. Our findings indicate a positive
correlation between Sirt1 expression and the presence of B cells,
CD8+ T cells, CD4+ T cells, and neutrophils (Figure 6). These
results suggest that Sirt1 is closely associated with immune
infiltration.
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Figure 7. Effect of Sirt1 expression in ccRCC. Sirt1 exhibits elevated expression levels in ccRCC. The overexpression of Sirt1 is associated with the
occurrence of PFI and necrosis, and linked to disruption of lipid metabolism and necrosis, which lead to an unfavorable prognosis. PFI: Perirenal fat invasion;
Sirt1: Sirtuin 1; ccRCC: Clear cell renal cell carcinoma.

In other words, Sirt1 expression disrupts lipid metabolism
and immune infiltration and poses a threat to patient survival
(Figure 7).

Discussion
The mortality rate of ccRCC patients remains high even after
surgical intervention. The accumulation of lipid dioptids has
been linked to carcinogenesis [5], and several studies have
explored its underlying mechanisms. For instance, it has
been discovered that HIF1α-GPD1 forms a positive feedfor-
ward loop that inhibits lipid metabolism in ccRCC [31]. While
Sirt1 is a known biomarker of lipid metabolism [4], its role
in ccRCC has not been extensively studied. To investigate the
role of Sirt1 in ccRCC, we conducted an IHC analysis of Sirt1
expression in 386 ccRCC patients. Almost 80% of cancer tis-
sues expressed Sirt1 but normal tissues did not. Furthermore,
patients exhibiting a ccRCC with high Sirt1 expression had sig-
nificantly worse OS and PFS. It is reported that Sirt1 positively
regulates LXRs through deacetylation at lysine K432, and this
mechanism appears to play a significant role in cholesterol
homeostasis [32]. To further elucidate the function of Sirt1,
we attempted to test the fat content in our samples. However,
paraffin sections are not suitable for preserving lipids during

processing. Therefore, we utilized the Linkedomics database to
identify differential genes associated with Sirt1. As shown in
Figure 4, the TGF-beta signaling pathway exhibited the most
significant positive correlation and has been previously shown
to regulate lipid metabolism [33, 34]. Additionally, the FoxO
signaling pathway is known to regulate lipid metabolism [35].
Besides, there was a significant negative correlation between
Sirt1 and oxidative phosphorylation, which needs fat as part of
the fuel for energy [36]. At the same time, the protein–protein
interaction networks functional enrichment analysis was built
using the Search Tool (Figure 5). PPARGC1A is a coactivator of
PPARG, and it plays an important role in lipid metabolism in
the kidney [37] and liver [38]. Upregulating the expression level
of Sirt1 promoted the deacetylation of PPARGC1A, promoted
the transcriptional activity of PPARα, and regulated cholesterol
levels [39]. Taken together, these findings suggest a potential
association between Sirt1 and lipid metabolism.

In this study, we aimed to investigate the impact of Sirt1
expression on various factors, including age, gender, tumor
size, and metastasis. Surprisingly, our results did not reveal
any significant differences in Sirt1 expression across these
variables. However, we did observe a higher expression of
Sirt1 in patients with PFI and necrosis. Numerous studies have
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attempted to demonstrate that PFI has a poor prognosis [40–42].
And our findings match those of earlier studies. Furthermore,
our data certifies that the patients with PFI simultaneously
with high Sirt1 expression tend to have a worse prognosis.
We hypothesize that Sirt1 may accelerate the fat metabolism,
thereby promoting the invasion of PF. To better aid in diagnosis,
we constructed clinical models to predict 1-year, 3-year, and
5-year OS and PFS corresponding to patients in different ages,
genders, stages, nuclear grades, Sirt1 expression, and presence
of PFI and necrosis.

Necrosis is a well-known indicator of poor prognosis in var-
ious cancers, including ccRCC [24, 43, 44]. And it is related to
inflammation [45]. Previous studies have explored the rela-
tionship between Sirt1 and inflammation [46, 47]. And our
investigation revealed that Sirt1 expression is significantly cor-
related with necrosis and immune. Similar to PFI, the combina-
tion of necrosis and high Sirt1 expression may serve as a poor
prognostic factor in ccRCC. To further elucidate the role of Sirt1
in ccRCC, we analyzed the correlation between Sirt1 expression
and immune infiltration levels. Although we did not collect
our own data on immune infiltration, we utilized the TIMER
web service, which provides reliable data from TCGA [20]. Our
findings suggest that Sirt1 expression may enhance immune
infiltration in ccRCC. However, further research is necessary
to investigate the relationship between Sirt1 expression and
immune infiltration in ccRCC.

Conclusion
Overall, our studies show that Sirt1 is expressed in most ccRCC
tissues but not in normal tissues. Increased Sirt1 expression
seems linked to PFI, necrosis, immunological infiltration, lipid
metabolic problems, and maybe a worse prognosis in ccRCC.
Even though our results suggest that Sirt1 may have an impact
on PFI, necrosis, and immune infiltration, more research is
needed to prove a connection between the elevated Sirt1 expres-
sion and these clinical outcomes. Additionally, more research is
required to clarify its specific mechanistic role in the develop-
ment of the disease and the response to treatment. As a result,
Sirt1 may be regarded as a prospective therapeutic target for
colorectal cancer as well as a possible prognostic marker.
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