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R E S E A R C H A R T I C L E

Identifying key inflammatory genes in psoriasis via
weighted gene co-expression network analysis:
Potential targets for therapy
Huidan Li 1, Xiaorui Wang 1, Jing Zhu 2, Bingzhe Yang 3, and Jiatao Lou 1∗

Psoriasis is a globally prevalent chronic inflammatory skin disease. This study aimed to scrutinize the hub genes related to
inflammation and potential molecular mechanisms in psoriasis. Utilizing mRNA expression profiles from public datasets GSE13355,
GSE78097, and GSE14905, we set up a comprehensive analysis. Initially, we selected differentially expressed genes (DEGs) from
psoriasis and control samples in GSE13355, followed by calculating inflammatory indices using genomic set variation analysis (GSVA).
Weighted gene co-expression network analysis (WGCNA) was then applied to link significant modules with the inflammatory index.
This process helped us identify differentially expressed inflammation-related genes (DE-IRGs). A protein–protein interaction (PPI)
network was established, with the molecular complex detection (MCODE) plug-in pinpointing six chemokine genes (CCR7, CCL2, CCL19,
CXCL8, CXCL1, and CXCL2) as central hub genes. These genes demonstrated pronounced immunohistochemical staining in psoriatic
tissues compared to normal skin. Notably, the CCR7 gene exhibited the highest potential for m6A modification sites. Furthermore, we
constructed transcription factor (TF)-microRNA-mRNA networks, identifying 139 microRNAs and 52 TFs associated with the hub genes.
For the LASSO logistic regression model, the area under the curve (AUC) in the training set was 1, and in the two validation cohorts
GSE78097 and GSE14905, it was 1 and 0.872, respectively. In conclusion, our study highlights six chemokine genes (CCR7, CCL2, CCL19,
CXCL8, CXCL1, and CXCL2) as potential biomarkers in psoriasis, providing insights into the immune and inflammatory responses as pivotal
instances in disease pathogenesis. These findings pave the way for exploring new therapeutic targets, particularly focusing on
chemokine-associated pathways in psoriasis treatment.
Keywords: Psoriasis, hub gene, inflammation-related genes, chemokine, immunohistochemistry, weighted gene co-expression
network analysis (WGCNA).

Introduction
Psoriasis, a chronic immune-mediated inflammatory disease, is
characterized by distinct skin lesions and affects an estimated
120 million children and adults worldwide [1, 2]. This condition
extends beyond dermatological issues, encompassing systemic
problems, and is often associated with comorbidities, such as
psoriatic arthritis, metabolic syndrome, depression, and cardio-
vascular diseases [3]. Plaque psoriasis, which accounts for over
90% of cases is the most prevalent clinical phenotype [1]. How-
ever, the broad clinical manifestations of psoriasis often lack
specific biomarkers, posing challenges for accurate diagnosis
and effective treatment [4]. Current therapeutic strategies, pri-
marily aimed at symptom management, offer limited long-term
effectiveness and are associated with significant side effects.
Conventional treatments, such as corticosteroids and vitamin D
analogs, are recommended only for mild psoriasis cases and
carry risks with prolonged use [5]. Although biological agents
have been proven beneficial for a certain patient group, they

introduce potential complications related to immune system
modification [6]. This scenario underscores the need for novel
therapeutic approaches built on a more comprehensive under-
standing of psoriasis pathophysiology.

The pathogenesis of psoriasis is complex, involving both the
innate and adaptive immune systems. Central to this process
are dendritic cells (DCs), macrophages, neutrophils, NK cells,
and especially T cells [7, 8]. Activated keratinocytes release
cytokines and chemokines, which, along with these inflam-
matory cells, drive the characteristic alterations in skin and
blood vessels seen in psoriasis [9, 10]. Consistently, chemokines
and their receptors are pivotal in the inflammatory milieu,
guiding the movement and activation of T lymphocytes, mono-
cytes, and neutrophils [11, 12]. Although several chemokines,
such as CCL13, CXCL12, CXCL10, CCL27, and CCR6, have
been identified in the context of psoriasis [11, 13], CXCL10,
in particular, has been suggested as a biomarker for psoria-
sis progression [14]. The deletion of CCR6 in mice has been
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shown to impede the development of a psoriasis-like phe-
notype following IL-23 injection [15]. Despite these insights,
the precise mechanism by which chemokines facilitate psori-
asis pathogenesis is not fully understood, underlining a cru-
cial area for further research. Therefore, this study aims to
explore the existing gaps regarding specific chemokine gene
networks.

Recent advances in gene expression profiling have illumi-
nated the pathogenesis of psoriasis [16, 17]. Weighted gene
co-expression network analysis (WGCNA), a robust method
for associating genes with phenotypic traits, played a key role
in revealing gene networks pertinent to psoriasis [18–20]. By
integrating WGCNA with differential expression analysis, Ahn
et al. [20] uncovered various psoriasis-related networks of
coding and non-coding genes, while Sundarrajan et al. [21]
identified potential diagnostic genes for psoriasis. Nonethe-
less, WGCNA has yet to be applied in identifying networks of
inflammation-related genes.

In our study, we aimed to address these gaps by using
WGCNA in conjunction with an inflammation index to identify
differentially expressed inflammation-related genes (DE-IRGs)
in psoriasis. Subsequently, we identified potential biomarkers,
focusing on inflammation-associated hub genes, and assessed
their predictive sensitivity and specificity for distinguishing
psoriasis from control subjects. Importantly, we pinpointed
transcription factors (TFs), miRNAs, and potential drug candi-
dates that interact with these hub genes. These findings provide
significant insights into the role of inflammation genes in pso-
riasis and propose novel biomarkers for targeted therapeutic
interventions. They enhance our understanding of psoriasis
pathogenesis, provide essential guidance for personalized ther-
apy and drug development, and, finally, markedly contribute
to the advancement of psoriasis management strategies and
treatment options.

Materials and methods
Data source
The datasets GSE13355 [22], GSE14905 [23], and GSE78097 [24]
were obtained from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/gds). In this study,
the GSE13355 dataset, which was derived from the chip data
of the GPL570 platform, included 58 psoriasis and 64 con-
trol samples. The GSE14905 and GSE78097 datasets were also
based on the GPL570 platform chip data and consisted of
28 and 27 psoriasis and 21 and 6 control samples, respec-
tively. For this study, GSE13355 was utilized as a training
set, while GSE14905 and GSE78097 were employed as exter-
nal validation sets. The GSE13355 raw data from 180 microar-
rays were processed using the robust multichip average (RMA)
method. The expression values in the table were after adjust-
ment of RMA expression values (on the log scale) to account
for batch and sex effects. GSE78097 was processed using
GCRMA (gcrma package using R/Bioconductor) and adjusted
for batch effects. GSE14905 analyzed data using ArrayAssist
Lite. Moreover, the gene expression patterns of IRGs (HALL-
MARK_INFLAMMATORY_RESPONSE, Table S1) were acquired

from the Molecular Signature Database (MSigDB) database
(https://ngdc.cncb.ac.cn/databasecommons).

Screening of differentially expressed genes (DEGs)
The limma package (v3.52.4) [25] was used to identify the
DEGs between the psoriasis and control samples in the
GSE13355 dataset. The cutoff values were adjusted P < 0.05
and |log2 fold change (FC)| > 1. The results were visualized
on heatmap and volcano plots using ggplot2 (v3.3.6) [26] and
pheatmap packages (v1.0.12) [27], respectively.

Weighted gene co-expression network analysis (WGCNA)
Originally, the inflammatory index of each GSE13355 sam-
ple was calculated via the single-sample gene set enrichment
analysis (ssGSEA) algorithm using a genomic set variation
analysis (GSVA) package (v1.44.5) [28]. Then, inflammatory
index-related key modulars in GSE13355 were identified via
the WGCNA R package [18]. The procedure began by creating a
sample clustering tree to screen for outliers, evaluating whether
their removal was crucial for the credibility of the forthcoming
analyses. Afterward, the selection of a soft threshold (β) for
constructing the co-expression network ensued. This network
construction aimed to match a scale-free R2 close to 0.85 and a
mean connectivity value close to 0, thus ensuring a closer cor-
respondence to a scale-free topology. Next, according to their
proximity, genes were compared for similarity, and a phyloge-
netic tree of those genes was created. The dynamic tree-cutting
algorithm was employed to divide the modules. Modules with
significant correlation were chosen as key modules related to
the inflammatory index (|r| > 4, P < 0.05). Genes contained in
these key modules were designated as key module genes related
to the inflammatory index. Finally, the intersections of DEGs
and index-related key module genes were obtained using the
VennDiagram package (v1.7.3) [29] and termed as DE-IRGs for
future analysis.

Functional enrichment analysis
In an effort to elucidate potential biological functions and sig-
naling pathways associated with DE-IRGs, the clusterProfiler
package (v4.7.1.3) [30] handled Gene ontology (GO) and Kyoto
encyclopedia of genes and genomes (KEGG) enrichment analy-
sis (P < 0.05). The GO system comprises biological processes,
molecular functions, and cellular components.

PPI network construction
The protein–protein interaction (PPI) network, constructed
with the assistance of the Search tool for the retrieval of inter-
acting genes (STRING) database (http://string-db.org) [25], set
the interaction with a combined score ≥ 0.4 as the cut-off
point [31]. The molecular complex detection (MCODE) plug-in
in Cytoscape software aided in the identification of hub mod-
ules with default parameters (cutoff degree = 2, node score
cutoff = 0.2, k-core = 2, and max depth = 100). Hub module
genes were defined as hub genes in this study, with their cor-
relations analyzed by the Corrplot package (v0.92) [32]. Lastly,
the expression levels of hub genes were compared between
psoriasis and control samples in the GSE13355 dataset.
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Immunohistochemical analysis
Four patients diagnosed with psoriasis vulgaris were recruited
in this study. Dermatologists confirmed the diagnosis, with
exclusion criteria being previous treatment, and complica-
tions, such as ulceration, bleeding, and local infection. Healthy
control tissue was derived from age-matched patients who
underwent plastic surgery, whose tissues would be other-
wise discarded. The collected tissue samples were then fixed
in a 4% paraformaldehyde solution and preserved in paraf-
fin. The immunohistochemical (IHC) analysis included the
primary antibodies against CXCL1 (12335-1-AP, Proteintech,
1:100), CXCL2 (bs-1162R, BIOSS, 1:200), CXCL8 (27095-1-AP,
Proteintech, 1:200), CCL19 (13397-1-AP, Proteintech, 1:200),
CCL2 (66272-1-Ig, Proteintech, 1:200), and CCR7 (GB11502,
Servicebio, 1:50). Upon staining, the samples were examined
microscopically, and representative parts were photographed.

Correlation analysis between infiltrating immune cells and hub
genes
The infiltration levels of 28 immune cells and immune func-
tions in both psoriasis and control samples of the GSE13355
dataset were calculated using the ssGSEA algorithm in the GSVA
package, based on the expression of 28 immune-infiltrating
cell-marker genes (Table S2) [33]. In parallel, the correlation
between the hub gene and 28 infiltrating immune cell subpop-
ulations and immune function was assessed.

Gene set enrichment analysis (GSEA) and small-molecule drug
prediction
The clusterprofiler package was used to perform GSEA on hub
genes, using “C2.cp.kegg.v7.0.symbols.gmt” as the reference
gene set (P < 0.05) The SRAMP dataset (https://www.cuilab.
cn/sramp) was used to predict the specific m6A site of the
mRNA sequence of hub genes.

Besides that, to identify potential therapeutic drugs for pso-
riasis, hub genes were inputted into the Drug Gene Interaction
Database (DGIdb) (https://www.dgidb.org/) [34]. The results
were then visualized using Cytoscape. Afterward, the 3D pro-
tein conformations of hub genes were explored in the PDB
database (https://www.rcsb.org). The active ingredient confor-
mations were generated and downloaded through the PubChem
Compound platform. CB-Dock was employed to construct dock-
ing grid boxes between hub genes and their active ingredients,
while the visualization was provided by PyMOL. Lastly, the
Comparative Toxicogenomics Database (CTD) (https://ctdbase.
org/) was used to assess the interactions between hub genes and
other diseases.

Construction of hub genes-miRNA regulatory network
This study utilized the miRNet database (https://www.mirnet.
ca/) [35] to identify miRNAs and TFs associated with hub genes.
Subsequently, the miRNA-TF-hub gene network was con-
structed using Cytoscape. Additionally, CTD was employed to
investigate interactions between hub genes and other diseases.

Receiver operating characteristic (ROC) curve analysis
To assess the significance of hub genes in psoriasis and their
ability to differentiate psoriasis patients from the control group

in the GSE13355 dataset, we performed ROC curve analysis and
calculated the area under the curve (AUC) using the “pROC”
package [36]. A hub gene was considered capable of distinguish-
ing psoriasis from the control group with high specificity and
sensitivity when the AUC value exceeded 0.7 [37]. The ROC
curve employed a resampling technique (Bootstrap) to test the
accuracy of the predictive model, which is an important statis-
tical method in nonparametric statistics used for estimating the
variance of a statistic and thus for interval estimation.

Establishment of the least absolute shrinkage and selection
operator (LASSO) model
We applied the LASSO algorithm using the “glmne” package
(v4.1.7) [38] and screened the gene signatures under the optimal
λ value with the smallest classification error. By employing
ten-fold cross-validation, we effectively assessed the model’s
performance, enabling the selection of optimal regularization
parameters. This process enhanced the model’s generalization
capability and stability. The performance of the LASSO-based
model in the GSE13355 dataset was evaluated using the ROC
curves, decision curve analysis (DCA), and precision–recall
(P–R) curves. At the same time, GSE14905 and GSE78097 were
set as the validation cohorts for the discriminative performance
of the gene signatures.

Ethical statement
The study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethics Committee of Shanghai
General Hospital (Protocol No: 2022SQ099 as of February 28,
2022). All patients provided written informed consent.

Results
Screening of DEGs
In our analysis of the GSE13355 database, we thoroughly ana-
lyzed the gene expression of both psoriasis and control samples.
We identified a total of 561 DEGs, comprising 405 upregu-
lated and 156 downregulated genes (when comparing psoriasis
vs control conditions) (Figure 1A). A heatmap depicting these
DEGs is presented in Figure 1B.

Construction of co-expression networks
The inflammatory index of the 58 psoriasis patients from the
GSE13355 database was computed using the GSVA algorithm.
The analysis showed the absence of an outlier sample within
the GSE13355 database (Figure 2A). Consequently, the optimal
soft-thresholding power was set at 7 (Figure 2B), resulting in 14
identified modules from the co-expression network (Figure 2C).
Five modules (cyan, purple, blue, turquoise, and tan) signifi-
cantly associated with the inflammatory index were selected for
further examinations (Figure 2D).

Functional enrichment analysis
A total of 51 DE-IRGs were extracted, as illustrated in the Venn
diagrams (Figure 3A). The GO analysis revealed that DE-IRGs
were primarily increased in the positive regulation of cell–cell
adhesion, leukocyte migration, leukocyte activation, and the
cellular response to lipopolysaccharide (Figure 3B). The KEGG
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Figure 1. The volcano plot and heatmap of the aberrantly expressed mRNAs in the GSE13355. (A) Volcano plot of GSE13355; (B) Heatmap of GSE13355.
The adjusted P value (false discovery rate) < 0.05 and log2-FC > 1 were used as the cutoff criteria to screen DEGs. The 15 most significantly upregulated
genes and the most significantly downregulated genes were selected for heat map visualization. log2-FC: log2-fold change; DEGs: Differentially expressed
genes.

enrichment analysis demonstrated that these DE-IRGs signifi-
cantly participated in cytokine–cytokine receptor interaction,
the interference of a viral protein with a cytokine and a cytokine
receptor, and the chemokine signaling pathway (Figure 3C).

PPI network and hub gene identification
Six hub genes (CCR7, CCL2, CCL19, CXCL8, CXCL1, and CXCL2)
were isolated from the PPI network of DE-IRGs and established
using the STRING database (Figure 4A–4C). CXCL1 and CXCL8
showed a strong positive correlation (r = 0.92) (Figure 4D).

Validation of hub gene expression via immunohistochemical
staining analysis
Genes from the GSE13355 database exhibited increased expres-
sion levels in psoriasis patients compared to healthy con-
trols (Figure 5). To experimentally validate the reliability and

accuracy of our findings, we examined the expression of
hub genes through immunohistochemistry (IHC) staining. Our
analysis revealed elevated expression levels of CCR7, CCL2,
CCL19, CXCL8, CXCL1, and CXCL2 in psoriatic tissue compared
to their levels in comparable healthy human tissue (Figure 6).
Consequently, these IHC staining outcomes confirmed the
enriched expression profile of hub genes in psoriatic conditions
as opposed to healthy controls.

Correlation analysis between hub genes and immune cells
To further explore the potential molecular mechanisms through
which hub genes might influence the progression of pso-
riasis, we assessed the relationship between immune infil-
tration and these hub genes within our psoriasis dataset.
Our analysis, which included 28 types of immune infiltrat-
ing cells, revealed that activated B cells, activated CD4+ and
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Figure 2. Gene modules identified by WGCNA. (A) Sample clustering to detect outliers; (B) Network topology for different soft-thresholding powers, β= 7
was selected as the best soft threshold for subsequent analysis; (C) The cluster dendrogram of genes; (D) Module–trait relationships. WGCNA: Weighted
gene co expression network analysis.

CD8+ T cells, activated DCs, CD56+ bright and dim natural
killer cells, central memory CD8+ T cells, effector memory
CD8+ T cells, eosinophils, γ δ-T cells, macrophages, mast cells,
myeloid-derived suppressor cells (MDSCs), memory B cells,
monocytes, natural killer and T cells, neutrophils, plasmacytoid
DCs, regulatory T cells, T follicular helper cells, type 1, 2, and 17
T helper cells varied significantly between psoriasis and healthy
control groups (Figure 7A).

Additionally, several immunologic functions – such
as APC co-inhibition, APC co-stimulation, CCR, check-
point, cytolytic activity, inflammation-promoting, MHC
class I, parainflammation, T cell co-inhibition, T cell co-
stimulation, and type I interferon response – showcased marked
improvement in psoriasis patients (Figure 7B). CCL19 gene

exhibited a robust positive correlation with MDSCs (P = 2.2 ×
10−24), while CCL2 was strongly correlated with activated CD8+
T cells (P = 5.8 × 10−22). Furthermore, CCR7 (P = 8 × 10−45)
and CXCL1 (P = 5.8 × 10−28) demonstrated strong positive
correlations with activated CD4+ T cells. Finally, CXCL2 (P = 3.4
× 10−23) and CXCL8 (P = 8.2 × 10−28) displayed significant
positive correlations with activated DCs (Figure 7C and 7D).

Gene set enrichment analysis (GSEA)
In the subsequent analysis, the functions of our key genes
were further explored through GSEA (Figure 8A–8F). In the
high-expression groups of CCR7, CCL2, CCL19, CXCL8, CXCL1,
and CXCL2, genes associated with proteasome and DNA
replication processes were notably enriched. Conversely, the
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low-expression groups of these genes exhibited significant
enrichment in the ribosome and focal adhesion pathways. A
prediction analysis using SRAMP suggested that among the
six key genes, the mRNA sequence of CCR7 held the highest
potential for m6A modification sites, as supported by a very
high confidence level (Figure S1).

Regulatory networks with miRNAs and gene interactions with
disease
We established a TFs-miRNAs-targets regulatory network
involving six hub genes, 231 miRNAs, and 86 TFs (Figure 9A).
Within this network, the hub genes were denoted by blue, TFs
by purple, and miRNAs by orange nodes. Remarkably, CXCL8
emerged as the hub gene subjected to regulation by the highest
number of both miRNAs (92) and TFs (39). Moreover, hsa-mir-
335-5p stood out as a potentially significant miRNA, given its
involvement in regulating all six key genes. Diagrams depicted
in Figure 9B–9G emphasized the substantial interactions of
CCL19, CCL2, CCR7, CXCL1, and CXCL8 with breast neoplasms,
while highlighting CXCL2’s particularly prominent interaction
with inflammation.

Screening of small molecule drugs and molecular docking
In this study, 64 potential therapeutic drugs for psoriasis were
identified using the DGIdb database (Table S3). Notably, drugs,
such as carlumab and bindarit, were discovered to target CCL2.
Similarly, several drugs, including ABX-IL8, HuMax-IL8, and
cetuximab, were found to interact with CXCL8. Additionally,
five drugs presented potential interactions with CXCL2. How-
ever, no small molecule drugs capable of targeting CCR7, CCL19,
or CXCL1 were identified in this database. This research also
involved the construction of drug–gene networks by Cytoscape
(Figure 10A). The resultant networks revealed that the bind-
ing energies during docking between batimastat and CXCL2
(−7.0 kcal/mol, Figure 10B), bindarit and CCL2 (−6.5 kcal/mol,
Figure 10C), as well as yangonin and CXCL8 (−5.6 kcal/mol,
Figure 10D), were all below −5.00 kcal/mol.

Predictive performance of hub genes for psoriasis
As illustrated in Figure 11A, AUC values for CCR7, CCL2, CCL19,
CXCL8, CXCL1, and CXCL2 were, respectively, recorded as 0.997,
0.910, 0.871, 0.982, 0.989, and 0.963. This data strongly sug-
gested a psoriasis-wise significant discriminatory potential
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of these hub genes (Figure 11A). To further refine our selec-
tion of these critical genes, we employed the LASSO algo-
rithm (Figure 11B). This approach led to the development of
the LASSO-based model that incorporated CXCL8, CCR7, CXCL2,
and CXCL1 (λ = 0.001162551). The efficacy of this model, when
tested on the training set, was represented via the confusion
matrix (Figure 11C). Furthermore, the ROC curve indicated the

model’s high accuracy, achieving an AUC value of 1, mirroring
the P–R and DCA curves (Figure 11D). Validation of the model
on two external datasets (GSE78097 and GSE14905) yielded
AUC values of 1 and 0.872, respectively (Figure 11E and 11F),
confirming the model’s robust discriminatory power across dif-
ferent datasets. These findings highlight the potential of these
selected hub genes as reliable biomarkers for psoriasis, offering
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promising directions for future diagnostic and therapeutic
strategies.

Discussion
Psoriasis is a chronic inflammatory skin disorder character-
ized by a complex pathogenesis that remains only partially
understood [1]. Research teams worldwide have employed tran-
scriptomic analysis to identify genes and pathways associated
with the condition. For example, Ahn et al. [20] found that
the majority of genes in modules significantly associated with
psoriasis are lncRNAs, which are involved in lipid metabolism
and olfactory receptor activity. Moreover, Choudhary et al. [39]
utilized the GSE78097 dataset to identify biomarkers for mild
and severe psoriasis by comparing gene expression between
lesional and non-lesional skin. Additionally, GSE13355 and
GSE14905 are two gene datasets extensively used for psoriasis
research contributing to numerous studies [40, 41].

Building on previous efforts to identify biomarkers
for psoriasis [20, 42], our study utilized WGCNA with an
inflammation index as a clinical feature, making a novel
approach in psoriasis research. This strategy enabled us to
identify DE-IRGs as potential targets for further biomarker
exploration. To elucidate the DE-IRGs’ functional importance,
we conducted GO enrichment analysis, which revealed signif-
icant enrichment in biological processes such as the positive
regulation of cell–cell adhesion, leukocyte migration and

activation, as well as a cellular response to lipopolysaccharide.
Furthermore, pathway enrichment analysis indicated that
DE-IRGs were significantly involved in cytokine–cytokine
receptor interaction, viral protein interaction with cytokine
and cytokine receptor, and the chemokine signaling pathway.
These findings not only support those reported by Li et al. [19]
but also illuminate the intricate network of molecular inter-
actions contributing to immune dysregulation in psoriasis.
By building upon previous results and providing a more
comprehensive analysis of DE-IRGs and their functional impli-
cations, our study contributes valuable insights to the existing
body of literature, emphasizing the pivotal role of immune
response and inflammation pathways in the pathogenesis of
psoriasis.

Chemokines, a family of inflammatory cytokines, play a cru-
cial role in inducing the directional migration and activation
of leukocytes into inflamed tissues [12]. The chemokine and
chemokine receptor system’s involvement in inflammation has
become a focal point for developing therapeutic strategies for
autoimmune and inflammatory diseases [43]. In our study, the
PPI network of the aforementioned DE-IRGs was constructed
using the STRING database, identifying six chemokine-related
genes (CCR7, CCL2, CCL19, CXCL8, CXCL1, and CXCL2). Further,
correlation analysis between these hub genes and 28 types of
infiltrating immune cells revealed that these six potential target
genes are closely and positively associated with the infiltra-
tion of MDSC, activated CD4+ T cells, activated CD8+ T cells,
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Figure 8. Functional GSEA of hub genes. GSEA: Gene set enrichment analysis; KEGG: Kyoto encyclopedia of genes and genomes.

activated DCs, and neutrophils. These findings highlight the
potential significance of the chemokine system in immune
response and inflammation, suggesting its relevance as a thera-
peutic target in autoimmune and inflammatory diseases.

Previous research has demonstrated that CCL19 and its
receptor CCR7, which are expressed by central memory/naive
T cells and maturing DCs, exhibit elevated expression in the
dermal aggregates of psoriasis lesions [44]. Rittié and Elder [45]
have identified CCL19 and CCR7 as potential mediators of
immune organization in psoriasis. The CCL19/CCR7 axis plays
a crucial role in maintaining the balance between immunity
and tolerance by regulating naive and regulatory T cells as well
as the migration of DCs in lymphoid organs [44]. Meanwhile,
CCL19 is vital for sustaining naive T cell survival in vitro, and
mice lacking CCL19 exhibit reduced T cell viability in vivo [46].
This situation highlights the crucial role of CCL19 and CCR7 in
the progression of psoriasis. In line with these observations, our
study discovered that the expression of CCL19 and CCR7 was
upregulated in patients with psoriasis, suggesting that they may
serve as biomarkers for the disease (AUC = 0.871, AUC = 0.997,
respectively).

CXCL1, CXCL2, and CXCL8 belong to the subfamily of
neutrophil-activating chemokines, which function through the
activation of CXCR1 and CXCR2 receptors. These receptors
are present on various leukocytes, including neutrophils, T
cells, monocytes, DCs, natural killer cells, mast cells, and
MDSCs [47]. The presence of neutrophils in injured skin

lesions is a notable histological feature of psoriasis [1]. Hueber
et al. [48] demonstrated that IL-33 is instrumental in direct-
ing neutrophils to lesion sites, partly due to increased CXCL1
expression in a psoriasis mouse model. Furthermore, several
studies have demonstrated that CXCL8 not only facilitates cell
recruitment directly but also contributes to angiogenesis within
the dermal microvasculature, particularly during psoriasis’
chronic phase, thus indirectly supporting cellular migration
by providing nutrients and oxygen [49]. Single-cell sequenc-
ing revealed that CCR1+ macrophages prominently express
genes linked to inflammation and chemotaxis, notably CXCL8
and CXCL2 [13]. Our research revealed that elevated levels of
CXCL1, CXCL2, and CXCL8 in psoriasis patients are signifi-
cantly associated with the infiltration of immune cells such
as T cells, neutrophils, and DCs, hence providing consider-
able diagnostic value with an AUC of 0.989, 0.963, and 0.982,
respectively.

Numerous studies have documented increased CCL2 expres-
sion in both the skin lesions and peripheral blood of individuals
with psoriasis and other skin conditions [50]. CCL2, secreted by
keratinocytes, recruits circulating monocytes to the inflamed
skin in a CCR2-dependent manner, where they differentiate
into macrophages [50]. Interestingly, Wang et al. [51] discov-
ered that injecting CCL2 into non-lesional areas could induce
psoriasis-like skin inflammation along with TNF-α, whereas
TNF-α injection alone did not cause inflammation, underscor-
ing CCL2’s crucial role in the development and persistence of
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psoriatic skin disease. Consistent with these findings, our study
also observed an upregulation of CCL2 in psoriatic skin lesions,
identifying it as a valuable inflammatory biomarker for differ-
entiating psoriasis from controls, with an AUC of 0.910.

Recent studies have increased awareness of MDSCs in the
pathogenesis of psoriasis [52]. MDSCs, characterized as a het-
erogeneous group of immature myeloid cells with immunoreg-
ulatory functions, have been noted to accumulate in both the
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Figure 10. Screening of small molecule drugs and molecular docking. (A) Drug–gene networks. Blue squares represent hub genes; green diamonds
represent drugs; (B) Molecular docking between batimastat and CXCL2; (C) Molecular docking between bindarit and CCL2; (D) Molecular docking between
yangonin and CXCL8.

peripheral blood and lesional skin of psoriasis patients [53].
The recruitment of MDSC is significantly influenced by CXCR2,
with its major ligands for chemotaxis including CXCL5, CXCL2,
CXCL1, and CXCL8 [54]. Oka et al. [55] found that CXCL17
reduces IMQ-induced psoriasis-like skin inflammation by
drawing MDSCs, which then promote regulatory T cells via
CCL5 and CCL4. We found a strong correlation between MDSCs
and CCL19 for the first time. This finding requires further
validation through basic and clinical research. The growing
understanding of MDSCs in psoriasis pathogenesis, particularly
their interaction with chemokines like CCL19, unveils promis-
ing new therapeutic possibilities.

GSEA analysis indicated that the group with high expression
of the six hub genes exhibited significant enrichment in the
proteasome and DNA replication pathways. The proteasome,
an essential component of the ubiquitin-proteasome system
(UPS), is crucial for protein degradation and impacts a variety of
cellular functions, including cell differentiation, proliferation,
migration, angiogenesis, transcription activation, and immune
responses [56]. The UPS is also implicated in the regulation
of mammalian DNA replication [57]. Karabowicz et al. [58]
demonstrated that the selective proteasome inhibitor PS-519
prevents IκB degradation and inhibits NF-κB downstream sig-
naling, thereby reducing T-cell activation both in vitro and
in vivo. In addition, it has been observed that elevated levels
of CCL3 can exacerbate psoriatic lesions by promoting Foxp3
degradation in regulatory T cells through conventional K48-
linked ubiquitination [59]. These findings led us to hypothe-
size that the proteasome pathway may play a significant role
in the pathogenesis of psoriasis, particularly concerning the

six chemokine family members (CCR7, CCL2, CCL19, CXCL8,
CXCL1, and CXCL2). Further research is needed to explore this
hypothesis in greater detail. Overall, our study offers new direc-
tions for future investigation in this area.

Previous studies have highlighted the therapeutic potential
of deferoxamine and ABX-IL8 in managing psoriasis [60, 61].
Additionally, SCH 47112, a derivative of staurosporine, has
shown a potential to reduce inflammation and proliferation in
psoriatic conditions [62]. Our study introduces the first evi-
dence suggesting that deferoxamine and staurosporine might
mediate anti-inflammatory effects by specifically targeting
CXCL2. Although carlumab and bindarit, inhibitors focusing on
CCL2, have been considered for systemic sclerosis [63], their
effectiveness in psoriasis has yet to be assessed. Clinical tri-
als have confirmed the safety and feasibility of carlumab in
solid tumors [64], and bindarit has shown potential in reducing
periodontal inflammation [65], indicating possible therapeutic
benefits in psoriasis. Pharmacokinetic assessments of the anti-
IL-8 monoclonal antibody, HUMAX-IL8, recorded significant
reductions in serum IL-8 levels with good tolerability [66],
suggesting a promising approach for psoriasis treatment. In
summary, our study sheds light on potential psoriasis therapies
and paves the way for the development of new and effective
treatments for the disease.

In the TF-miRNA-hub gene network analysis, our study
identified 52 TFs and 139 miRNAs as the master regula-
tors of the six co-expressed genes associated with psoriasis.
More than 250 miRNAs have been reported to be aberrantly
expressed in the skin or blood of patients with psoriasis [67].
Although miR-210 upregulation in psoriasis has previously
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been noted [67], the link between miR-210 and CXCL8 was first
discovered in our research. Mostafa et al. [68] reported that
the upregulation of miR-203 in psoriatic tissue could reduce
the proinflammatory response by directly targeting and reduc-
ing CXCL8 expression. Our findings indicate increased CXCL8
expression, suggesting that elevated miR-203 levels might pos-
itively influence psoriasis by moderating CXCL8’s abnormal
expression, or it might represent a compensatory response
to the abnormal expression of CXCL8. These results suggest
that miR-203 could play a regulatory role in the pathogen-
esis of psoriasis via its interaction with CXCL8, though fur-
ther research is needed to clarify the involved mechanisms.
Additionally, miR-155 was found to indirectly affect CXCL8 pro-
duction, thereby influencing psoriasis progression [69], which
supports our findings. miR-335, known to target the IL-17

cytokine pathway-related immune response in psoriasis [70],
was implicated in regulating all six hub genes in our study,
highlighting its importance in further research. Our study high-
lighted CCR7, CCL2, CCL19, CXCL8, CXCL1, and CXCL2 as poten-
tial inflammatory biomarkers in psoriasis, illuminating their
molecular mechanisms. Our findings advocate for a detailed
exploration of these biomarkers to aid in developing new ther-
apeutic targets for psoriasis.

A notable limitation of our study though is the exclusive
dependence on public database information, which could intro-
duce heterogeneity into our results. To strengthen our conclu-
sions, studies with larger sample sizes and broader experimen-
tal scopes are needed. Moving forward, it is crucial to address
these limitations by conducting further research into the roles
of these genes in psoriasis. We are committed to continuing our

Li et al.
Key inflammatory genes in psoriasis 1146 www.biomolbiomed.com

http://www.biomolbiomed.com
http://www.biomolbiomed.com


monitoring and investigation of these biomarkers to enhance
our understanding of their impacts on psoriasis treatment and
potentially on other inflammatory conditions as well.

Conclusion
The study highlights six chemokine genes (CCR7, CCL2, CCL19,
CXCL8, CXCL1, and CXCL2) as potential biomarkers in psoriasis,
which are significantly involved in immune and inflammatory
responses. These findings offer new insights into the pathogen-
esis of psoriasis and suggest chemokine-associated pathways as
promising therapeutic targets.
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