

Biomolecules and Biomedicine ISSN: 2831-0896 (Print) | ISSN: 2831-090X (Online)

Journal Impact Factor® (2022): 3.4 CiteScore® (2022): 5.3 www.biomolbiomed.com | blog.biomolbiomed.com

SUPPLEMENTAL DATA

Single-cell transcriptomic analysis of radiation-induced lung injury in rat model

Xing-Yuan Shi^{1,2#}, You-Qing Zhu^{3#}, Chan-Jin Liang^{2#}, Ting Chen², Zhi Shi^{3*}, Wei Wang^{1*}

¹Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, China;

²Department of Radiation Oncology, The Fifth Hospital ofGuangzhou Medical University, Guangzhou, Guangdong, China;

³Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Biotechnology and Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.

*Correspondence to Zhi Shi: tshizhi@jnu.edu.cn; Wei Wang: wwei9500@smu.edu.cn.

*Xing-Yuan Shi, You-Qing Zhu, and Chan-Jin Liang contributed equally to this work.

Full article is available at the following link: Single-cell transcriptomic analysis of radiation-induced lung injury in rat model

Table S1. Orthologous rat genes associated with inflammatory processes

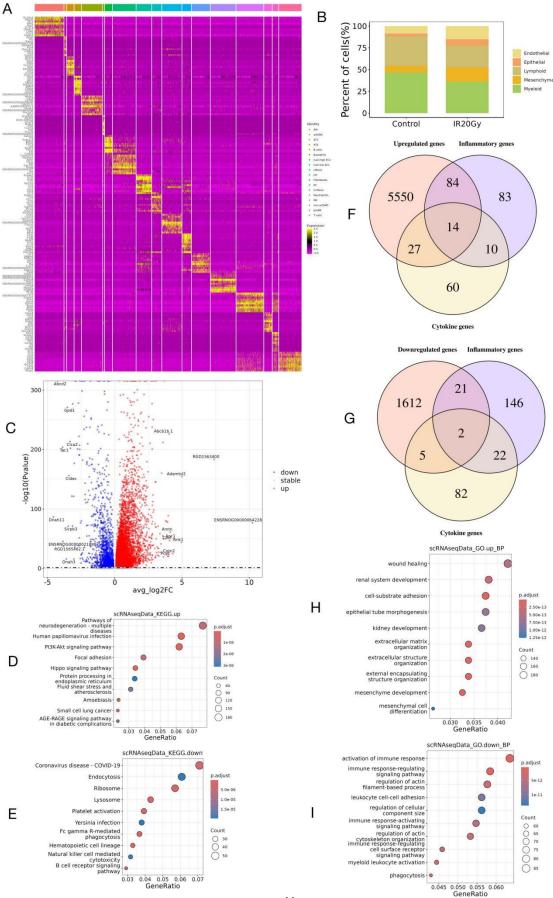
1	Abcal
2	Abil
3	Acvr1b
4	Acvr2a
5	Adgrel
6	Adm
7	Adora2b
8	Adrm1
9	Ahr
10	Aplnr
11	Aqp9
12	Atp2a2
13	Atp2b1
14	Atp2c1
15	Axl
16	Bdkrb1
17	Best1
18	Bst2
19	Btg2
20	C3ar1
21	Calcrl
22	Ccl17
23	Ccl20
24	Ccl22
25	Ccl24
26	Ccl5
27	Ccl7
28	Ccr7
29	Ccrl2

30	Cd14
31	Cd40
32	Cd48
33	Cd69
34	Cd70
35	Cd82
36	Cdkn1a
37	Chst2
38	Clec5a
39	Cmklr1
40	Csfl
41	Csf3
42	Csf3r
43	Cx3cl1
44	Cxcl10
45	Cxcl11
46	Cxcl9
47	Cxcr6
48	Cybb
49	Dcbld2
50	Ebi3
51	Edn1
52	Eif2ak2
53	Emp3
54	Ereg
55	F3
56	Ffar2
57	Fpr1
58	Fzd5
59	Gabbr1

60	Gch1
61	Gna15
62	Gnai3
63	<i>Gp1ba</i>
64	Gpc3
65	Gpr132
66	<i>Gpr183</i>
67	Has2
68	Hbegf
69	Hifla
70	Нрп
71	Icam1
72	Icam4
73	Ifitm1
74	Ifnar l
75	Ifngr2
76	Il10
77	Il10ra
78	Il12b
79	Il15
80	Il15ra
81	Il18
82	Il18r1
83	Il18rap
84	Illa
85	Il1b
86	Il1r1
87	Il2rb
88	116
89	<i>Il7r</i>

90	Inhba
91	Irak2
92	<i>Irf1</i>
93	Irf7
94	Itga5
95	Itgb3
96	Itgb8
97	Kena3
98	Kenj2
99	Kenmb2
100	Klf6
101	Lamp3
102	Lck
103	Lcp2
104	Ldlr
105	Lif
106	Lpar1
107	Lta
108	Ly6e
109	Lyn
110	Marco
111	Mefv
112	Mep1a
113	Met
114	Mmp14
115	Msr1
116	Mxd1
117	Мус
118	Nampt
119	Ndp

120	Nfkb1
121	Nfkbia
122	Nlrp3
123	Nmi
124	Nmur1
125	Nod2
126	Olr1
127	Osm
128	Osmr
129	P2rx4
130	P2rx7
131	P2ry2
132	Pcdh7
133	Pde4b
134	Pdpn
135	Pik3r5
136	Plaur
137	Prok2
138	Psen1
139	Ptafr
140	Ptger2
141	Ptger4
142	Ptgir
143	Ptpre
144	Pvr
145	Raf1
146	Rasgrp1
147	Rela
148	Rgs1
149	Rgs16


150	Rhog
151	Ripk2
152	Rnf144b
153	Ros1
154	Rtp4
155	Scarf1
156	Scn1b
157	Sele
158	Selenos
159	Sell
160	Sema4d
161	Serpine l
162	Sgms2
163	Slamf1
164	Slc11a2
165	Slc1a2
166	Slc28a2
167	Slc31a1
168	Slc31a2
169	Slc4a4
170	Slc7a1
171	Slc7a2
172	Sphk1
173	Sri
174	Stab1
175	Tacr1
176	Tacr3
177	Tapbp
178	Timp1
179	Tlr1

180	Tlr2
181	Tlr3
182	Tnfaip6
183	Tnfrsf1b
184	Tnfrsf9
185	Tnfsf10
186	Tnfsf15
187	Tnfsf9
188	Tpbg
189	Vip
190	Icoslg
191	Il4r

Table S2. T-test results of cytokine scores across 18 cell types

Celltype	t_results	Mean in group Control	Mean in group IR20Gy	p值
AM	t = -12.778, $df = 297.3$, p-value $< 2.2e-16$	-0.008659967	0.053528692	****
artSMC	t = 0.31734, $df = 123.35$, p-value = 0.7515	-0.05934343	-0.06122003	ns
AT1	t = 2.36, df = 136.91, p-value = 0.01969	-0.04096486	-0.04925046	*
AT2	t = -12.874, df = 632.25, p-value < 2.2e-16	-0.05248481	-0.01815936	****
B_cells	t = -4.1721, $df = 1099.5$, p-value = 3.255e-05	-0.07451257	-0.067212	****
Basophils	t = -1.2533, $df = 82.589$, p-value = 0.2136	-0.000522102	0.010895054	ns
Ca4_high_ECs	t = -5.5999, df = 682.45, p-value = 3.111e-08	-0.08174042	-0.06721135	****
Ca4_low_ECs	t = -12.392, df = 1676.2, p-value < 2.2e-16	-0.06399606	-0.04483439	****
cMono	t = -32.57, $df = 1415.9$, p-value $< 2.2e-16$	-0.01479567	0.07672557	****
DC	t = -5.6892, $df = 900.41$, p-value = 1.725e-08	-0.07829924	-0.05767231	****
Fibroblasts	t = -1.9233, $df = 1133.4$, p-value = 0.05469	-0.03900779	-0.03520612	ns
IM	t = -14.936, df = 545.65, p-value < 2.2e-16	0.03924923	0.11841488	****
ncMono	t = -12.334, df = 860.91, p-value < 2.2e-16	-0.05848296	-0.03564636	****
Neutrophils	t = -17.153, $df = 2380.6$, p-value $< 2.2e-16$	0.02732937	0.06187343	****
NK	t = -7.7912, $df = 2502.6$, p-value = $9.647e-15$	-0.005116842	0.006858141	****
non_artSMC	t = 1.408, df = 689.65, p-value = 0.1596	-0.03524705	-0.03895056	ns
proNK	t = -3.9008, df = 469.37, p-value = 0.0001099	-0.04730814	-0.02676025	***

T_cells	t = -5.1264, df = 1215.2, p-value = 3.434e-07	-0.06432242	-0.05652421	****
tips:p<0.	05 *,p<0.01 **,p<0.001 ***,p<0.0001 ****			

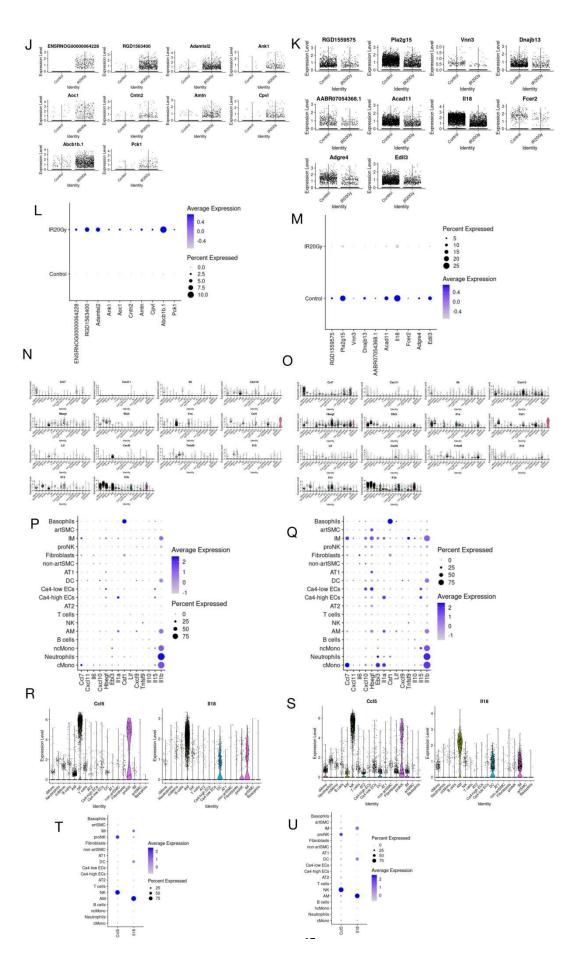


Figure S1. Cellular and molecular characterization of cells after IR. (A) Heat map shows the expression of 18 cell types top ten markers. (B) Dynamics in cell proportions of the 5 cellsupolutions across the control and IR20Gy group. (C) The volcano plot shows the upregulated and downregulated genes in the IR20Gy compared to the control group. The genes marked in black font are the top ten genes that are upregulated or downregulated. (D-E) KEGG enriched by upregulated and downregulated genes respectively. (F-G) Wayne diagram shows overlapping genes of upregulated or downregulated genes, inflammatory response, and cytokines genes respectively. (H-I) GO terms enriched by upregulated and downregulated genes in IR20Gy compared to control based on biological process (BP) enrichment analysis. **D,F,H.** Upregulated (IR20Gy compared to the control group); **E,G,I.** Downregulated. (J) Violin plot shows the expression level of top ten upregulated genes in the IR20Gy and control group. (K) Violin plot shows the expression level of top ten downregulated genes in the IR20Gy and control group. (L) Dot plot shows the expression level of top ten upregulated genes in the IR20Gy and control group. (M) Dot plot shows the expression level of top ten downregulated genes in the IR20Gy and control group. (N) Violin plot shows the expression level of overlapping genes that are upregulated, inflammatory, and cytokines genes in each cell population in the control group. (O) Violin plot shows the expression level of overlapping genes that are upregulated, inflammatory, and cytokines genes in each cell population in the IR20Gy group. (P) Dot plot shows the expression level of overlapping genes that are upregulated, inflammatory, and cytokines genes in each cell population in the control group. (Q) Dot plot shows the expression level of overlapping genes that are upregulated, inflammatory, and cytokines genes in each cell population in the IR20Gy group. (R) Violin plot shows the expression level of overlapping genes that are downregulated, inflammatory, and cytokines genes in each cell population in the control group.

(S) Violin plot shows the expression level of overlapping genes that are downregulated, inflammatory, and cytokines genes in each cell population in the IR20Gy group. (T) Dot plot shows the expression level of overlapping genes that are downregulated, inflammatory, and cytokines genes in each cell population in the

control group. **(U)** Dot plot shows the expression level of overlapping genes that are downregulated, inflammatory, and cytokines genes in each cell population in the IR20Gy group. KEGG: Kyoto Encyclopedia of Genes and Genomes; IR20Gy: Ionizing radiation exposure at a dose of 20 Gray; GO: Gene ontology.

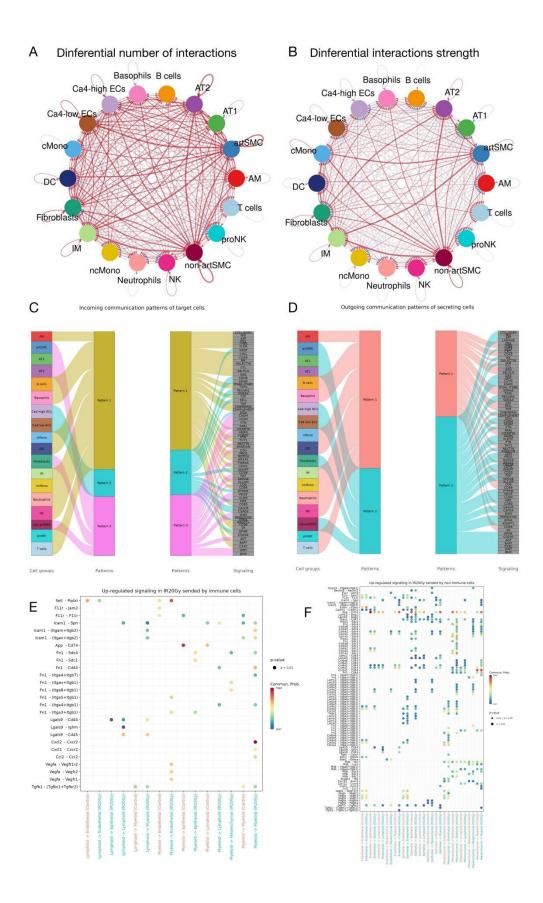


Figure S2. Cell-cell interaction changes in various lung cell populations after IR.

(A-B) The circle graph illustrates alterations in the quantity and intensity of cell-cell interactions among the 18 cell populations in IR20Gy as compared to the control group. In this representation, red denotes an increase in the number or strength of interactions, while blue indicates the opposite. (C-D) The communication patterns of cells releasing signals, both outgoing and incoming, reveal the alignment between the inferred latent patterns, cell groups, and signaling pathways. (C) Incoming. (D) Outgoing. (E-F) Comparison of the significant ligand-receptor pairs between control and IR20Gy group base on the upregulated genes. Dot color reflects communication probabilities and dot size represents computed p-values. (E) Upregulated signaling in IR20Gy

sent by immune cells. **(F)** Upregulated signaling in IR20Gy sent by non-immune cells. IR20Gy: Ionizing radiation exposure at a dose of 20 Gray.

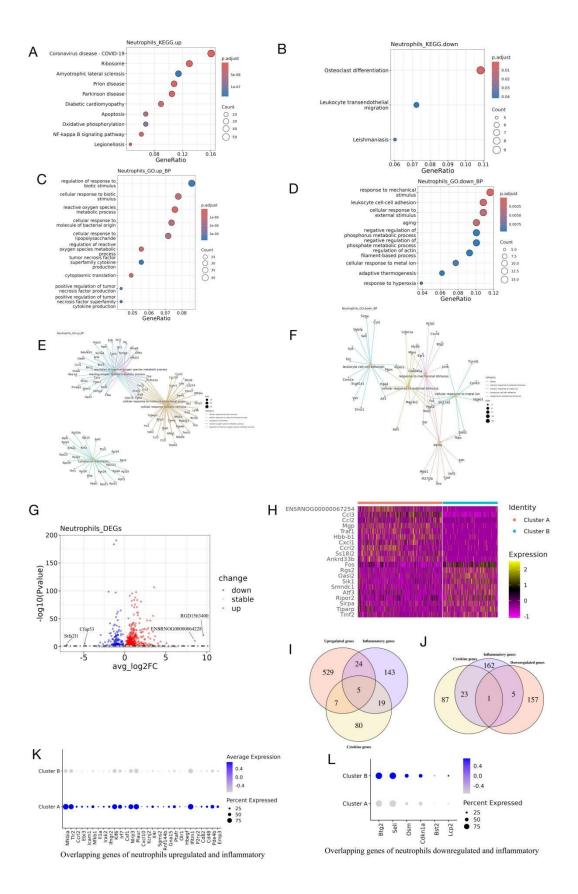


Figure S3. Cellular and molecular characterization of neutrophil cells. (A-B) KEGG enrichment analysis of the neutrophil differentially expressed genes in IR20Gy compared to the control. (A) Upregulated, (B) Downregulated. (C-D) GO terms enriched by the neutrophil differentially expressed genes in IR20Gy compared to the control. (C) Upregulated,

(D) Downregulated. (E-F) The related genes of top 5 significant GO terms enriched by the neutrophil differentially expressed genes in IR20Gy compared to the control. (E) Upregulated. (F) Downregulated. (G) The volcano plot shows the upregulated and downregulated genes of neutrophil in the IR20Gy compared to the control group. (H) Heatmap showing the top ten differentially expressed genes between cluster A and cluster B. (I-J) Wayne diagram shows the overlapping genes of the neutrophil differentially expressed genes, inflammatory response genes and cytokine genes. (I) Upregulated (Ebi3, Illa, Csfl, Cxcl10, Hbegf). (J) Downregulated (Osm). (K-L) Dot plot shows the expression of the overlapping genes of the neutrophil differentially expressed genes and inflammatory response genes in the two subpopulations of the neutrophils. (K) Upregulated. (L) Downregulated. KEGG: Kyoto Encyclopedia of Genes and Genomes; IR20Gy:

Ionizing radiation exposure at a dose of 20 Gray; GO: Gene ontology.

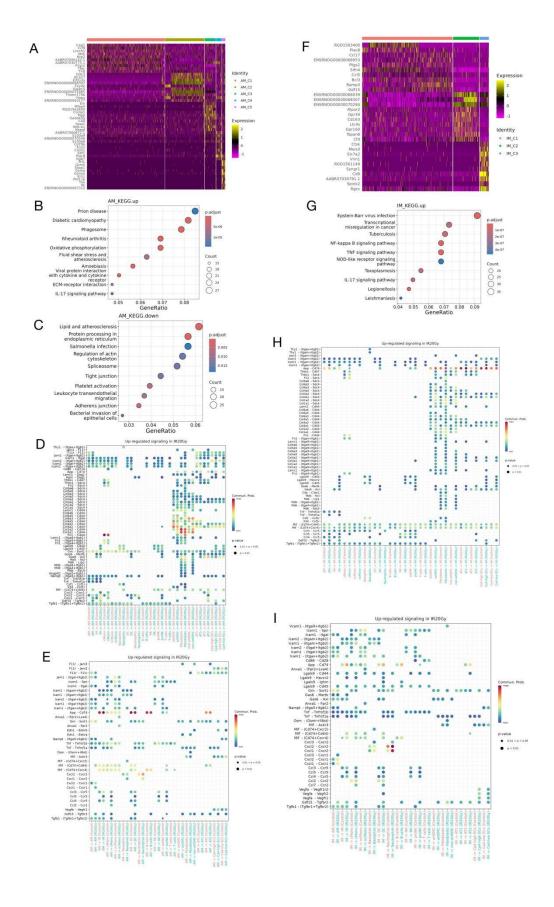
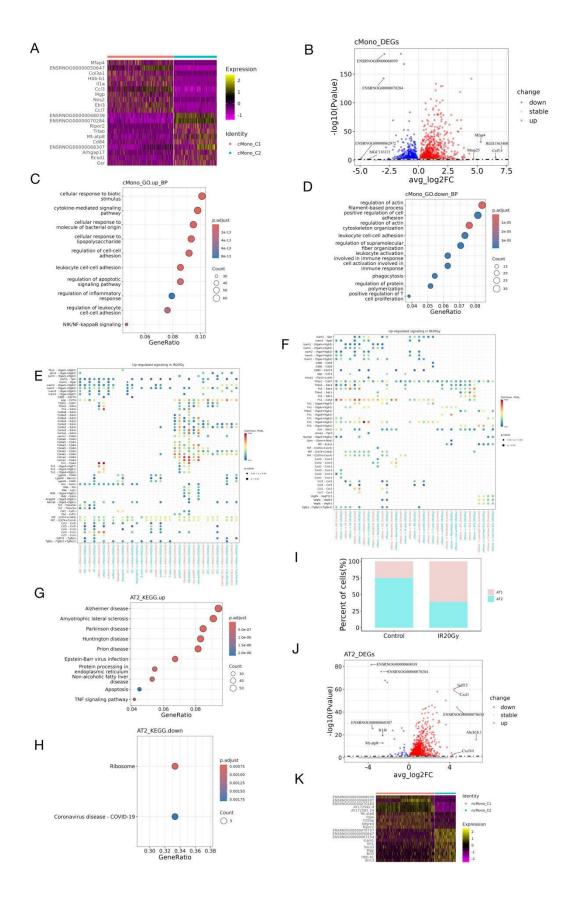



Figure S4. Cellular and molecular characterization of macrophage cells. (A-E) Cellular and molecular characterization of alveolar macrophages (AM). (A) Heatmap showing the top ten differentially expressed genes of the five subcelltypes of AM. (B-C) KEGG pathways enriched by the differentially expressed genes of AM in IR20Gy compared to the control. (B) Upregulated, (C) Downregulated. (D) Upregulated signaling in IR20Gy received by AM. (E) Upregulated signaling in IR20Gy sent by AM. (F-I) Cellular and molecular characterization of interstitial macrophages (IM). (F) Heatmap showing the top ten differentially expressed genes of the three clusters of IM. (G) KEGG enriched by the upregulated genes of IM in IR20Gy compared to the control (No significant KEGG pathway was enriched by the downregulated gene). (H) Upregulated signaling in IR20Gy received by IM. (I) Upregulated signaling in IR20Gy sent by IM. KEGG: Kyoto Encyclopedia of Genes and Genomes; IR20Gy: Ionizing radiation exposure at a dose of 20 Gray; IM: Interstitial macrophages; AM: Alveolar macrophages.

Figure S5. Cellular and molecular characterization of monocytes and epithelials.

- (A-E) Cellular and molecular characterization of cMono. (A) Heatmap showing the top ten differentially expressed genes of the five subcelltypes of cMono. (B) The volcano plot shows the differential genes of cMono in the IR20Gy compared to the control group. (C-D) GO terms enriched by the differentially expressed genes of cMono in IR20Gy groups compared to the control. (C) Upregulated, (D) Downregulated. (E) Upregulated signaling in IR20Gy received by cMono. (F) Upregulated signaling in IR20Gy sent by cMono. (G-J) Cellular and molecular characterization of epithelials. (G-H) KEGG enriched by the upregulated and downregulated genes of AT2 in IR20Gy compared to the control. (G) Upregulated. (H) Downregulated.
- (I) The cell proportions changes of AT1 and AT2 in epithelial cells. (J) The volcano plot shows the differentially expressed genes of AT2 in the IR20Gy compared to the control group. (K) Heatmap showing the top ten differentially expressed genes of the two clusters of non-classical monocytes (ncMono). IR20Gy: Ionizing radiation exposure at a dose of 20 Gray; cMono: Classical monocytes; KEGG: Kyoto Encyclopedia of Genes and Genomes.

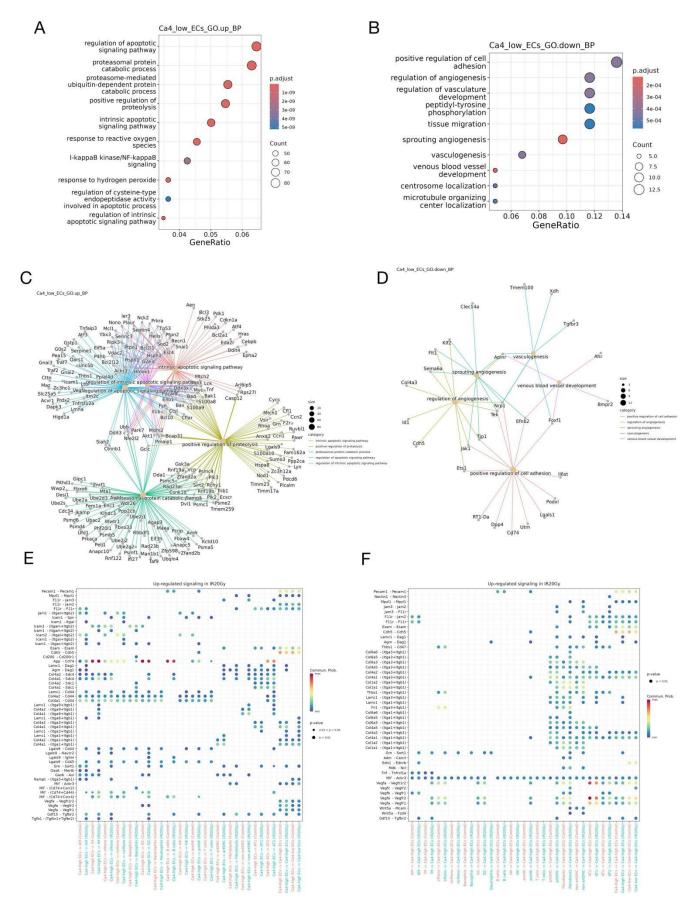


Figure S6. Cellular and molecular characterization of endothelial cells. (A-B) GO terms enriched by the Ca4-low ECs differentially expressed genes in IR20Gy compared to the control. (A) Upregulated. (B) Downregulated. (C-D) The related genes of the GO terms enriched by the Ca4-low ECs differentially expressed genes in IR20Gy compared to the control. (C) Upregulated. (D) Downregulated. (E) Upregulated signaling in IR20Gy sent by Ca4-high ECs. (F) Upregulated signaling in IR20Gy received by Ca4-high ECs. IR20Gy: Ionizing radiation exposure at a dose of 20 Gray; GO: Gene ontology; ECs: Epithelial cells.

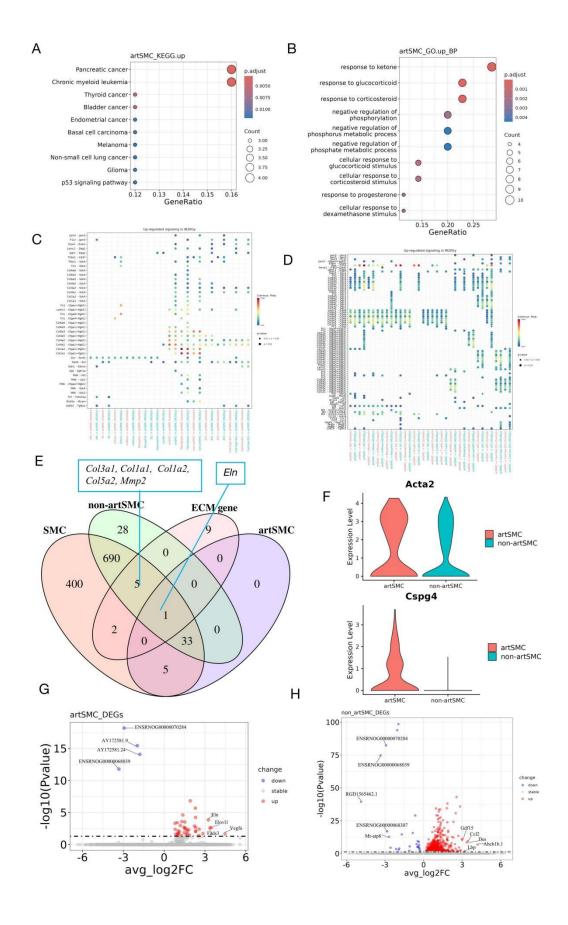


Figure S7. Cellular and molecular characterization of smooth muscle cells. (A) GO terms enriched by the artSMC upregulated genes in IR20Gy compared to the control. (B) KEGG enriched by the artSMC upregulated genes in IR20Gy compared to the control. (C) Upregulated signaling in IR20Gy received by artSMC. (D) Upregulated signaling in IR20Gy sent by artSMC. (E) Wayne diagram shows overlapping genes of SMC, non-artSMC, artSMC upregulated genes and ECM genes. (F) The expression of Acta2 and Cspg4 in the two subpopulations. (G-H) The volcano plot shows the artSMC and non-artSMC upregulated and downregulated genes in the IR20Gy compared to the control group. (G) artSMC. (H) non-artSMC. KEGG: Kyoto Encyclopedia of Genes and Genomes; IR20Gy: Ionizing radiation exposure at a dose of 20 Gray; GO: Gene ontology; artSCM: Arterial smooth muscle cells; non-artSCM: Non- arterial smooth muscle cells.