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R E S E A R C H A R T I C L E

Multiomics analysis of homologous recombination
deficiency across cancer types
Lin Dong 1#, Lin Li2#, Linyan Zhu1, Fei Xu1,3, Rumeng Zhang1, Qiushuang Li4, Yong Zhu4, Zhutian Zeng5,6∗, and Keshuo Ding 1,7∗

There remains ongoing debate regarding the association of homologous recombination deficiency (HRD) with patient survival across
various malignancies, highlighting the need for a comprehensive understanding of HRD’s role in different cancer types. Based on data
from databases, we conducted a multivariable omics analysis on HRD in 33 cancer types, focusing mainly on 23 cancers in which HRD
was significantly associated with patient overall survival (OS) rates. This analysis included the mechanisms related to patient
prognosis, gene expression, gene mutation, and signaling pathways. In this study, HRD was found to be significantly associated with
patient prognosis, but its impact varied among different cancers. HRD was linked to different outcomes for patients with distinct tumor
subtypes and was correlated with clinical features, such as clinical stage and tumor grade. Driver gene mutations, including TP53, MUC4,
KRAS, HRAS, FLG, ANK3, BRCA2, ATRX, FGFR3, NFE2L2, MAP3K1, PIK3CA, CIC, FUBP1, ALB, CTNNB1, and MED12, were associated with HRD
across specific cancer types. We also analyzed differentially expressed genes (DEGs) and differentially methylated regions (DMRs) in
relation to HRD levels in these cancers. Furthermore, we explored the correlation between HRD and signaling pathways, as well as
immune cell infiltration. Overall, our findings contribute to a comprehensive understanding of HRD’s multifaceted role in cancer.
Keywords: Homologous recombination deficiency (HRD), prognosis, gene mutation, DNA methylation, signaling pathway,
immunology.

Introduction
Despite rapid advancements in medical technology, cancer
remains a leading global cause of mortality [1]. Recently,
immunotherapy has been developed and widely used in can-
cer treatment, and it is considered one of the most promising
strategies for cancer therapy [2–4]. For specific cancer sub-
types, such as lung squamous cell carcinoma (LUSC) and blad-
der urothelial carcinoma (BLCA), immunotherapy has shown
significant curative effects and has greatly extended patient
survival rates [5, 6]. Despite these significant advances in many
cancer subgroups, the clinical application of immunother-
apy still faces several challenges related to efficacy and
safety [7, 8], and only a small proportion of patients benefit from
immunotherapy [9, 10]. For instance, studies have found that
anti-programmed cell death protein 1 (anti-PD-1) monoclonal
antibodies are a promising treatment for advanced gastric can-
cer (GC) patients, but the response rate remains limited, and
it is necessary to develop new strategies to maximize the effi-
cacy of immune checkpoint inhibitors (ICIs). Therefore, further
study to identify precise biomarkers to predict the efficacy of

immunotherapy and explore new effective bio-targets for can-
cer therapy is both important and urgent.

Homologous recombination is a highly conserved pro-
cess that plays an important role in DNA repair, DNA
replication, meiosis, chromosome separation, and telomere
maintenance [11]. Homologous recombination repair is one
of the core methods for DNA damage repair. It mainly occurs
in the S and G2 phases of the cell cycle and serves as a DNA
repair mechanism to maintain genome integrity, ensuring the
transmission of genetic information with high fidelity [12].
When DNA damage occurs and cannot be repaired normally
through the homologous recombination repair process, it is
classified as homologous recombination deficiency (HRD) [13].
Some known genes encoding homologous recombination
proteins include breast cancer 1 gene (BRCA1), breast cancer
2 gene (BRCA2), ataxia-telangiectasia mutated gene (ATM),
ataxia-telangiectasia and Rad3-related gene (ATR), BRCA1-
associated RING domain 1 gene (BARD1), Bloom syndrome
protein gene (BLM), and the RAD51 recombinase gene
(RAD51) [14, 15]. As members of homologous recombination
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proteins, BRCA1 and BRCA2 are widely studied in HRD research
due to their correlation with hereditary ovarian and breast
cancers [16, 17]. Recent studies have highlighted the relevance
of HRD to immunotherapy outcomes and patient prognosis
across various cancers [18, 19]. For example, BRCA1/2 muta-
tions play a critical role in stratifying ovarian cancer (OV)
subtypes based on HRD scores, influencing treatment decisions
and patient outcomes [20]. While extensive research has
explored HRD within specific cancers, such as breast, ovarian,
and prostate cancers [20–22], comprehensive pan-cancer
analyses remain limited. Therefore, there is a compelling need
for a detailed investigation into the impact of HRD across
diverse cancer types.

Drawing on public databases and bioinformatic method-
ologies, our study systematically examined the correlation
between HRD and patient prognosis, clinical parameters, driver
gene mutations, mismatch repair gene (MRG) expression, dif-
ferentially expressed genes (DEGs), differentially methylated
regions (DMRs), signaling pathways, and immune cell infiltra-
tion across cancer types. As 23 of the 33 cancer types showed a
significant association between HRD and overall survival (OS)
rates, this study primarily focused on these 23 cancers (adreno-
cortical carcinoma [ACC], breast invasive carcinoma [BRCA],
colon adenocarcinoma [COAD], esophageal carcinoma [ESCA],
head and neck squamous cell carcinoma [HNSC], kidney chro-
mophobe [KICH], kidney renal clear cell carcinoma [KIRC],
kidney renal papillary cell carcinoma [KIRP], brain lower grade
glioma [LGG], liver hepatocellular carcinoma [LIHC], lung ade-
nocarcinoma [LUAD], mesothelioma [MESO], pancreatic ade-
nocarcinoma [PAAD], pheochromocytoma and paraganglioma
[PCPG], rectum adenocarcinoma [READ], sarcoma [SARC], thy-
moma [THYM], uterine corpus endometrial carcinoma [UCEC],
ovarian serous cystadenocarcinoma [OV], BLCA, glioblastoma
multiforme [GBM], LUSC, and thyroid carcinoma [THCA]). Our
research aims to provide a thorough understanding of HRD’s
role and its potential implications for patient prognostication.

Materials and methods
Patient cohorts
As in our previous study, we collected patient clinical param-
eters, HRD levels, tumor subtypes, DNA methylation informa-
tion, gene mutations, immune cell infiltration data, and other
relevant information from public databases, including UCSC-
Xena, The Cancer Genome Atlas (TCGA), Firehose case datasets,
Tumor Immune Estimation Resource 2.0 (TIMER2.0), and pre-
vious publications across 33 cancers [23].

Calculation of HRD scores
For the entire TCGA cohort, allele-specific copy numbers
were estimated from single nucleotide polymorphism (SNP)
array data using the Allele-Specific Copy Number Analysis
of Tumors (ASCAT) algorithm [24]. The ASCAT estimates
were downloaded from the Genomic Data Commons (GDC)
Data Portal (https://gdc.cancer.gov) [25]. The HRD scores—
telomeric allelic imbalance (TAI) [26], large-scale state tran-
sitions (LSTs) [27], loss of heterozygosity (LOH) [28], and the

HRDsum [22] (calculated as TAI + LST + LOH)—were com-
puted from allele-specific copy numbers using HRDscar [29]. To
compare the HRD scores of TCGA pan-cancer reported in the
literature, we downloaded the HRD scores using the UCSCXe-
naTools R package (https://xenabrowser.net/datapages/), ulti-
mately selecting data from the R package with multiple samples.

Analysis of the relationship between HRD and patient prognosis
/clinical characteristics
For the correlation analysis between HRD and patient prog-
nosis, samples from the 33 cancer types were categorized into
high- and low-HRD groups, using the optimal cut-point. Among
these 33 cancer types, 23 cancers showed a significant asso-
ciation between HRD and patient OS rates. These 23 cancers
included ACC, BLCA, BRCA, COAD, ESCA, GBM, HNSC, KICH,
KIRC, KIRP, LGG, LIHC, LUAD, LUSC, MESO, OV, PAAD, PCPG,
READ, SARC, THCA, THYM, and UCEC, and they were the focus
of subsequent studies. Patient clinical characteristics, including
sex, age, race, tumor grade, clinical stage, and smoking status,
were included in the correlation study with HRD.

Gene mutation/MMR expression/DEGs/DNA methylation
analyses
Association analyses of gene mutations, MMR expression,
DEGs, and DNA methylation with HRD were carried out as
described in our previous study [23]. For HRD grouping, the
top/bottom one-third method was used. A P value of less than
0.05 was considered statistically significant.

Signaling pathway and immune cell infiltration analysis
Consistent with our previous study, Gene Set Enrichment
Analysis (GSEA) 4.0.2 software was used for GSEA, with
HRD grouped according to the top/bottom one-third. The
“h.all.v7.2.symbols.gmt” gene sets from the Molecular Signa-
tures Database (MSigDB) were used as the reference gene set.
A nominal (NOM) P value < 0.05 was considered significant for
signaling pathway enrichment.

For immune cell infiltration analysis, the Wilcoxon
rank-sum test was applied using data from the TCGA database
and the ImmuCellAI tool, with HRD grouped by the top/bottom
one-third method. Further analysis of immune cell infiltration
was conducted using the CIBERSORT algorithm [30].

Statistical analysis
The correlation between HRD and OS rates was analyzed using
the Kaplan–Meier method and Cox regression analysis. PFS
rates were also examined using these methods. HRD levels
across different cancer subtypes were compared using the
Wilcoxon rank-sum test. Additionally, the association between
HRD and patient sex was analyzed with the Wilcoxon rank-sum
test, while linear regression was used to assess the associations
between HRD and other patient characteristics. All statistical
analyses were performed using R version 4.0 software (https://
www.r-project.org/). A P value of less than 0.05 was considered
statistically significant.
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Results
HRD levels and patient prognosis/clinical features association
across 33 cancers
Using data from the UCSC-Xena database, we assessed HRD
levels across 33 cancer types (ACC, BLCA, BRCA, CESC, CHOL,
COAD, DLBC, ESCA, GBM, HNSC, KICH, KIRC, KIRP, LAML,
LIHC, LUAD, LGG, LUSC, MESO, OV, PAAD, PCPG, PRAD,
READ, SARC, SKCM, STAD, TGCT, UCEC, UCS, UVM, THCA,
and THYM). OV exhibited the highest HRD levels, followed
by LUSC and ESCA, while THCA showed the lowest HRD lev-
els, followed by renal tumors (LAML, KIRP, KICH, and THYM)
(Figure S1).

We used Kaplan–Meier analysis and the optimal cut-point
method to analyze the correlation between HRD and OS rates
in the 33 cancer types. As shown in Figure S2, high HRD was
associated with lower OS rates in patients with ACC (Figure 1A),
BRCA, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LGG, LIHC,
LUAD, MESO, PAAD, PCPG, READ, SARC, THYM, and UCEC.
In contrast, high HRD was associated with higher OS rates in
patients with OV (Figure 1B), BLCA, GBM, LUSC, and THCA.
However, the other ten cancer types (LAML, UVM, PRAD, DLBC,
TGCT, SKCM, CESC, CHOL, STAD, and UCS) showed no signif-
icant correlation between HRD and OS rates. Based on these
results, further analysis focused on the 23 cancer types with a
significant association between HRD and OS.

Similarly, we performed an analysis to investigate the asso-
ciation between HRD and PFS in the 23 cancers. As shown
in Figure S3, high HRD was associated with lower PFS rates
in patients with ACC (Figure 1C), BRCA, COAD, ESCA, HNSC,
KICH, KIRC, KIRP, LGG, LIHC, MESO, PAAD, PCPG, SARC,
THYM, and UCEC, and with higher PFS rates in patients with OV
(Figure 1D) and GBM. The associations between HRD and PFS in
these 18 cancers were consistent with those observed between
HRD and OS. Patients with BLCA, LUAD, LUSC, READ, or THCA
showed no significant correlation between HRD and PFS.

In a further analysis, we explored the correlation between
cancer subtypes and HRD. As shown in Figure S4, the BRCA
basal subtype, GBM IDH-wild type (IDHwt), and UCEC CN-LOW
subtype were associated with high HRD levels. The COAD CIN
and GS subtypes, ESCA ESCC subtype, HNSC HPV- and HPV+
subtypes, LGG IDHmut-non-codel subtype, READ CIN subtype,
and SARC DDLPS and LMS subtypes were associated with low
HRD levels.

Additionally, we collected patient clinical information for
these 23 cancers and analyzed the correlation with HRD. As
shown in Figure 1E, HRD was positively correlated with clinical
stages in patients with ACC, BLCA, BRCA, COAD, ESCA, HNSC,
KICH, KIRC, KIRP, LUSC, PAAD, READ, THCA, and UCEC. HRD
was positively correlated with tumor grades in patients with
BLCA, HNSC, KIRC, LGG, LIHC, OV, PAAD, and UCEC, while
HRD was negatively correlated with race in patients with BRCA,
ESCA, GBM, LIHC, PAAD, and UCEC. Moreover, in several
cancer types, HRD levels were associated with gender: male
patients with LIHC, COAD, HNSC, and ESCA tended to have high
HRD levels, while female patients with KIRP tended to have high
HRD levels (Figure 1F).

Therefore, we demonstrated the heterogeneous correlation
between patient prognosis/clinical features, and HRD across
different cancer types.

Driver gene mutations and MRG expression associated with
HRD
Next, we analyzed the correlation between driver gene muta-
tions/MMR gene expression and HRD in the 23 cancer types.

As shown in Figure 2A–2D, several driver gene mutations
were positively correlated with HRD, including tumor protein
53 (TP53) in LUAD (difference = 14), HNSC (difference = 13),
COAD (difference = 9), BLCA (difference = 13), LGG
(difference = 4), LIHC (difference = 7), LUSC (difference = 5),
PAAD (difference = 10), GBM (difference = 1), and READ
(difference = 7.5); mucin 4 (MUC4) in BRCA (difference = 8);
mucin 17 (MUC17) in LUAD (difference = 9) and HNSC
(difference = 8); Kirsten rat sarcoma viral oncogene homolog
(KRAS) in PAAD (difference = 14); Harvey rat sarcoma viral
oncogene homolog (HRAS) in PCPG (difference = 5); filaggrin
(FLG) in LUAD (difference = 6); ankyrin 3 (ANK3) in LUAD
(difference = 8.5); BRCA2 in BLCA (difference = 12.5); and alpha
thalassemia/mental retardation syndrome x-linked (ATRX) in
LGG (difference = 4) and SARC (difference = 10) (all P < 0.01).

However, several driver gene mutations were negatively
correlated with HRD, including catenin beta 1 (CTNNB1)
(difference = −18) and CCCTC-binding factor (CTCF)
(difference = −12) in UCEC (Figure 2A and 2E); cadherin 1
(CDH1) (difference = −13), GATA binding protein 3 (GATA3)
(difference = −6), mitogen-activated protein kinase kinase
kinase 1 (MAP3K1) (difference =−14), and phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA)
(difference = −12) in BRCA (Figure 2A and 2F); fibroblast
growth factor receptor 3 (FGFR3) (difference = −15) in BLCA;
capicua transcriptional repressor (CIC) (difference = −3) in
LGG (Figure 2A); and albumin (ALB) (difference = −6.5) and
catenin beta 1 (CTNNB1) (difference = −6) in LIHC (Figure 2A)
(all P < 0.01). In addition, samples of KICH, ACC, KIRC, KIRP,
MESO, OV, THCA, and THYM exhibited low HRD levels, with no
significant association between HRD and driver gene mutations
(Figure 2A).

Loss of function caused by MMR has been proven to induce
irreparable DNA replication errors. We used the Spearman
method to calculate the correlation between MMR gene expres-
sion and HRD. As shown in Figure 2G, in most of the 23 can-
cers, MMR gene expression was negatively correlated with
HRD. Specifically, MMR genes negatively correlated with HRD
included the DNA polymerase delta 4, accessory subunit gene
(POLD4) in BLCA (rho = −0.11, P value = 0.04) and in GBM
(rho = −0.19, P value = 0.04); MutL homolog 3 (MLH3) in BRCA
(rho = −0.23, P value = 1.22E–12), in KIRC (rho = −0.14, P
value = 0.01), and in MESO (rho =−0.23, P value = 0.05); MutL
homolog 3 (MLH1) in BRCA (rho = −0.18, P value = 6.39E–08), in
HNSC (rho = −0.12, P value = 0.01), and in LUAD (rho = −0.12,
P value = 0.01). Conversely, we found the MMR gene expression
was positively correlated with HRD, including the replication
factor C subunit 5 (RFC5) in ACC (rho = 0.35, P value = 0.01),
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Figure 1. Association of survival rates and clinical features with HRD in respective cancer types. (A) Association of OS rate with HRD in patients with
ACC; (B) Association of PFS rate with HRD in patients with ACC; (C) Association of OS rate with HRD in patients with OV; (D) Association of PFS rate with
HRD in patients with OV; (E) Correlation of patient clinical features including age, race, tumor grade, clinical stage, and smoking status with HRD; (F) HRD
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Figure 2. Association of driver gene mutations and mismatch repair gene expression with HRD. (A) Association of driver gene mutations with HRD
in 23 cancer types, analyzed using the Wilcoxon rank-sum test; (B–F) Driver gene mutations in high-HRD and low-HRD groups for specific cancer types:
LGG (B), LUAD (C), PAAD (D), UCEC (E), and BRCA (F); (G) Correlation between the expression of mismatch repair genes and HRD, analyzed by Spearman’s
correlation. HRD: Homologous recombination deficiency; LGG: Lower grade glioma; LUAD: Lung adenocarcinoma; PAAD: Pancreatic adenocarcinoma; UCEC:
Uterine corpus endometrial carcinoma; BRCA: Breast invasive carcinoma.

in KICH (rho = 0.56, P value = 0.02), and in MESO (rho = 0.31,
P value = 0.01); POLD3 in ACC (rho = 0.56, P value = 2.10E–05),
in KICH (rho = 0.50, P value = 0.05), and in GBM (rho = 0.25,
P value = 0.01); and exonuclease 1 (EXO1) in KICH (rho = 0.56,

P value = 0.03), in KIRP (rho = 0.56, P value = 1.71E–07), and in
MESO (rho = 0.32, P value = 0.01) (all P < 0.05).

Additionally, we found that MLH3 was positively correlated
with HRD in THCA and UCEC, but negatively correlated with
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HRD in BRCA, KIRC, and MESO. POLD4 was positively cor-
related with HRD in ACC, PCPG, and UCEC, but negatively
correlated with HRD in BLCA, BRCA, and HNSC (Figure 2G).
However, only 21 out of the 23 cancers showed a significant
correlation between MMR gene expression and HRD, with no
significant association observed in READ and THYM.

Therefore, these results indicated that the correlation
between driver gene mutations and MMR gene expression with
HRD varies among different cancer types.

DEGs and DMRs related to HRD
We identified DEGs and DMRs in high- and low-HRD groups
(top and bottom one-third by HRD) across 23 cancer types.
Among these 23 cancers (Figure 3A, Figure S5), BRCA exhibited
the most DEGs and DMRs (Figure 3A and 3B), and the propor-
tion of DEGs related to abnormal methylation was also the high-
est in BRCA (Table S1). The clustering profile software package
of R was used to conduct the Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis of genes related to DNA methylation
in BRCA, and a P value < 0.05 was considered significant. As
shown in Figure 3C and Table S2, 10 of 45 genes were enriched in
BRCA, including pathways, such as cytokine–cytokine receptor
interaction, fluid shear stress and atherosclerosis, and alco-
holic liver disease. For DMR analysis, most DMRs were located
on chromosomes 1, 6, and the X chromosome in LUAD and
UCEC (Figure 3D and Table S3). However, most DMRs in other
cancers were mainly located on chromosomes 1, 2, 6, 8, and
19 (Figure 3D and Table S3). Specifically, in MESO, approxi-
mately 15.4% of DMRs were located on chromosome 1; in KIRC,
approximately 14.7% of DMRs were located on chromosome 6;
and in PAAD, approximately 10.6% of DMRs were located on
chromosome 19 (Figure 3D and Table S3). In several cancers,
including GBM, KICH, OV, READ, and THCA, no DMRs were
found. Overall, while gene expression differences were widely
observed between high- and low-HRD groups across different
cancers, the frequency of differential methylation in promoter
regions was lower.

Signaling pathway and immune cell infiltration associated with
HRD
To better understand the impact of HRD on cell signaling path-
ways and the tumor microenvironment, we used the top/bot-
tom one-third method for analyses.

In the signaling pathway analysis, as shown in Figure 4A,
we found that the G2M checkpoint, E2F targets, and DNA
repair pathways were enriched in the high-HRD groups of
ACC, BLCA, BRCA, GBM, LGG, LIHC, LUAD, LUSC, MESO, and
SARC. Conversely, the coagulation and P53 pathways were
enriched in the low-HRD groups of BRCA, LUAD, and LUSC.
However, in many cancer types, the signaling pathway enrich-
ments in samples with different HRD levels were more com-
plex. For example, the glycolysis pathway was enriched in the
high-HRD groups of BRCA, HNSC, KIRC, LIHC, LUAD, MESO,
PAAD, SARC, and THYM, but was enriched in low-HRD group
of COAD. The estrogen response late pathway was enriched in
the high-HRD groups of THYM, PAAD, OV, MESO, and LIHC,
but was enriched in the low-HRD groups of BRCA, COAD, LUSC,

and UCEC. The allograft rejection pathway was enriched in the
high-HRD group of KIRC, but was enriched in low HRD groups
of GBM, HNSC, and LUSC. Therefore, HRD-associated cell
signaling pathways varied across different cancers, although
the G2M checkpoint, E2F targets, and DNA repair path-
ways appeared to be important in many HRD-associated
cancers.

Using the ImmuCellAI tool and the CIBERSORT algorithm,
we investigated the relationship between immune cell infiltra-
tion and HRD. Heatmaps showed that immune cell infiltration,
including macrophages, T follicular helper (Tfh) cells, CD4+
memory-activated T cells, T helper 1 (Th1) cells, regulatory T
cells (nTreg, iTreg), and monocytes, was positively associated
with HRD. Conversely, immune cell infiltration of CD4+ T cells,
naive CD4+ T cells, naive B cells, and activated mast cells was
negatively associated with HRD. Additionally, macrophage M0
infiltration was positively associated with HRD in BLCA, BRCA,
HNSC, KIRC, LIHC, LUAD, PAAD, and THYM, but negatively
associated with HRD in KIRP. Macrophage M1 infiltration was
positively associated with HRD in BLCA, BRCA, KIRP, LUAD,
LUSC, OV, and THYM, but negatively associated with HRD in
HNSC (Figure 4B and 4C, Table S4). Therefore, the correlation
between HRD and immune cell infiltration varied among differ-
ent cancer types.

Discussion
Historically, studies on HRD have predominantly focused on
specific cancer types, such as breast, ovarian, and prostate
cancers [20–22, 31]. Comprehensive pan-cancer analyses of
HRD across diverse malignancies remain limited. Using data
from public databases, we conducted a multivariable omics
analysis encompassing 33 cancer types, with a particular focus
on 23 cancers where HRD significantly correlated with OS rates.
This analysis included mechanisms related to patient prognosis,
gene expression, gene mutation, gene methylation, and signal-
ing pathways. Our study uncovered the roles of HRD in different
cancer types and highlighted possible reasons for its correlation
with patient prognosis.

Through Kaplan–Meier analysis, we found that in most
cancers (including ACC, BRCA, COAD, ESCA, HNSC, KICH,
KIRC, KIRP, LGG, LIHC, MESO, PAAD, PCPG, SARC, THYM,
and UCEC), high levels of HRD were correlated with both
lower OS and PSF rates. As previously reported, high-HRD
patients with LGG had significantly worse OS compared to
low-HRD patients [32]. In BRCA, HRD-high tumors were
more clinically aggressive and associated with a higher risk
of recurrence, especially in estrogen receptor-positive (ER+)
tumors [33]. Additionally, in cancers, such as ACC, STAD,
UCEC, KIRC, SARC, PRAD, PAAD, and BRCA, patients with
high HRD scores exhibited worse prognoses than those with
low HRD scores [34–38], consistent with our data. Conversely,
in OV and GBM patients, high levels of HRD were correlated
with both higher OS and PFS rates, concordant with the stud-
ies by Knijnenburg et al. [39] and Shi et al. [40]. High-HRD
tumors have been shown to respond better to platinum-based
chemotherapies, particularly in high-grade serous OV [41–43].
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Figure 3. Association of DEGs and DMRs with HRD. (A) DEGs in the high-HRD group compared to the low-HRD group in BRCA, with a false discovery
rate (FDR) < 0.01 and |log2(FC)| > 1. Upregulated genes are shown in red, non-significant genes in gray, and downregulated genes in blue; (B) DMRs in
the promoter regions in the high-HRD group compared to the low-HRD group in BRCA, with FDR < 0.05 and |difference| > 0.1. Upregulated regions are
shown in red and downregulated regions in blue; (C) KEGG pathway enrichment associated with DNA methylation in BRCA, illustrated by a bubble plot (all
P < 0.05); (D) Distribution map of DMRs across respective chromosomes. DEGs: Differentially expressed genes; DMRs: Differentially methylated regions;
HRD: Homologous recombination deficiency; BRCA: Breast invasive carcinoma; FDR: False discovery rate; FC: Fold change; KEGG: Kyoto Encyclopedia of
Genes and Genomes.

Furthermore, we revealed that in cancers, such as BLCA, HNSC,
KIRC, PAAD, and UCEC, high levels of HRD were associated with
higher clinical stages and tumor grades. As reported in previous
studies, in HNSC patients, clinical stage, clinical T stage, patho-
logical T stage, and lymphovascular invasion were associated
with a high HRD score (HRD-H), and HRD-H was linked to poor
outcomes [44]. Similarly, in kidney renal clear cell carcinoma
and endometrial cancer, patients with high HRD exhibited
worse prognosis [45, 46]. Therefore, HRD is an important factor

in predicting patient prognosis, with correlations that vary
among cancer types.

In the analysis of driver gene mutations and MMR gene
expression, we found that many driver gene mutations, includ-
ing TP53, were positively correlated with HRD in cancers such
as LUAD, HNSC, COAD, BLCA, LGG, LIHC, LUSC, PAAD, GBM,
READ, and SARC. Mutations in the tumor suppressor TP53 gene
are among the most common genetic alterations in human
cancers [47, 48], and TP53 alterations have been associated
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Figure 4. Association of signaling pathways and immune cell infiltration with HRD. (A) Signaling pathways associated with HRD in 23 cancer types,
analyzed using the Wilcoxon rank-sum test; (B and C) Immune cell infiltration related to HRD in 23 cancer types, analyzed using the Wilcoxon rank-sum test
based on the ImmuCellAI algorithm (B) and the CIBERSORT algorithm (C), respectively. HRD: Homologous recombination deficiency; ImmuCellAI: Immune
cell abundance identifier; CIBERSORT: Cell-type identification by estimating relative subsets of RNA transcripts.

with higher HRD scores [39, 49]. For example, in LIHC, up
to 30% of patients carry TP53 mutations, which act as a sig-
nificant risk factor [50, 51]. In NSCLC, TP53 alterations have
been correlated with poorer OS rates and greater resistance to
chemotherapy and radiation [47, 52]. Furthermore, TP53 muta-
tions have been linked to poor prognosis in HNSC, COAD,
BLCA, LGG, GBM, and SARC [53–57]. Thus, the poor prog-
nosis in high-HRD cancer patients may be attributed to the
high frequency of TP53 mutations. We also demonstrated that
KRAS mutations were positively correlated with HRD in PAAD.
KRAS mutations are present in approximately 75% of pancreatic
ductal adenocarcinoma cases and are associated with worse
outcomes [58, 59]. Additionally, our data showed a positive cor-
relation between BRCA2 mutations and HRD in BLCA. While
BRCA2 mutations contribute to genomic instability and malig-
nant transformation [60], previous studies have found that
the BRCA2 gene can inhibit the occurrence and development
of cancer. Patients with BRCA2 mutations tend to be more
sensitive to chemotherapy and radiotherapy, leading to bet-
ter prognoses in certain cancers, such as breast, ovarian, and
bladder cancers [60–64]. Our analysis found that high HRD
was associated with higher OS rates in OV and BLCA patients,
aligning with these findings.

In the present study, we observed that immune cell
infiltration, including macrophages, Tfh cells, CD4+
memory-activated T cells, T helper cell 1 (Th1), regulatory T
cells (nTreg, iTreg), and monocytes, was positively associated
with HRD, while CD4+ T cells, naive CD4+ T cells, naive B

cells, and activated mast cells were negatively associated with
HRD. Previous research has shown that tumors with high
HRD scores exhibit increased leukocyte infiltration and an
immune-sensitive microenvironment [65]. In BRCA patients,
high infiltration of immune cells, including tumor-associated
macrophages (TAMs), neutrophils, Tregs, and myeloid-derived
suppressor cells (MDSCs), has been correlated to worse
cumulative survival rates. Macrophages M2, neutrophils,
and Tregs infiltration has been negatively correlated with
prognosis in colorectal cancer patients [66]. Tregs are known to
suppress antitumor immunity and deter immune surveillance,
contributing to poor prognosis in various cancers, including
breast and colorectal cancers [67–69]. Increased numbers of
Tregs and TAMs have also been associated with poor prognosis
in NSCLC, LIHC, and clear cell renal cell carcinoma [70–72].
Therefore, TAMs and Tregs infiltration may mediate the
relationship between HRD and poor prognosis in cancers such
as BRCA, COAD, KIRC, LUAD, and LIHC. However, in contrast
to our HRD-related data, previous studies have shown that Tfh
cell infiltration is associated with favorable outcomes in lung
adenocarcinoma, breast cancer, and colorectal cancer [73–75],
suggesting that Tfh cells may play a minor role in the context of
HRD compared to other immune cells.

Conclusion
In conclusion, our pan-cancer analysis highlights the heteroge-
neous impact of HRD on patient prognosis, genetic alterations,
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and the immune microenvironment across 33 cancer types.
These findings underscore HRD as a critical biomarker for pre-
dicting clinical outcomes and guiding personalized treatment
strategies in oncology. Future studies integrating multiomics
approaches and prospective clinical trials are warranted to vali-
date our observations and translate them into improved patient
care.
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[68] Waniczek D, Lorenc Z, Śnietura M, Wesecki M, Kopec A, Muc-
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