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Detecting cell types and densities in the tumor
microenvironment improves prognostic risk

assessment for breast cancer

Pu Liu®V2#, Xueli Zhang ®3*, Wenwen Wang ®2'4, Yunping Zhu

2, Yongfang Xie ®1*, Yanhong Tai®3* and Jie Ma ®?2*

A comprehensive evaluation of the relationship between the densities of various cell types in the breast cancer tumor
microenvironment (TME) and patient prognosis is currently lacking. Additionally, the absence of a large patch-level whole slide imaging
(WSI) dataset of breast cancer with annotated cell types hinders the ability of artificial intelligence to evaluate cell density in breast
cancer WSI. We first employed Lasso-Cox regression to build a breast cancer prognosis assessment model based on cell density ina
population study. Pathology experts manually annotated a dataset containing over 70,000 patches and used transfer learning based on
ResNet152 to develop an artificial intelligence model for identifying different cell types in these patches. The results showed that
significant prognostic differences were observed among breast cancer patients stratified by cell density score (P = 0.0018), with the
cell density score identified as an independent prognostic factor for breast cancer patients (P < 0.05). In the validation cohort, the
predictive performance for overall survival (OS) was satisfactory, with area under the curve (AUC) values of 0.893 (0S) at 1-year,
0.823(0S) at 3-year, and 0.861 (0S) at 5-year intervals. We trained a robust model based on ResNet152, achieving over 99%
classification accuracy for different cell types in patches. These achievements offer new public resources and tools for personalized

treatment and prognosis assessment.

Keywords: Tumor microenvironment (TME), transfer learning, breast cancer, artificial intelligence, deep convolutional neural

network (CNN).

Introduction
Breast cancer is the most common malignancy in women and
a leading cause of cancer-related mortality [1]. In 2020, there
were approximately 2.3 million new cases of breast cancer glob-
ally, accounting for 11.7% of all cancer incidence [2]. According
to the International Agency for Research on Cancer, these num-
bers are expected to increase to over 3 million by 2040 [2, 3].
Actively exploring prognostic models for breast cancer is cru-
cial, as these models not only predict disease progression
and treatment outcomes for breast cancer patients, guiding
physicians in determining appropriate treatment strategies but
also provide corresponding risk assessment indicators to help
patients better understand their disease status [4, 5]. However,
current prognostic models based on tumor-related gene sets
have limited clinical translation, as this would entail additional
costs for patients for transcriptome sequencing and prolonged
waiting periods for results.

Histopathological evaluation remains the gold standard for
clinical diagnosis of breast cancer. Pathologic tissue sections
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are considered a multimodal source of information, containing
tumor microenvironment (TME) data that can be used to reveal
disease progression and predict patient prognosis [6]. TME
plays a critical role in various stages of tumor progression [7, 8],
and recent studies have indicated that the interactions between
the TME and tumor cells determine tumor behavior, patient
survival rates, and treatment responses in various cancers [9].
The breast TME is mainly composed of tumor cells, immune
cells (myeloid cells, innate lymphoid cells, and lymphocytes),
and stromal cells (fibroblasts and adipocytes), exhibiting com-
plex dynamic interactions [10,11]. Although the impact of
tumor-infiltrating lymphocyte (TIL) density on patient out-
comes has been studied [12, 13], a comprehensive assessment of
the relationship between the densities of various cell types in
the breast TME and prognosis is still lacking.

Although there are numerous prognostic factors in patholog-
ical tissue images, pathologists are unable to easily quantify cell
density in histological images. This is because the manual anal-
ysis of cells in microscopic images is a time-consuming process,
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lacking objective standards and repeatability, and is thus prone
to inter-observer variability [8,14-16]. Deep learning repre-
sents the current state-of-the-art automated approach for han-
dling histological images, and whole-slide imaging (WSI) has
paved the way for integrating deep learning into the field of
digital pathology [17]. However, the lack of high-quality anno-
tated WSI datasets for breast cancer restricts the development
of deep learning models [18-20]. The predictive performance of
deep learning algorithms relies on the availability of sufficiently
high-quality training and validation data [21, 22]. Currently,
there is a lack of breast cancer WSI patch datasets annotated
with cell types [21].

In this study, we investigated the independent impact of dif-
ferent types of cell density in the TME on the prognosis of breast
cancer patients. A risk assessment model based on TME cell
density (TMECD) was established and validated to predict the
prognosis of breast cancer patients. We developed a patch-level
multiclassification model for breast cancer cells based on deep
convolutional neural networks (CNNs), aiming to assist clinical
users in quickly and objectively obtaining cell density in breast
cancer whole slide images (WSIs). As part of this work, we cre-
ated a dataset containing over 70,000 patches of breast cancer
WSI, which, to the best of our knowledge, is currently the only
breast cancer patch-level WSI dataset annotated with cell types.

Our research findings indicate that the risk assessment
model based on TMECD can effectively predict the prognosis
of breast cancer patients. Additionally, the multiclassification
model we developed demonstrates high accuracy and robust-
ness in identifying different types of cells in breast cancer WSI.
The availability of a large-scale, manually annotated patch-level
WSI dataset also provides valuable resources for further inves-
tigations. These achievements offer new public resources and
tools for personalized breast cancer treatment and progno-
sis assessment, with the potential to positively impact clinical
practice.

Materials and methods

Data source

The anonymous pathological examination reports and patho-
logical/frozen section information of breast cancer patients
were obtained from the TCGA-BRCA cohort. The detailed
information for each pathological/frozen section includes
the percentage of lymphocyte infiltration (percent LY),
percentage of monocyte infiltration (percent_MO), per-
centage of necrosis (percent_NE), percentage of neutrophil
infiltration (percent_NU), percentage of normal cells (per-
cent_NO), percentage of stromal cells (percent_ST), percent-
age of tumor cells (percent TU), and percentage of tumor
nuclei (percent_TN). Furthermore, we manually calculated
several additional features to comprehensively character-
ize the TME, including the percentage of immune cells
(percent_IM = percent_LY + percent MO + percent NU),
the ratio of tumor cells to stromal cells (TU_ST), the ratio of
tumor cells to normal cells (TU_NO), the ratio of tumor cells to
immune cells (TU_IM), the ratio of immune cells to stromal cells
(IM_ST), and the ratio of immune cells to normal cells (IM_NO).
After excluding patients with a survival time of less than 30
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days and incomplete clinical information, a total of 362 patients
were included in the subsequent study.

Using a similar approach, the anonymized pathological
examination reports and pathological/frozen section infor-
mation were retrieved from the TCGA-COAD, TCGA-LIHC,
TCGA-LUAD, TCGA-LUSC, TCGA-PAAD, TCGA-STAD, and
TCGA-THCA cohorts for additional analysis.

Forty WSIs from patients diagnosed with invasive breast
cancer of no special type (IBC-NST) were used to develop
deep CNNs to detect different types of breast cancer cells.
These patients underwent surgical resection between August
2015 and August 2018. All enrolled patients provided writ-
ten informed consent to use these samples for translational
research, as approved by the Ethics Commission of the General
Hospital of China PLA (approval number ky-2020-1-4). The
study was compliant with the “Guidance of the Ministry of
Science and Technology (MOST) for the Review and Approval
of Human Genetic Resources,” China. All H&E-stained sections
were scanned using a KFBIO Scans cope high-resolution scan-
ner at 40x magnification (Konfoong Biotech, Ningbo, China)
and digitized into KFB format.

Image annotation and preprocessing

All regions of interest (ROIs) were manually marked by two
experienced pathologists using QuPath (version: 0.4.0). Subse-
quently, the ROIs were cropped into patches of 256 x 256 pixels
at a magnification of 40 x to match the input scale of CNNs and
avoid overfitting. Each patch was labeled as one of the following
categories: adipose, immune cells, necrosis, normal breast cells,
stromal cells, and tumor cells.

In constructing the training and validation datasets for the
deep CNNs, oversampling was performed for immune cells,
necrosis, and normal breast cells. This involved randomly
applying one of the following operations to all patches and
including them in the dataset along with the original image:
rotation by 90° around the center, rotation by 180°, and rotation
by 270°. Undersampling was applied to adipose, stromal cells,
and tumor cells, involving the random selection of 3000 patches
to be included in the dataset. The dataset used for training and
testing the deep CNNs has been uploaded to Kaggle: https://
www.kaggle.com/datasets/pupupu233/breast.

Construction and validation of the prognostic model

The Lasso-based Cox regression was conducted using the
R package glmnet (version 4.1-1). We employed L1 regulariza-
tion and tenfold cross-validation and utilized stepwise regres-
sion to select the features used in the model. The formula for
calculating the risk score is as follows: RiskScore=>j—;"(8) x
dens;, where dens; represents the density of feature i, and f;
denotes the regression coefficient for the ith feature.

We categorized all patients into low-risk or high-risk groups
based on the median of the risk scores derived from TMECD and
performed survival analysis using the Kaplan-Meier method.
The log-rank test was employed to compare the differences
in survival status between the high-risk and low-risk groups.
To assess the predictive capability of the risk scores based
on TMECD, time-dependent receiver operating characteristic
(ROC) curves were generated, and the area under the curve
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Variable Beta HR HR lower HR upper P value

percent_TU 0.927255171 2.527561921 1.13006396 5.653281132 0.02396582
percent_LY -0.226216788 0.797545185 0.652231472 0.975234022 0.027501115
TU_IM 0.185350084 1.203639742 1.001472277 1.446618804 0.048194948
percent_IM -0.179390164 0.835779745 0.699476201 0.998644101 0.048279365

HR: Hazard ratio; percent_TU: Percentage of tumor cells; percent_LY: Percentage of lymphocyte infiltration; TU_IM: The ratio of tumor cells to immune

cells; percent_IM: Percentage of immune cells.

(AUC) for overall survival (OS) at one year, three years, and
five years was calculated. The execution and visualization of
Kaplan-Meier, log-rank, ROC curves, and calibration analy-
sis were performed using the “survivalROC” (version 1.0.3),
“rms” (version 6.2-0), “survival” (version 3.2-7), “survminer”
(version 0.4.9), and “plotROC” (version 2.2.1) packages.

Furthermore, we conducted univariate and multivariate Cox
regression analyses on the risk scores based on TMECD and
other clinical features to confirm the independence of the risk
scores as prognostic factors. Finally, we created a nomogram
using the aforementioned features.

Training of deep CNNs

We employed transfer learning to train ResNetl52 using the
PyTorch framework (version 2.2.2). Pretrained parameters of
ResNetl152 on the ImageNet dataset were downloaded as ini-
tialization. The initial learning rate (LR) was set to 0.001, with
stochastic gradient descent (SGD) utilized as the optimizer,
momentum set to 0.9, and a batch size of 32. Furthermore, we
reduced LR by a factor of 1/10 every 20 epochs. Normalization
was performed using the mean (0.485, 0.456, 0.406) and stan-
dard deviation (0.229, 0.224, 0.225). The training process con-
tinued for 80 epochs, and the final model was saved. ACC and
Loss were visualized using TensorBoard (version 2.16.2). The
training was conducted utilizing a single GEFORCE RTX 4060Ti
graphics card. The final model parameters obtained from the
training process have been uploaded to Kaggle: https://www.
kaggle.com/models/pupupu233/breast.

Ethical statement

The study was conducted in accordance with the Declaration of
Helsinki, and approved by the Ethics Commission of the General
Hospital of China PLA (approval number ky-2020-1-4).

Statistical analysis

Survival differences were assessed using the log-rank test, with
Pvalues < 0.05 considered statistically significant. The analysis
was conducted using R (version 4.0.3). Accuracy (ACC), loss,
and FI Score of the deep CNN were computed using Python
(version 3.11.7).

Results

Construction and validation of breast cancer prognostic model
based on cell density

As mentioned in the Methods section, we performed uni-
variate Cox regression analysis on all features to investigate

Liu et al.
Prognosis is assessed by multiple cell densities

108

their independent contributions to prognosis. The results indi-
cated that percent_TU, percent_LY, TU_IM, and percent_IM
were significantly associated with patients’ survival outcomes
(P < 0.05). Specifically, percent_TU and TU_IM were identified
as adverse factors for patient outcomes, while percent_LY and
percent_IM were recognized as protective factors. Notably, the
maximum hazard ratio for percent_TU was 2.528, with a 95% CI
of 1.130-5.653 (Table 1).

We conducted regression analysis using Lasso-Cox on four
features, employing L1 regularization and ten-fold cross-
validation, and utilized stepwise regression to minimize the
number of features used by the model. Ultimately, we devel-
oped a risk assessment criterion based on TMECD to pre-
dict the OS of patients in the TCGA-BRCA cohort. The risk
score formula is as follows: RiskScore = 1.5639 * percent_TU
- 0.9927 * percent_LY - 0.8887 * TU_IM. We investigated the
correlation among the three features in BRCA patients, reveal-
ing a significant positive correlation between percent_TU and
TU_IM (correlation coefficient = 0.453, P < 0.01), a signifi-
cant negative correlation between percent_TU and percent_LY
(correlation coefficient = -0.306, P < 0.01), and a significant
negative correlation between percent_LY and TU_IM (correla-
tion coefficient = -0.951, P < 0.01) (Figure 1A and 1B). We com-
puted risk scores for each BRCA patient and divided patients
into high-risk and low-risk groups based on the median risk
score (Figure 1C). Survival analysis using Kaplan-Meier curves
revealed a significant association between the high-risk group
and poorer OS, while the low-risk group was significantly asso-
ciated with better OS (P = 0.0018, Figure 1D). To evaluate the
predictive ability and accuracy of the risk model constructed
based on TMECD, we plotted the time-dependent ROC curves
with AUCs of 0.649, 0.652, and 0.65 for 1-year, 3-year, and
5-year predictions, respectively (Figure 1E).

Development and validation of a model incorporating clinical
features, along with corresponding nomogram
To investigate whether our risk score can serve as an indepen-
dent prognostic factor for BRCA patients, we conducted a Cox
regression analysis with patient risk scores based on TMECD,
age, and AJCC pathological stage as covariates. The results indi-
cated that the P value for the risk score feature based on TMECD
was <0.001, confirming its utility in predicting the prognosis of
BRCA patients (Figure 2A).

In order to enhance predictive performance, we inte-
grated clinical indicators and constructed a risk feature
combining TMECD risk scores with clinical parameters:
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Figurel. A prognostic risk scoring model for breast cancer was developed based on the TMECD. (A) A heatmap illustrating the distribution of the three
cell density features among patients categorized into high- and low-risk groups; (B) The correlation of three cell density features within the TCGA-BRCA

cohort; (C) Distribution of risk scores within the TCGA-BRCA cohort; (D) R

OC curves and corresponding AUC values for 1-, 3-, and 5-year predictions

based on TMECD risk features within the TCGA-BRCA cohort; (E) Kaplan-Meier survival analysis based on a validation cohort. AUC: Area under the curve;
TMECD: Tumor microenvironment cell density; ROC: Receiver operating characteristic.

RiskScorell = 0.03442 * age + 0.51989 * AJCC pathological
stage II + 0.85636 * AJCC pathological stage III + 2.09883
* AJCC pathological stage IV + 2.54872 * AJCC pathological
stage X + 1.06779 * riskScore. Time-dependent ROC curves
demonstrated that the AUCs for 1-year, 3-year, and 5-year
predictions using the combined clinical and risk score features
were 0.893, 0.823, and 0.861, respectively (Figure 2B), accom-
panied by a user-friendly nomogram for clinical application
(Figure 2C).

As an additional investigation, we explored whether a
TMECD-based risk score model could be established for other
cancer types using the same approach. We attempted this anal-
ysis on seven common tumors, including TCGA-COAD, TCGA-
LIHC, TCGA-LUAD, TCGA-LUSC, TCGA-PAAD, TCGA-STAD,
and TCGA-THCA, but successfully developed prognostic mod-
els based on TMECD risk scores only for TCGA-LUAD and
TCGA-STAD (Figure 2D and 2E).

Construction of the breast cancer WSI patches dataset

We collected 40 WSIs of IBC-NST to construct our dataset. All
ROIs were delineated by two experienced pathologists using
QuPath software. Subsequently, these ROIs were traversed and
cropped into patches of 256 x 256 pixels at 40 x magnification.
Each patch was annotated with the predominant histological
type, determined based on the proportional area it occupied.
We categorized patches into six types: adipose, immune cells,
necrosis, normal breast cells, stromal cells, and tumor cells,
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resulting in a total of 71,516 patches with cell type annotations
(Figure 3A).

Given the extreme imbalance in sample quantities across
different cell types (Figure 3B), we performed data resampling
to facilitate the training of deep learning models. Specifically,
we oversampled immune cells, necrosis, and normal breast
cells, while undersampling adipose, stromal cells, and tumor
cells. This yielded a relatively balanced dataset for training and
testing deep learning models (Figure 3C and 3D). The dataset
used for training and testing the deep CNN has been uploaded to
Kaggle: https://www .kaggle.com/datasets/pupupu233/breast.

Training and validation of multiclass models based on transfer
learning

To facilitate the clinical use of the TMECD-based risk scoring
model for predicting patient prognosis, we developed a multi-
classification model of breast cancer WSI cells using deep CNNs
to objectively and rapidly quantify the density of different cells
within breast cancer WSI. We fine-tuned the ResNet152 model,
pretrained on ImageNet, on our local dataset to expedite con-
vergence and improve classification performance. We set the
BATCH_SIZE to 32 and the LR to 0.001, while reducing the LR
by one-tenth every 20 epochs. After 80 epochs, the model’s
accuracy (ACC) and loss on the test set stabilized, concluding
the training process. At this point, the model achieved an ACC
of 99.15% and reduced the loss to 0.0327, resulting in an Fl
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Figure 2. Incorporating risk scoring based on clinical features and exploration in other cohorts. (A) Risk ratio based on TMECD risk score and clinical

features; (B) 1-, 3-, and 5-year predictive ROC curves and AUC for the prognostic model combining TMECD-based risk features and clinical features; (C) The
nomogram constructed by integrating TMECD-based risk scores and clinical features; (D) Kaplan-Meier survival analysis of the prognostic model based
on TMECD risk score in the TCGA-LUAD validation cohort; (E) Kaplan-Meier survival analysis of the prognostic model based on TMECD risk score in the
TCGA-STAD validation cohort. AUC: Area under the curve; TMECD: Tumor microenvironment cell density; ROC: Receiver operating characteristic.

Score of 0.9929, indicating that the model’s precision meets
the requirements (Figure 4A and 4B). The confusion matrix
demonstrates the model’s high true-positive rate and extremely
low false-negative and false-positive rates (Figure 4C and 4D).
The final model parameters obtained from the training pro-
cess have been uploaded to Kaggle: https://www.kaggle.com/
models/pupupu233/breast.

Discussion

Building a comprehensive dataset is crucial for the success of
a deep learning project. To our knowledge, the dataset con-
structed in this study is currently the only available one with
cell type annotations at the patch level for breast cancer WSI.
The Camelyon 16 and 17 datasets are two well-known breast
cancer WSI datasets provided by the 2016 Lymph Node Metas-
tases Detection Challenge, consisting of approximately 2000
complete WSI images. However, only the entire WSI images
are annotated for these datasets, indicating either normal tissue
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or malignant tumors. TCGA-BRCA could be the largest publicly
available breast cancer WSI dataset, but it does not provide any
usable region annotations. The NCT-CRC-HE-100K dataset is a
widely cited colorectal cancer patch-level WSI dataset with cell
type annotations, which has significantly advanced research in
the field of colorectal cancer [23]. Based on this, we have con-
structed a large-scale patch-level WSI dataset for breast cancer,
which includes annotations for various cell types (Table 2). This
dataset aims to advance research in the digital pathology of
breast cancer. The dataset used for training and testing the deep
CNN in this study has been uploaded to Kaggle: https://www.
kaggle.com/datasets/pupupu233/breast.

In this study, we investigated the independent impact of
different types of cell densities in the TME on the prognosis
of breast cancer patients and established and validated a risk
assessment model based on TMECD to predict the prognosis of
breast cancer patients. We found that percent_TU (percentage
of tumor cells) and TU_IM (percentage of tumor cells/percent-
age ofimmune cells) were adverse factors for patient outcomes,
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Figure 3. Construction of a breast cancer WSI patch dataset. (A) Examples of patches of different cell types; (B) Proportions of patches of different cell
types before resampling; (C) The process of oversampling and undersampling; (D) Proportions of patches of different cell types after resampling. WSI: Whole

slide image.

while percent_LY (percentage of lymphocyte infiltration) and
percent_IM (percentage of immune cells) played protective
roles in patient prognosis (Table1). The risk score based on
TMECD was significantly correlated with the prognosis of
breast cancer patients (Figure 2). To efficiently and objectively
obtain the density of different types of cells from WSI images,
we fine-tuned ResNetl152 pretrained on the ImageNet dataset
and trained a breast cancer WSI multicell classification model.
On the validation set, the model achieved an ACC of 99.15%, a
loss of 0.0327, and an FI Score of 0.9929. The model exhibited
high true-positive rates and extremely low false-negative and
false-positive rates (Figure 4). As part of this work, we created a
breast cancer WSI patch dataset containing over 70,000 images
annotated with cell types, which is currently the only breast
cancer patch-level WSI dataset with cell type annotations.
These achievements provide new avenues and tools for per-
sonalized breast cancer treatment and prognosis assessment,
potentially playing a significant role in clinical applications.
Breast cancer ranks among the most frequently diagnosed
solid tumors in women, posing a serious threat to their physical
and mental well-being [1,24]. It is well recognized that the
TME plays a crucial role in the growth, progression, and
metastasis of tumors [25-29]. Studies have shown that TILs
exert a favorable protective effect on the prognosis of breast
cancer patients, which aligns with our findings [30-32]. The
various cellular components within the TME of breast cancer
exhibit intricate and dynamic interactions, with the stromal
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components likely playing a predominant role [33]. Among
these, cancer-associated fibroblasts constitute an essential part
of the stroma, sourced from a diverse array including normal
fibroblasts, myofibroblasts, mesenchymal cells, stellate cells,
fibrocytes, pericytes, smooth muscle cells, preadipocytes, and
bone marrow-derived cells [34]. They manifest importance
across various aspects of breast cancer, including growth,
metastasis, response to treatment, and resistance to anticancer
therapies [35]. In addition to stromal cell populations, diverse
tumor-associated immune cells, such as tumor-associated
neutrophils, tumor-associated lymphocytes, tumor-associated
macrophages, dendritic cells, and mast cells augment the
activation of stromal cells, thereby shaping the immunosup-
pressive TME [36]. Tumor-associated immune cells prevent the
growth of immunoregulatory tumor cells by destroying them.
However, they may also induce tumor resistance to therapy
by influencing tumor immunogenicity and selecting for tumor
clones capable of causing immune depletion [37]. Furthermore,
immune cells within the TME exhibit dual functions in cancer
development and metastasis. Thi-type helper T cells (Thi),
cytotoxic T lymphocytes (CTLs), and natural killer cells (NK
cells) are associated with an immunostimulatory microenvi-
ronment. In contrast, regulatory cells of the TME, including
Th2-type helper T cells (Th2), tumor-associated macrophages,
regulatory T cells (Tregs), and myeloid-derived suppressor
cells, are associated with an immunosuppressive microen-
vironment and poor prognosis [38,39]. These cells hinder
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variation of loss of the deep CNN model on both the training and validation sets; (C) The confusion matrix of the deep CNN model on the training set; (D) The
confusion matrix of the deep CNN model on the validation set. CNNs: Convolutional neural networks.

Table 2. Comparison of the mentioned datasets

Variable Camelyon 16 and 17 TCGA-BRCA NCT-CRC-HE-100K Our datasets
Source The Netherlands USA Germany China
Released 2016/2017 Not applicable 2019 2024

Public or not Public Public Public Public

Cell type annotations No No Yes Yes

Cancer Breast cancer Breast cancer

Colorectal cancer Breast cancer

tumor growth by eliminating immunoreactive tumor cells or
altering tumor immunogenicity, thereby facilitating tumor
escape [36].

ResNet-152 stands as one of the deepest architectures within
the ResNet family, comprising a network structure with 152
layers, including a main backbone network and several aux-
iliary networks. The core idea of this architecture revolves
around introducing residual connections, allowing information
to propagate directly between network layers, thus alleviating
the vanishing gradient problem. This enables the network to
be trained deeper and more effectively. Its depth and perfor-
mance make it excel on large-scale image datasets, enabling its
application in various complex visual tasks [40]. It is worth
mentioning that a multi-class classification model based on
ResNet-152 achieved an ACC 0f 99.15% and an FI Score of 0.9929.
The excellent performance of the multi-classifier is primar-
ily attributed to advancements in deep learning algorithms.
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With the rapid development of deep neural network algorithms,
Al models trained on large-scale data are poised to become
valuable assistants for pathologists in pathology analysis. This
advancement is expected to provide pathologists with more
accurate and efficient diagnostic tools and potentially aid in
uncovering and understanding hidden patterns and regulari-
ties within diseases [41, 42].

In the future, challenges in this field may focus on several
key areas. Developing vertical large language models tailored to
specific needs in digital pathology is beneficial; ChatGPT-4 has
already been proven effective in maintaining high accuracy
across various organizational pathology images [43]. Addition-
ally, the development of interpretable artificial intelligence
models is crucial as they would provide pathologists with suf-
ficient evidence support [41]. On the data front, integrating
multimodal imaging will offer more comprehensive disease
information [44]. Simultaneously, expanding the coverage of

www.biomolbiomed.com


https://www.biomolbiomed.com
https://www.biomolbiomed.com

datasets as much as possible will be a monumental task [45].
In terms of algorithms, ensemble learning could be a promising
choice [46]. Finally, a comprehensive, all-in-one digital pathol-
ogy analysis toolkit or cloud platform would significantly
enhance convenience for clinical practitioners [47].

There are some limitations in our work. Firstly, the risk
scores we constructed still require validation in another
large-scale prospective pathology cohort. Additionally, deep
CNNs need to be fine-tuned on multicenter datasets to ensure
their stability when faced with data from different sources and
in complex real-world scenarios.

Conclusion

In conclusion, we have established and validated a breast cancer
prognosis risk assessment model based on cell density, along
with a patch-level artificial intelligence tool for identifying dif-
ferent cell types within breast cancer WSI. We manually anno-
tated a dataset comprising over 70,000 patches, which, to our
knowledge, is the only breast cancer patch-level dataset anno-
tated with cell types. These achievements offer new insights and
tools for personalized medicine and prognosis assessment.
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