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R E S E A R C H A R T I C L E

Screening and validating genes associated with
cuproptosis in systemic lupus erythematosus by
expression profiling combined with machine learning
Zhongbin Xia 1#∗, Ruoying Cheng 2#, Qi Liu 2, Yuxin Zu 2, and Shilu Liao 2

Cell death has long been a focal point in life sciences research, and recently, scientists have discovered a novel form of cell death
induced by copper, termed cuproptosis. This paper aimed to identify genes associated with cuproptosis in systemic lupus
erythematosus (SLE) through machine learning, combined with single-cell RNA sequencing (scRNA-seq), to screen and validate related
genes. The analytical results were then experimentally verified. Two published microarray gene expression datasets (GSE65391 and
GSE61635) from SLE and control peripheral blood samples were downloaded from the GEO database. The GSE65391 dataset was used as
the training group, while the GSE61635 dataset served as the validation group. Differentially expressed genes from GSE65391 identified
12 differential genes. Nine diagnostic genes, considered potential biomarkers, were selected using the least absolute shrinkage and
selection operator and support vector machine recursive feature elimination analysis. The receiver operating characteristic (ROC)
curves for both the training and validation groups were used to calculate the area under the curve to assess discriminatory properties.
CIBERSORT was used to assess the relationship between these diagnostic genes and a reference set of infiltrating immune
cells. scRNA-seq data (GSE162577) from SLE patients were also obtained from the GEO database and analyzed. Experimental validation
of the most important SLE biomarkers was performed. Twelve significantly different cuproptosis-related genes were identified in the
GSE65391 training set. Immune cell analysis revealed 12 immune cell types and identified nine signature genes, including PDHB,
glutaminase (GLS), DLAT, LIAS, MTF1, DLST, DLD, LIPT1, and FDX1. In the GSE61635 validation set, seven genes were weakly expressed, and
two genes were strongly expressed in the treatment group. According to the ROC curves, PDHB and GLS demonstrated significant
diagnostic value. Additionally, correlation analysis was conducted on the nine characteristic genes in relation to immune infiltration.
The distribution of key genes in immune cells was determined using scRNA-seq data. Finally, the mRNA expression of the nine
diagnostic genes was validated using qPCR.
Keywords: Systemic lupus erythematosus, machine learning, cuproptosis, single-cell RNA-sequencing.

Introduction
Systemic lupus erythematosus (SLE) is characterized by inflam-
mation and autoimmune tissue destruction affecting multi-
ple organs, occurring more frequently in young women [1, 2].
Extensive research strongly supports the notion that dys-
regulation of cell death pathways and defective clearance of
dead material trigger autoimmunity, promoting the onset and
progression of SLE [3]. The inflammatory cell death path-
way is closely linked to SLE pathogenesis, and inhibiting
this process while enhancing the clearance of dead material
at various stages may offer a promising therapeutic strategy
for SLE treatment [4–6]. In August 2021, researchers iden-
tified the key role of neutrophil ferroptosis in autoimmune

diseases in both humans and mice, providing insights into
the regulatory mechanisms that drive specific forms of neu-
trophil death in SLE patients [7]. Understanding the pathogen-
esis of SLE is crucial for accurate diagnosis, reasoning, and
treatment [7].

Cell death is a natural phenomenon and has been a major
focus in life sciences research. Over the past few decades, vari-
ous forms of cell death have been identified, each relying on dis-
tinct proteins to activate and execute its specific pathway. The
mechanisms of cell death differ, with common forms, includ-
ing apoptosis, pyroptosis, necrosis, and ferroptosis [8–11].
Among these, ferroptosis, first identified in 2012, has gar-
nered significant attention, as it precedes the discovery of
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cuproptosis [7, 12–14]. Copper, like iron, is found in all liv-
ing organisms and is an essential micronutrient for normal
biological functions. It is tightly regulated at low levels in mam-
malian cells, but when copper ion concentrations exceed the
threshold for homeostasis, they become cytotoxic [12, 15, 16]. In
2022, researchers introduced the term “cuproptosis” to describe
a controlled form of cell death, distinct from apoptosis, necro-
sis, and ferroptosis. Cuproptosis primarily occurs through the
accumulation of intracellular copper ions. These ions have been
shown to interact significantly with the tricarboxylic acid (TCA)
cycle. When copper ions accumulate beyond a critical concen-
tration, they bind directly to lipid-acylated components of the
TCA cycle, causing protein aggregation and imbalance, which
in turn disrupts the TCA process, triggering toxic stress on
proteins and leading to cell death [15].

With the discovery of cuproptosis, numerous bioinformatic
analyses have explored its relationship with immune responses
and disease. In November 2022, Yuan et al. [17] performed
a differential expression analysis combined with machine
learning, discovering that cuproptosis may contribute to the
progression of Crohn’s disease by inducing immune responses
and metabolic dysfunction. In July 2022, Lai et al. [18] utilized
WGCNA and other analyses to explore the relationship between
cuproptosis and Alzheimer’s disease, developing a predictive
model to assess pathological outcomes in Alzheimer’s patients.
In March 2022, Chen et al. [19], using the dataset from ssGSEA,
receiver operating characteristic (ROC) curves, and Autodock
Vina, found that cuproptosis-related pathway regulation could
significantly influence the development and progression of
inflammatory bowel disease. Given the connection between cell
death and the pathogenesis of SLE, it is reasonable to infer an
undiscovered relationship between SLE and cuproptosis [7].
Cuproptosis is a copper-dependent programmed form of
cell death, distinct from apoptosis, pyroptosis, necrosis, and
autophagy. In cuproptosis, copper directly binds to lipoproteins
in the TCA cycle, leading to lipoprotein aggregation and loss of
iron–sulfur clusters, inducing protein toxicity stress, and ulti-
mately cell death. However, its role in SLE remains unclear, and
understanding cuproptosis could shed light on the mechanisms
underlying SLE.

Recently, researchers have suggested that advances in
machine learning applications could aid in predicting changes
in disease activity in SLE [20]. In addition, the application
of single-cell RNA sequencing (scRNA-seq) in recent years
has deepened our understanding of RNA transcription het-
erogeneity and complexity within individual cells [21]. By
integrating various expression profiling techniques, includ-
ing microarrays, researchers have uncovered the molecular
characteristics of immune microenvironments and the het-
erogeneity of immune cells across multiple diseases [22–24].
This technology holds great potential for transforming
current disease diagnosis and treatment protocols [21]. In
this study, we employ machine learning combined with
single-cell sequencing and animal experiments to iden-
tify, screen, and validate cuproptosis-related mechanisms
in SLE, providing new insights into SLE pathogenesis and
treatment.

Materials and methods
Microarray data information
Gene expression data from the GSE65391 and GSE61635 datasets
were downloaded from the NCBI GEO database. Single-cell
sequencing data were derived from GSE162577. The GSE65391
dataset included 924 patients with SLE and 72 controls, based
on the GPL10558 platform. The GSE61635 dataset included
79 patients with SLE and 30 controls, collected from blood sam-
ples, and was based on the GPL570 platform. In total, 1003 SLE
patients and 102 healthy controls were analyzed. The GSE65391
dataset was used as the training group, while the GSE61635
dataset served as the validation group. The SLE patients were
classified as the treatment group, and the healthy controls as
the control group. Probes representing multiple genes were
removed and replaced with gene symbols according to probe
annotation files. The mean value of the probes was calcu-
lated as the final gene value. The data were analyzed using
R version 4.2.2. The datasets GSE65391 and GSE61635 were
chosen for their extensive coverage of gene expression pro-
files in SLE patients, providing a solid basis for identifying
cuproptosis-related genes.

Identification and visualization of differentially expressed
genes (DEGs)
The “limma” package in R (available at http://www.
bioconductor.org/limma/) was used for data preprocessing,
including background correction, normalization, and differ-
ential gene expression analysis between GSE65391 and the
18 cuproptosis-associated genes. After adjusting for the false
discovery rate (P value < 0.05) and the threshold points for
|log FC| > 1.0 as DEGs, 12 differential genes were identified.
The “pheatmap” and “ggpubr” R packages were used to create
heatmaps and boxplots for visualizing the differential genes.
Cuproptosis-related genes were identified from the GeneCards
database, and their expression in SLE patients and healthy
controls was analyzed using the training set GSE65391. Since
SLE presents with prominent skin lesions, genes related to the
skin lesion-associated cuproptosis pathway were downloaded
and intersected with the SLE DEGs, leading to the identification
of 12 key genes.

Immune cell infiltration analysis by CIBERSORT
The “RCircos” package in R was used to visualize the chro-
mosomal locations of the 18 cuproptosis-associated genes.
Additionally, immune cell infiltration was calculated using
the bioinformatics algorithm CIBERSORT (https://cibersortx.
stanford.edu/), referencing 22 immune cell types to esti-
mate immune cell abundance. The “corrplot” R package was
employed to compute and display correlation coefficients
between the 12 differential genes.

Screening for the best diagnostic biomarkers for SLE
To identify important prognostic markers, we employed two
machine learning algorithms. First, we used the “glmnet” pack-
age in R for the least absolute shrinkage and selection oper-
ator (LASSO) regression algorithm to screen 11 characteristic
genes for SLE from the 12 differential genes. The support vector
machine (SVM), a supervised machine learning algorithm, was
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then applied for regression and classification [25]. To identify
the optimal diagnostic gene biomarkers for SLE, both the LASSO
and SVM recursive feature elimination (SVM-RFE) were used
to screen the characteristic genes. The “e1071” package in R was
used to build the SVM model. The SVM-RFE method removes
the least important features and selects the most important ones
based on classifier weights [26]. After applying SVM-RFE, ten
characteristic genes for SLE were identified from the 12 differ-
ential genes. We then used the “venn” package in R to iden-
tify nine intersecting genes between those screened by LASSO
and SVM-RFE. These nine intersecting genes were selected as
diagnostic markers for SLE. Additionally, we used the “ggpubr”
and “limma” packages in R to perform differential analysis on
these nine genes in the GSE61635 dataset (used as the valida-
tion group) to observe their differences between control and
treatment groups. Statistical analysis was performed using R
software v4.0.3 (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001).

Diagnostic value of feature biomarkers in SLE
To evaluate the accuracy of the nine diagnostic genes, we con-
structed ROC curves for both the validation and training groups.
The area under the curve (AUC) values for the nine genes
were calculated by numerically integrating the ROC curves. The
corresponding cutoff point for the ROC curve was determined
using Youden’s index. A binary regression model was then used
to calculate sensitivity, specificity, and 95% confidence inter-
vals (CIs).

Correlation analysis of diagnostic genes with immune cells
Correlation analysis and scatter plots were generated for the
nine diagnostic genes and 22 reference sets of immune cells.
The Spearman method, implemented using the “Hmisc” R pack-
age, was used to analyze the correlation between the expres-
sion levels of the nine diagnostic genes and the 22 immune
cell reference sets. The results were visualized using graphical
techniques from the “lollipop” package. A P value of <0.05 was
considered to indicate a significant correlation.

Processing and analysis of scRNA-seq data
The scRNA-seq data (GSE162577) of peripheral blood mononu-
clear cells (PBMCs) from SLE patients were downloaded from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/). Seu-
rat (version 4.0.5) was used for cell quality control and analysis
of the scRNA-seq data. The data were processed in R using
the dplyr, future, and DoubletFinder packages. After quality
control and normalization of the scRNA-seq data from three
samples, cells with at least 300 and no more than 4000 genes,
and a mitochondrial gene percentage of less than 10%, were
selected. Low-quality cells were filtered, and violin plots were
generated using the following criteria: (nFeature_RNA > 200,
nFeature_RNA < 7000, and percent.mt < 20%). The data were
dimensionally reduced, and 10k genes were screened, followed
by normalized linear regression to obtain a principal compo-
nent analysis (PCA) map. Marker genes were identified, and
cell types were annotated after clustering, resulting in uniform
manifold approximation and projection (UMAP) visualization.

The t-distributed stochastic neighbor embedding (t-SNE) algo-
rithm was also used to reduce the nonlinear dimensionality of
the scRNA-seq data [27].

Finally, violin plots and bubble plots were generated to ana-
lyze the expression levels of PDHB and glutaminase (GLS) in
the main cell types. Seurat (version 4.0.5) was used for cell
quality control and analysis of scRNA-seq data. To visualize
high-dimensional scRNA-seq data, we applied two widely used
dimensionality reduction techniques: UMAP and t-SNE. These
methods allowed us to reduce the data to two dimensions, facil-
itating the visualization of cellular heterogeneity. Both algo-
rithms are non-linear dimensionality reduction methods that
help preserve local and global data structures, aiding in the
identification of distinct cell populations in SLE samples. Impor-
tantly, these visualizations do not affect downstream analysis,
such as gene expression profiling or cell clustering, but enhance
the interpretability of the results.

Animals
Thirty female 55-day-old MRL/lymphocyte proliferation (lpr)
SLE mice were purchased from Cyagen Research Centre for
Model Organisms, Cyagen Biosciences (Jiangsu, China). Thirty
female -week-old C57BL/6 mice were purchased from Gem-
Pharmatech Co., Ltd. (Jiangsu, China). MRL/lpr mice are pro-
duced by introducing an lpr mutation in MRL mice, which
leads to an abnormal increase in lymphocytes, resulting in
many pathological features similar to human SLE, including
the production of autoantibodies, multiple organ inflammatory
lesions, and lupus nephropathy. Therefore, MRL/lpr mice are
considered an ideal model for studying the pathological mecha-
nisms and potential treatments of SLE. All the mice were eutha-
nized using CO2 inhalation, with death occurring between 30 s
and 30 min. Next, we verified the diagnostic value of GLS and
PDHB by obtaining blood samples from the mice. MRL/lpr SLE
mice were used as the SLE group, while C57BL/6 mice served
as the healthy control group. Both MRL/lpr and C57BL/6 mice
were maintained under specific pathogen-free conditions at the
Experimental Animal Center of The Second Affiliated Hospi-
tal of Nanchang University. The study protocol was approved
by the Ethics Committee of The Second Affiliated Hospital of
Nanchang University. All experiments were conducted in com-
pliance with ethical standards, ensuring humane treatment of
animals, and conforming to international guidelines and human
moral and ethical standards.

Total RNA extraction and RT-qPCR
To detect the mRNA expression of GLS and PDHB in the blood,
total RNA was extracted from the model using RNA Trizol
reagent (Invitrogen, Carlsbad, CA, USA). GAPDH was used as
the reference gene for qPCR normalization. According to the
manufacturer’s instructions, cDNA synthesis was carried out
using a reverse transcription kit (Guangzhou Ribobio Co., Ltd.).
The qRT-PCR analysis was performed using the LightCycler
480 Real-Time PCR System. Related lncRNA expression levels
were calculated using the 2–ΔΔCT method. The sequences were
as follows: GLS primers: 5′-GGCAGTTTGCGTTCCATGTTG-3′
(forward) and 5′-GCGGCAAACAGAAGGTTTATCA-3′ (reverse);
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PDHB primers: 5′-AAGGCAAGGGACCCACATC-3′ (forward) and
5′-CGTAAGGCATAGGGACATCAGC-3′ (reverse).

Ethical statement
This research was approved by the Medical Ethics Committee of
The Second Affiliated Hospital of Nanchang University. Sample
acquisition and usage were performed in accordance with the
approved guidelines. All methods adhered to relevant regula-
tions and were reported in accordance with the ARRIVE guide-
lines (https://arriveguidelines.org) for the reporting of animal
experiments.

Statistical analysis
All data analysis was performed using R, and graphs were
generated with GraphPad Prism 8 software (GraphPad Soft-
ware, CA, USA). Statistical analyses were conducted in RStudio
(version 4.3). The LASSO regression algorithm was utilized to
identify genes significantly associated with the differentiation
between SLE and control groups, using the “glmnet” package
in R. ROC curves and AUC were used to determine the diag-
nostic efficacy of biomarkers. The relationship between gene
biomarker expression and infiltrating immune cells was ana-
lyzed using Spearman’s correlation. Data were analyzed using
t-tests. If the P value was less than 0.05, the null hypothesis was
rejected, indicating statistically significant results.

Results
Differential expression of cuproptosis-related genes in SLE
The results indicated that NFE2L2, NLRP3, DLAT, LIAS, and MTF1
were highly expressed in SLE patients, and LIPT1, DLAT, PDHB,
GLS, GCSH, LIAS, and FDX1 were significantly downregulated
in SLE patients (Figure 1A). The heatmap visualizes the differ-
ences in the expression of these 12 genes between the control
and treatment groups (Figure 1B).

Correlation analysis of cuproptosis DEGs
We also examined the correlation between these genes, illus-
trating their relationships via the size ratio of each arc in the
circos diagrams (Figure 2A). GLS and MTF1, LIPT1 and MTF1,
and PDHB and MTF1 showed significant negative correlations.
DLAT and LIPT1, LIAS and PDHB, and PDHB and LIPT1 showed
significant positive correlations.

Screening and validation of cuproptosis signature genes
We used the Lasso regression algorithm and the SVM-RFE algo-
rithm to select the most important signature genes associated
with the cuproptosis pathway in SLE. The Lasso regression
algorithm identified 11 significantly different signature genes.
By retaining the validation set from the SVM-RFE algorithm, we
obtained ten signature genes. Using Venn diagrams, we identi-
fied nine overlapping genes between the LASSO and SVM-RFE
approaches as cuproptosis signature genes (Figure 2B). We fur-
ther analyzed the expression differences of these nine signature
genes between the control and treatment groups in the valida-
tion set (GSE61635) (Figure 2C). The expression levels of LIPT1,
PDHB, DLAT, DLD, FDX1, and LIAS were higher in the control
group compared to the treatment group, while MTF1 and GLS

Figure 1. Differential expression of cuproptosis-related genes in SLE.
(A) Analysis of the expression of 18 cuproptosis-related genes in SLE patients
and healthy controls. Genes with high expression in the disease group
are shown in red, while genes with low expression are shown in blue.
*P < 0.05; **P < 0.01. (B) Heatmap showing the expression patterns of 12
cuproptosis-related genes in the control and treatment groups. The color
gradient represents the level of gene expression, with red indicating higher
expression and blue indicating lower expression levels. SLE: Systemic lupus
erythematosus.

were significantly lower in the control group compared to the
treatment group.

Predicting the diagnostic value of signature genes in SLE
ROC curves were used to assess the diagnostic potential of these
nine signature genes for cuproptosis in SLE (Figure 2D). Pre-
dictions were performed on both the training and validation
sets. The results indicated that PDHB, MTF1, DLAT, LIAS, and
DLAT had good diagnostic values in the training group, while
PDHB, GLS, and MTF1 showed good AUC values in the validation
group. The AUC values for the control and treatment groups
are summarized in Table 1, where significant differences in the
expression of these signature genes between the treatment and
control groups were observed.

Analysis of the correlation between two signature genes in
immune infiltration cell
We performed a correlation analysis between the expression of
nine diagnostic genes and immune cell populations (Figure 3).
The results are presented in Table 2.
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Figure 2. Correlation analysis of cuproptosis DEGs with screening and validation of cuproptosis-related signatures. (A) Circos plot of 12 DEGs; (B) Nine
genes were selected by the algorithm; (C) Box and whisker plot of nine genes between the treatment and control groups using the ggpubr and limma packages
of R; (D) The corresponding AUC of nine genes. DEG: Differentially expressed gene; AUC: Area under the curve.

Table 1. ROC curves for the nine signature genes in the control group

Gene AUC 95% CI

PDHB 0.798 0.713–0.877

GLS 0.542 0.430–0.620

LIPT1 0.687 0.581–0.784

MTF1 0.826 0.743–0.897

DLAT 0.768 0.682–0.848

DLD 0.617 0.519–0.713

DLST 0.747 0.624–0.859

FDX1 0.561 0.457–0.666

LIAS 0.836 0.761–0.901

ROC: Receiver operating characteristic; AUC: Area under the curve;
CI: Confidence interval; GLS: Glutaminase.

As shown in Figure 4A, PDHB was significantly and nega-
tively correlated with neutrophils (P < 0.001), macrophages M0
(P < 0.001), activated dendritic cells (P < 0.001), memory B cells
(P < 0.001), gamma delta T cells (P < 0.001), activated mast

cells (P < 0.001), etc. PDHB was significantly and positively
correlated with resting NK cells (P < 0.001), memory resting
T cells CD4 (P < 0.001), naive B cells (P < 0.001), CD8 T cells
(P < 0.001), etc.

As shown in Figure 4B, GLS was significantly and positively
correlated with naive B cells (P < 0.001), resting NK cells
(P < 0.001), memory resting T cells CD4 (P < 0.001), CD8 T cells
(P < 0.001), etc. GLS was significantly and negatively corre-
lated with activated dendritic cells (P < 0.001), macrophages
M0 (P < 0.001), resting mast cells (P < 0.001), monocytes
(P < 0.001), neutrophils (P < 0.001), etc.

Analysis of single-cell sequencing data
We visualized the results to generate violin plots of the genetic
signatures from one healthy volunteer and two patients with
SLE (Figure 5A). The number of genes in each cell, the num-
ber of unique genes in each cell, and the proportion of mito-
chondria in all cells were obtained (Figure 5A). We used
the 10,000 most variable genes (Figure 5B) for dimensional-
ity reduction, which provided PCA results, and used Seurat
to identify cell clusters, including endothelial cells, T cells,
macrophages, B cells, an unannotated cluster, and plasma
cells (Figure 5C). We specifically selected the 10,000 most
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Table 2. Correlation analysis between the expression of the nine signature genes and immune cells

Gene Positive correlation Negative correlation

Immune cells Value Immune cells Value

PDHB B cells naive R = 0.35, P < 2.2e-16 B cells naive B cells memory R = −0.2, P = 1.4e-10
NK cells resting R = 0.14, P = 9.9e-06 Dendritic cells activated R = −0.2, P = 7e-11
T cells CD4 memory activated R = 0.067, P = 0.034 Macrophages M0 R = −0.29, P < 2.2e-16
Plasma cells R = 0.084, P = 0.0082 Mast cells activated R = −0.14, P = 1.8e-05
Dendritic cells resting R = 0.067, P = 0.033 Mast cells resting R = −0.079, P = 0.012
T cells CD4 memory resting R = 0.23, P = 4.4e-13 Monocytes R = −0.064, P = 0.044
T cells CD8 R = 0.51, P < 2.2e-16 Neutrophils R = −0.51, P < 2.2e-16
T cells regulatory (Tregs) R = 0.088, P = 0.0052 T cells gamma delta R = −0.16, P = 2.1e-07

GLS B cells naive R = 0.23, P = 8.8e-14 NK cells activated R = −0.089, P = 0.0051
NK cells resting R = 0.12, P = 9e-05 Monocytes R = −0.14, P = 1.6e-05
T cells CD4 memory resting R = 0.29, P < 2.2e-16 Dendritic cells activated R = −0.18, P = 6.2e-09
T cells CD4 naive R = 0.086, P = 0.0067 Macrophages M0 R = −0.2, P = 4.1e-10
T cells CD8 R = 0.26, P < 2.2e-16 Mast cells resting R = −0.24, P = 5.2e-15

B cells memory R = −0.093, P = 0.0031
Neutrophils R = −0.34, P < 2.2e-16

DLAT T cells CD8 R = 0.29, P < 2.2e-16 T cells CD4 naive R = −0.071, P = 0.025
B cells naive R = 0.23, P = 3.3 e-13 T cells gamma delta R = −0.1, P = 0.0015
T cells CD4 memory resting R = 0.15, P = 1.3 e-06 Dendritic cells activated R = −0.11, P = 0.00059
T cells CD4 memory activated R = 0.096, P = 0.0023 B cells memory R = −0.11, P = 0.00043
Macrophages M1 R = 0.078, P = 0.014 Mast cells activated R = −0.12, P = 0.00011

Macrophages M0 R = −0.23, P = 8.5 e-14
D Neutrophils R = −0.28, P < 2.2 e-16

LIAS Mast cells activated R = 0.15, P = 2.7 e-06 T cells CD4 naive R = −0.11, P = 0.00037
B cells memory R = 0.1, P = 0.00096 Mast cells resting R = −0.062, P = 0.049
Neutrophils R = 0.068, P = 0.032 T cells CD8 R = −0.1, P = 0.0013

T cells CD4 memory activated R = −0.11, P = 0.00037
B cells naive R = −0.15, P = 1.2 e-06

DLD Mast cells resting R = 0.078, P = 0.013 B cells naive R = −0.07, P = 0.028
Neutrophils R = 0.075, P = 0.018 Macrophages M0 R = −0.074, P = 0.02
Dendritic cells activated R = 0.068, P = 0.032 NK cells resting R = −0.11, P = 5 e-04

DLST T cells CD4 naive R = 0.13, P = 4.7 e-05 Monocytes R = −0.087, P = 0.0061
B cells naive R = 0.12, P = 0.00016 Neutrophils R = −0.14, P = 9.1 e-06
NK cells resting R = 0.12, P = 0.00018
T cells regulatory (Tregs) R = 0.097, P = 0.0022
T cells CD8 R = 0.071, P = 0.025
T cells CD4 memory activated R = 0.069, P = 0.029

GLS: Glutaminase.

variable genes based on variance-stabilizing transformation
(VST) to ensure the most informative genes were analyzed. This
approach allowed us to focus on genes with the highest variabil-
ity, which are most likely to represent key biological processes
relevant to SLE. These selected genes were used for downstream
analyses, including dimensionality reduction, clustering, and
visualization using PCA, UMAP, and t-SNE. The t-SNE algo-
rithm performed nonlinear dimensionality reduction to pro-
duce Figure 5D. PDHB showed the highest expression level in
plasma cells and the highest proportion in macrophages. GLS
expression levels and proportions were highest in plasma cells
(Figure 6).

Validation of two significant signature genes
In this study, MRL/lpr SLE mice were used as the SLE group,
and C57BL/6 mice served as the control group. The MRL/lpr

SLE mice and C57BL/6 mice were randomly divided into five
experimental groups, with six C57BL/6 mice in the control
group and six MRL/lpr SLE mice in the SLE group. Both
groups of mice were kept under the same conditions for
seven days. Afterward, they were euthanized, and periph-
eral blood was drawn to construct models of the SLE and
healthy groups. The mRNA expression of nine diagnostic genes
related to cuproptosis in both groups was measured by qPCR.
The qPCR results showed that the differences in expression
of two key genes, PDHB and GLS, were statistically signif-
icant in all five experimental groups. PDHB mRNA expres-
sion was significantly low in four of the five MRL/lpr SLE
groups (Figure 7A), consistent with the earlier analysis con-
ducted in this study. GLS expression was significantly higher
in two MRL/lpr SLE groups and lower in one C57BL/6 group
(Figure 7B).
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Figure 3. The immune-correlation analyses between the expression of individual genes. (A) Correlation between GLS and infiltrating immune cells in
SLE patients using Spearman’s rank correlation analysis. The R value indicates correlation, and R value > 0 indicates a positive correlation; P value indicates
significance. (B) Correlation between PDHB and infiltrating immune cells in SLE patients using Spearman’s rank correlation analysis. The R value indicates
correlation, and R value > 0 indicates a positive correlation; P value indicates significance. (C) Correlation between DLAT and infiltrating immune cells in
SLE patients using Spearman’s rank correlation analysis. The R value indicates correlation, and R value > 0 indicates a positive correlation; P value indicates
significance. (D) Correlation between DLD and infiltrating immune cells in SLE patients using Spearman’s rank correlation analysis. The R value indicates
correlation, and R value > 0 indicates a positive correlation; P value indicates significance. (E) Correlation between DLST and infiltrating immune cells in
SLE patients using Spearman’s rank correlation analysis. The R value indicates correlation, and R value > 0 indicates a positive correlation; P value indicates
significance. (F) Correlation between FDX1 and infiltrating immune cells in SLE patients using Spearman’s rank correlation analysis. The R value indicates
correlation, and R value > 0 indicates a positive correlation; P value indicates significance. (G) Correlation between LIAS and infiltrating immune cells in SLE
patients using Spearman’s rank correlation analysis. The R value indicates correlation, and R value > 0 indicates a positive correlation; P value indicates
significance. (H) Correlation between LIPT1 and infiltrating immune cells in SLE patients using Spearman’s rank correlation analysis. The R value indicates
correlation, and R value > 0 indicates a positive correlation; P value indicates significance. (I) Correlation between MTF1 and infiltrating immune cells in SLE
patients using Spearman’s rank correlation analysis. The R value indicates correlation, and R value > 0 indicates a positive correlation; P value indicates
significance. SLE: Systemic lupus erythematosus; GLS: Glutaminase.

Discussion
We have identified nine signature genes significantly associ-
ated with cuproptosis in SLE patients through machine learning
screening and validation in animal studies. These genes are
PDHB, GLS, DLAT, FDX1, LIPT1, MTF1, LIAS, and DLST. The results
showed that DLAT, DLAT and MTF1 were highly expressed in
SLE patients, and LIPT1, DLAT, PDHB, GLS, LIAS and FDX1 were
less expressed in SLE patients than in normal patients.

Through animal experiments, we found that only PDHB and
GLS in mouse experiments were consistent with the machine
learning results, while the other genes showed negative results.
There have been few studies related to PDHB and SLE. One

researcher conducted a fine-mapping study of genetic loci and
neighboring regions in European SLE samples, revealing an
extended region of linkage disequilibrium (LD) (>200 kb) at
3p14.3, which includes the ABHD6, RPP14, PXK, and PDHB genes,
which was extended on ABHD6, RPP14, PXK, and PDHB genes on
3p14.3.

The final results confirmed the genetic association of locus
3p14.3 with SLE in Europe, pointing to ABHD6—but not PXK—
as the major susceptibility gene in this region [28]. PDHB
encodes the beta subunit in pyruvate dehydrogenase [28],
which catalyzes the first reaction of the oxidative decarboxyla-
tion sequence, converting pyruvate to acetyl coenzyme A and
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Figure 4. Lollipop chart of the correlation between two genes and immune cells. (A) Lollipop chart of GLS; (B) Lollipop chart of PDHB. GLS: Glutaminase.

Figure 5. Analysis of single-cell sequencing data. The single-cell RNA sequencing data were obtained from the GSE162577 dataset in the GEO
database. (A) Violin plot of genetic characteristics of samples; (B) PCA plot colored by various samples; (C) UMAP visualization results after clustering;
(D) t-SNE plot colored by various cell clusters. PCA: Principal component analysis; UMAP: Uniform manifold approximation and projection; t-SNE:
t-distributed stochastic neighbor embedding.

CO2 [29]. Pyruvate dehydrogenase is a tetramer consisting of
two alpha subunits (PDHA1) and two beta subunits (PDHB). This
enzyme, located in mitochondria, is a component of the pyru-
vate dehydrogenase multienzyme complex (PDH) [29].

GLS encodes phosphate-activated glutaminase, the primary
enzyme for glutamate production from glutamine [30, 31]. This
enzyme may play a key role in behavioral disorders where glu-
tamate acts as a neurotransmitter [32]. GLS isozymes, GLS1 and
GLS2, catalyze the first step in glutamine cleavage [33]. GLS1 is
essential for Th17 cell differentiation, as shown in studies corre-
lating GLS with SLE, and modulating GLS1 expression improves
disease progression in lupus-prone MRL/lpr mice. Inhibiting
glutamine catabolism presents a potential therapeutic strategy

for SLE by reducing glycolysis and HIF-1α protein expression,
thereby affecting metabolic pathways [34]. Some studies have
demonstrated that GLS2 protein expression is downregulated in
CD4+ T cells from lupus-prone MRL/lpr mice and SLE patients.
GLS2 plays a key role in IL-2 production by CD4+ T cells through
antioxidant defense, suggesting that the GLS2-inducible path-
way is a novel therapeutic target for SLE treatment [35]. Studies
on PDHB and GLS in SLE are limited, and further research is
needed.

The other seven genes showed negative results in animal
experiments. The DLST gene encodes dihydrolipoamide suc-
cinyltransferase, a component of the structural core of the
alpha-keto glutarate (alpha-KG) dehydrogenase complex in the

Xia et al.
Genes about cuproptosis in SLE 972 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


Figure 6. Distribution of PDHB and GLS in cells. (A) Violin plot of the distribution of PDHB and GLS in cells; (B) Bubble plot of the distribution of PDHB
and GLS in cells. GLS: Glutaminase.

citric acid cycle (TCA) [36]. DLST mutations have been linked
to Paragangliomas 7 (PGL7) [37]. FDX1 encodes Ferredoxin, a
small, acidic iron–sulfur protein that acts as an electron trans-
port intermediate for mitochondrial cytochrome P450 and is
involved in steroid, vitamin D, and bile acid metabolism [38].
The transfer of lipoic acid to proteins is a two-step process, with
the first step involving the activation of lipoic acid by lipoic
acid-activating enzymes to form lipoyl-AMP. The second step,
transferring the lipoyl group to the apolipoprotein, is carried
out by the protein encoded by LIPT1 [39].

MTF1-encoded metallothionein is a small, cysteine-rich pro-
tein with a strong affinity for heavy metal ions like zinc,

cadmium, and copper and is functionally implicated in heavy
metal detoxification and free radical scavenging [40, 41]. LIAS
encodes lipoic acid synthase. Mutations in this gene have been
linked to hyperlipidemia, lactic acidosis, and seizures [42, 43].
The DLD gene encodes dihydrolipoamide dehydrogenase. Dis-
eases associated with DLAT include dihydrolipoamide dehy-
drogenase deficiency and maple syrup urine disease [44, 45].
According to the current study, these six genes have not been
previously reported in SLE-related articles.

DLAT is a protein-coding gene associated with diseases, such
as pyruvate dehydrogenase E2 deficiency and liver disease.
Among its related pathways are glucose/energy metabolism and
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Figure 7. Validation results of two significant signature genes from
MRL/lpr SLE mice and one group of C57BL/6 mice. (A) Results of PDHB
expression in treatment and control models; *P < 0.05; (B) Results of GLS
expression in treatment and control models; *P < 0.05. SLE: Systemic lupus
erythematosus; GLS: Glutaminase; lpr: Lymphocyte proliferation.

pyruvate metabolism [46]. It has been suggested that mitochon-
drial phagocytic processes may limit the secretion of inflam-
matory factors and directly regulate mitochondrial antigen
presentation and immune cell homeostasis. Autophagy induc-
tion has also been associated with enhanced expression of DLAT
on the cell surface [47]. After validation, the association of these
genes with SLE still requires further discussion.

Through machine learning combined with gene expression
profiling, we identified genes associated with cuproptosis and
validated some of them. This offers new insights into the patho-
genesis and diagnosis of SLE, as well as potential targeted ther-
apies, though further investigation is required for their clinical
application.

Conclusion
In conclusion, our findings provide valuable insights into the
role of cuproptosis in SLE and highlight the potential diagnostic
value of PDHB and GLS in this disease.
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