
Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia.
∗Correspondence to Haifa F. Alhasson: hhson@qu.edu.sa

DOI: 10.17305/bb.2024.11117

© 2024 Almufadi et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).

Biomolecules and Biomedicine, 2025, Vol. 25, No. 2, 445–460 445 www.biomolbiomed.com

R E S E A R C H A R T I C L E

E-DFu-Net: An efficient deep convolutional neural
network models for diabetic foot ulcer classification
Nouf F. Almufadi , Haifa F. Alhasson ∗ , and Shuaa S. Alharbi

The diabetic foot ulcer (DFU) is a severe complication that affects approximately 33% of diabetes patients globally, often leading to
limb amputation if not detected early. This study introduces an automated approach for identifying and classifying DFU using transfer
learning. DFU is typically categorized into ischemic and infection states, which are challenging to distinguish visually. We evaluate the
effectiveness of pretrained Deep Convolutional Neural Network (DCNN) models for autonomous DFU detection. Seven models are
compared: EfficientNetB0, DenseNet121, ResNet101, VGG16, MobileNetV2, InceptionV3, and InceptionResNetV2. Additionally, we
propose E-DFu-Net, a novel model derived from existing architectures, designed to mitigate overfitting. Experimental results
demonstrate that E-DFu-Net achieves remarkable performance, with 97% accuracy in ischemia classification and 92% in infection
classification. This advancement enhances current methodologies and aids practitioners in effectively detecting DFU cases.
Keywords: Diabetic foot ulcers (DFUs), deep learning (DL), image classification, ischemia classification, infection classification,
medical imaging processing, medical image, transfer learning.

Introduction
Diabetes mellitus is a chronic metabolic disorder characterized
by persistent hyperglycemia due to insufficient insulin pro-
duction or the body’s ineffective use of insulin [1]. Without
careful management, this disease can lead to numerous com-
plications, among which diabetic foot ulcers (DFUs) are partic-
ularly serious [2]. DFUs affect approximately 34% of diabetic
patients during their lifetime, meaning a third will experi-
ence this significant complication. Additionally, without proper
management and prevention strategies, DFUs can recur. The
primary causes of these ulcers are peripheral vascular disease
and neuropathy. After the initial onset of a DFU, there is an esti-
mated 40% risk of recurrence within the first year, rising to 60%
within three years [3]. This data indicates a high recurrence
rate in this population. A recent study by the American Diabetes
Association found that over one million individuals with dia-
betes undergo amputations annually due to their condition [4].
Moreover, DFUs are closely linked to increased cardiovascular
disease (CVD) risk and mortality, due to shared risk factors like
diabetes, systemic inflammation, and compromised circulation.
These factors result in higher mortality rates in individuals with
DFUs, often due to cardiovascular complications [5].

Premature identification and appropriate treatment of dia-
betic foot complications, such as DFUs, are essential in prevent-
ing catastrophic outcomes. Health professionals are required
to monitor the status of patients surviving DFU to assess the
extent of their recovery and recommend appropriate drugs to

ward off further complications [6]. DFU presents in two main
conditions. The primary condition is ischemia, and the sec-
ondary condition is infection, caused by a lack of blood circu-
lation and bacterial sepsis in the wound areas, respectively, as
illustrated in Figure 1. Patients with ischemia face a 40% risk
of three-year mortality from ischemic gangrene [7]. Addition-
ally, 56% of DFU cases become infected, with 20% risking limb
amputation [8–10]. DFUs lower quality of life and increase eco-
nomic costs. Early detection aids in timely intervention, correct
diagnosis, and effective treatment, preventing poor outcomes.

High-quality images are utilized to assess the condition
of DFU, playing a crucial role in early diagnosis, monitoring
progress, and determining appropriate treatment strategies
for each case. This process includes reviewing the patient’s
medical history, conducting a thorough examination of the
DFU by an expert or podiatrist, and potentially performing
additional assessments, such as blood work, physical evalua-
tions, and Doppler studies of the lower extremity blood ves-
sels to develop a treatment plan. However, applying these
steps has time limitations [11]. Researchers have been explor-
ing the use of machine learning (ML) and deep learning (DL),
along with computer-aided detection systems, to address these
limitations in detecting DFU. Deep convolutional neural net-
works (DCNNs) have shown excellent performance in identi-
fying and categorizing different biological tissues, such as foot
skin or brain tumors, due to their ability to generalize var-
ious levels of features [12]. It is also important to note that
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Figure 1. Samples of DFU Ischemia (first row) and Infection (second
row) from DFU-Part(B) dataset [40]. DFU: Diabetic foot ulcer.

DCNN preprocessing, including techniques, such as data expan-
sion and color normalization, plays an integral role in ensur-
ing accurate and reliable results. The performance of DCNN
architectures depends heavily on the quality of the dataset and
the training procedure, as these architectures deliver superior
results when working with more precise data [13]. Transfer
learning can be utilized to enhance performance and address
this limitation.

Transfer learning is a valuable methodology that involves
gaining knowledge from a broad domain and subsequently
applying that knowledge in a confined space, ultimately result-
ing in a superior classification process compared to what
would be achievable if the domain were trained from the
beginning [14]. Transfer learning encompasses two main
approaches: modifying the convolutional network or maintain-
ing the static nature of its layers. Using a pre-existing model
for fine-tuning is sufficient for classification tasks, rather than
building a DCNN model from scratch. Furthermore, using a
pretrained DCNN model as a basis for transfer learning offers
several advantages [15]. Firstly, pretrained CNN models have
already been trained on large datasets, allowing them to learn
rich and discriminative features. Secondly, pretrained models
save time and computational resources since they do not require
training on a large dataset. Colors and edges are extracted by
the lower layers of the pretrained model, while objects and con-
tours are captured by the upper layers [16]. Therefore, using the
expertise developed from a pretrained DCNN model in another
area, such as identifying brain tumor types in MRI images, we
can enhance classification accuracy by extracting significant
features.

Ischemia and infection can be assessed using ML and DL
techniques based on the visual appearance of DFU images. For
ischemia, tissue death in the foot, which appears as black gan-
grenous toes, indicates ischemia, while for infection, puru-
lent discharge and redness in and around the ulcer indicate
infection [17]. Healing progress assessment and the prevention
of amputation depend on accurate identification of both infec-
tion and ischemia. The main contributions of this paper are as
follows:

• Introducing a method for automatic DFU identification
using DCNN transfer learning. This involves testing various
pretrained DCNN models (e.g., InceptionV3 and Efficient-
NetB0) for binary classification of infections and ischemia
in DFUs, utilizing the DFU-Part (B) dataset for effective
feature extraction [10].

• To address the problems of overfitting and the disappear-
ing gradient, we suggest a combination of the Proposed
Head Model and the pretrained DCNN model, enhancing
the overall result.

The rest of this paper follows the following structure:
Section 2 presents related works on DFU binary classification
methods for ischemia and infection. Section 3 describes the
methodology used to develop the proposed framework, while
Section 4 discusses the dataset used. Section 5 includes the
experimental evaluation and discussion of the results. Section 6
concludes the paper.

Diabetic foot binary classification methods for
ischemia/infection
Goyal et al. [18] introduced innovative DL approaches for detect-
ing DFU in real time. These methods involve several stages,
including using a CNN as a feature extractor, generating pro-
posals and refining them, and finally employing a RoI clas-
sifier along with a bounding box regressor. Subsequently,
Cassidy et al. [19] used four distinct models–R-FCN, faster
R-CNN, ResNet-101, and YOLOv5–to identify DFU. Ibrahim and
Abdulazeez [20] used a method that involved several sets of
pretrained models, such as Inception-V3, InceptionResNetV2,
and ResNet50, as part of an ensemble learning approach. This
approach consists of using multiple models to achieve better
predictive performance compared to predictions that could be
obtained from any of the individual models. The models were
further subjected to support vector machines (SVMs) to pro-
duce valuable predictions. A new data augmentation method
was implemented to apply to the region of the images after
extracting these deep features. Amin et al. [21], on the other
hand, introduced a 16-layer CNN model. By using deep features
from CNN, they traded off, classifying and obtained significant
accuracy in diagnosing foot wounds.

The CNN-based strategy of Al-Garaawi et al. [22] involves
the extraction of texture information from RGB DFU images,
which is then used as input as input for the CNN model. Initially,
their approach includes texture data extracted at the first stage
of the model; then it uses the texture image to classify DFUs.
The created CNN achieves a 99% accuracy rate for recognizing
ischemia and a 74% success rate for identifying infection.

Al-Garaawi et al. [24] proposed a three-phase system includ-
ing feature selection, feature fusion, and DFU classification. In
the main body feature picking stage, such textural features as
HOG, Gabor, and deep features are selected with a GoogLeNet
CNN model. Next, these selected features are aggregated into
a single vector. The aggregate vectors are then sent to the
random forest algorithm for classifying DFUs. The accuracy of
the experiment turned out very high for the classification of
ischemia and 132 infections.
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Table 1. Studies on binary classification for infection and ischemia

Author [ref.] Year Model Dataset
Evaluation
criteria Result

Goyal et al., [11] 2020 Ensemble CNN (Inception-V3,
Inception ResNetV2, and ResNet50)

DFU-Part(B) [11] Accuracy Ischemia: 90%,
infection: 73%

Amin et al., [21] 2020 Proposed CNN DFU-Part(B) [11] Accuracy Ischemia: 97.9%,
infection: 99.6%

Al-Garaawi et al., [22] 2022 CNN DFU-RGB-T EXT-NET DFU-Part(A) [23] and
DFU-Part(B) [11]

Accuracy Ischemia: 99%,
infection: 74%

Al-Garaawi et al., [24] 2022 GoogLNet CNN with RF DFU-Part(B) [11] Accuracy Ischemia: 92%,
infection: 73%

Xu et al., [25] 2022 Transformer based DeiT model with
class knowledge banks (CKBs)

DFU-Part(B) [11] Accuracy Ischemia: 90.9%,
infection: 78%

Das et al., [26] 2022 ResKNet DFU-Part(B) [11] Accuracy Res4Net for ischemia: 97.8%
Res7Net for infection: 80%

Toofanee et al., [27] 2023 DFU-SIAM DFU-Part(B) [11] Macro-F1 score,
F1 score

0.623, ischemia: 0.549,
infection: 0.628

Das et al., [28] 2024 HCNNet DFU-Part(B) [11] AUC Ischemia: 0.999

AUC: Area under the curve; DFU: Diabetic foot ulcer.

Xu et al. [25] introduced a novel method for utilizing class
knowledge banks to harvest and stockpile class knowledge from
datasets, an approach used in image prediction. The literature
has reported the development of DL models that have demon-
strated significant efficacy in the automated classification of
DFUs, achieving classification accuracies approaching 78% for
the identification of infection and an impressive 90.9% for the
recognition of ischemia using the same imaging data as input.
This indicates that DL techniques have been highly successful
in addressing these clinically relevant classification problems
and hold promise for practical application in the diagnosis and
management of diabetic foot complications. Das et al. [26] intro-
duce a revolutionary CNN-based approach for the separation of
ischemia from infection. Despite the different layers and net-
work types used, the achieved accuracy was very high, reach-
ing about 97.8%, but only for ischemia recognition, using the
enhanced Res7 extension network.

Looking at the accurate classification of DFUs,
Toofanee et al. [27] introduced a new deep neural network
(DNN) approach embedded with ML, composed of a siamese
neural network (SNN) and vision image transformer (ViT).
Their technique proficiently categorized four classes of DFUs,
including None, Ischemia, Both, and Infection. Simultaneously,
Das et al. [28] introduced a Hybridized CNN (HCNNet) by
incorporating multiple hybridized blocks, such as inception,
residual, dense, and squeeze-and-excite (SE) blocks. This
designed technique is potentially proficient as it can adjust
various optimizers and learning rates during the training of
the model (Table 1).

Materials and methods
The proposed E-DFu-Net framework
This study aims to explore the performance of different
CNN-pretrained models with the proposed head model, which

is placed at the end of the CNN-pretrained models to overcome
the overfitting problem in both ischemia classification and
infection classification. A T4 GPU accelerator was used with
Python in the Google Colab Pro version of the application. Var-
ious libraries, including Sklearn, Pandas, Numpy, glob, and
Matplotlib, have been used to implement the work using the
TensorFlow platform and Keras framework. Figure 2 illustrates
the framework of our proposed model.

Dataset
The DFU-Part (B) [11] dataset was used for the evaluation and
validation of the proposed model. This dataset is used for the
binary classification of ischemia and infection in DFU. A total
of 1249 images of ischemia are included in the dataset, and
210 images of non-ischemia are also included. There are also
628 images of infection and 831 images of non-infection. The
authors of the DFU-Part (B) dataset applied a natural data aug-
mentation technique to make the dataset balanced. In order to
identify ulcers in the region of interest (ROI), data augmenta-
tion is proposed. The data augmentation technique they pro-
posed is more appropriate for DFU assessment compared to
common data augmentation methods, due to the risk of missing
the ROI in DFU images when using techniques such as cropping,
translation, and random scaling. The authors generated 9870
augmented images through natural augmentation, with 4935
images associated with ischemia and 4935 with non-ischemia,
following the selection of the chosen dataset. Approximately
4890 augmented images were generated, including 2945 related
to infection and 2945 images related to non-infection. Table 2
shows the total number of original and augmented images in
each class of the dataset. The size of the images in the dataset
varies between 1600 × 200 and 3648 × 2736 pixels. Therefore,
the images were resized to 224 × 224 pixels in the preprocessing
phase to reduce the training time. Due to the better performance
of DL models with larger datasets [29], data augmentation was
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Figure 2. The framework for the E-DFu-Net classification of infection and ischemia.

Table 2. Summary of the number of images in the DFU-Part (B) dataset for each class before and after natural data augmentation and after our
augmentation process

Classification type Class No of images
No of natural

augmented images
No of natural augmented

images (Ours)

Ischemia
Classification

Ischemia,
Non-ischemia

1249
210

4935
4935

6062
6062

Infection
Classification

Infection
Non-infection

628
831

2945
2945

4212
4212

DFU: Diabetic foot ulcer.

applied in this study to increase the number of images. Sam-
ples of both ischemia and infection images before and after
the data augmentation process are shown in Figures 3 and 4,
respectively.

The data augmentation techniques used include rotation,
horizontal flip, and vertical flip. Other methods such as crop-
ping, translation, and random scaling were excluded to prevent
the risk of overlooking crucial parts in the DFU images. Addi-
tionally, both online and offline data augmentation methods
were tested to determine which provided better results. We
found that offline data augmentation, where the augmented
images are created and saved for later use in training, pro-
vided better results than applying data augmentation online,
where images are augmented during the training of the model.
The ischemic dataset consists of 12,124 images (ischemia and
non-ischemia), an increase of 9870 from its previous num-
ber. Similarly, the infection dataset now includes 8424 images
(infection and non-infection), an increase from the original
number of 4890 images. The datasets of ischemia and infection
were further divided into training, testing, and validation sets
in the respective ratios of 70%, 20%, and 10%.

Further experiments, involving different ratios to divide
the dataset, were performed. After conducting multiple

experiments, it was decided to allocate 70% of the dataset for
training, 20% for validation, and 10% for testing. The specified
ratio resulted in the best performance compared to other
evaluated ratios.

Experimental evaluation
We utilized several pretrained CNN models to evaluate
various CNN architectures for classifying infection and
ischemia images obtained from a selected dataset. We aimed
to achieve the binary classification of each condition and
pinpoint the best-performing CNN model for labeling infection
and ischemia. We initially assessed the individual perfor-
mance of these CNN models before introducing the proposed
head model to enhance their efficiency. The models used
were EfficientNetB0 [30], DenseNet121 [31], ResNet101 [32],
VGG16 [33], InceptionV3 [34], MobilenetV2 [35], and
InceptionResnetV2 [36]. The CNN models were previously
trained to leverage the ImageNet dataset for transfer learning.
The CNN models were tested using diverse hyperparameter
values to ensure the best possible results in comparison to other
hyperparameter values across all models. Table 3 illustrates the
various hyperparameter values employed by the models.

Almufadi et al.
An efficient DFU diagnosis model using CNNs 448 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


Figure 3. A sample of Ischemia images: (A) before augmentation; (B–E) newly generated Ischemia images after augmentation.

Figure 4. A sample of infection images: (A) before augmentation; (B–E) newly generated infection images after augmentation.

Table 3. Hyperparameter values

Parameter name Value

Optimizer Adamax

Learning rate 0.001

Patience of the EarlyStopping 20

Batch size 32

Epochs 100

Proposed head model
A supplementary head was introduced to tackle overfitting in
the pretrained CNN models. The idea emerged when we ana-
lyzed the loss graphs of the pretrained models and observed that
as the model was trained, the training loss decreased contin-
uously, while the validation loss had a different curve. In the
beginning, the validation loss dropped, but after a certain stage,
it started to rise, indicating overfitting. This finding led us to
develop a novel head model, which comes after the CNN models,
to combat overfitting and enhance performance. We refined the
structure of the head model through several experiments where
we used different layer types, different numbers of layers, and
various layer combinations to find the most effective design
that can save CNN models from overfitting. Figure 5 shows the
design of the suggested head model.

The resulting model showed significantly better-fitting
learning curves in the loss graphs, indicating that the losses
during both training and validation decreased more than in
the cases without the head. The impact of this head model is
evident in improving learning outcomes and mitigating over-
fitting, as both training and validation losses decrease notice-
ably. The head model consists of multiple layers placed together
in a specific order, addressing the problem of overfitting and

improving the ultimate performance of the models. Table 4
indicates that incorporating multiple layers in a specific
sequence effectively addressed overfitting issues and enhanced
performance outcomes.
We employed different pretrained CNN models to evaluate their
ability to classify images of infection and ischemia. This phase
involved independently assessing the performance of each
model before integrating the proposed head model and using the
outputs with ML classifiers. The models included DenseNet121,
ResNet101, InceptionV3, InceptionResNetV2, VGG16, Efficient-
NetB0, and MobileNetV2. These CNN models were pretrained
using transfer learning, allowing them to acquire rich and
distinctive features, thereby reducing the time and com-
puting resources needed by transferring knowledge from
a large-scale domain to a specific task. Transfer learning
was implemented on several CNN models using the Ima-
geNet dataset. The early layers of the pretrained models cap-
ture fundamental features like colors and edges, while the
deeper layers recognize more complex features such as objects
and contours. This approach leverages the models’ ability
to extract important features, improving classification accu-
racy for identifying DFU types from images. The perfor-
mance of the CNN models is greatly influenced by the train-
ing process. For transfer learning, we maintained the origi-
nal architectures, removed the top layers, and applied Ima-
geNet for initial weights. This excluded the final dense layer
responsible for converting the 1280-dimensional feature vec-
tor into predictions for the 1000 ImageNet categories. This
modification preserves the convolutional base of the models,
which generates feature maps, making it especially beneficial
for transfer learning. Additionally, we set specific layers to
layer.trainable = False to prevent their weights from changing
during training.

A dropout layer was implemented to reduce overfitting
and enhance the CNN model’s generalization capabilities. The
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Figure 5. Illustrated head model structure with optimized layers for
efficient data processing and enhanced learning accuracy.

dropout layer randomly sets a fraction of neurons in a layer to be
inactive, thus reducing the number of parameters in the model
and preventing overfitting. This helps the model generalize
better to unseen data. By using a dropout rate of 0.5, 50% of the
input neurons are randomly deactivated during each training
iteration, which helps reduce model complexity and prevents
reliance on specific neurons. This stochastic process encour-
ages the network to learn more robust features. Additionally,
a BatchNormalization layer was used, which normalizes the
inputs of each layer. This not only speeds up training but also
stabilizes the learning process.

After conducting several experiments, a selection of dropout
layers and batch normalization layers was chosen and orga-
nized to utilize the configuration that resulted in optimal out-
comes. The number of dense layers and their respective units
was investigated in depth to attain the highest level of pro-
ductivity. Moreover, a combination of activation techniques,
such as kernel regularizer, L1 and L2 regularization, activity

Table 4. The details of the proposed head model structure

Layer name Values

Dropout layer 0.5 Rate

BatchNormalization Default values

Dropout layer 0.5 Rate

BatchNormalization Default values

Dense layer 256 Units + kernel
reg = l2 + activity reg = l1 + bias
reg = l1 + ReLU

Dropout layer 0.5 Rate

Dense layer 128 Units + kernel
reg = l2 + activity reg = l1 + bias
reg = l1 + ReLU

Dropout layer 0.45 Rate

Dense layer 2 Units + Sigmoid

regularizer, and bias regularizer, was used to prevent over-
fitting and control CNN model complexity. These activation
strategies were chosen through multilevel experimentation to
achieve the appropriate settings for engaging them. Using the
ReLU activation function in dense layers, the final layer of this
model includes a dense layer with two units, enabling binary
classification for infection (infection or non-infection). The
same approach applies to ischemia classification (ischemia or
non-ischemia). Furthermore, the last layer utilizes the sigmoid
activation function, which is ideal for binary classification.

Evaluation parameters
The proposed approach produces a binary classification, applied
to categorize images as either infection or non-infection, and
similarly for ischemia images as ischemia or non-ischemia.
Various assessment metrics are used to evaluate classification
results. These computations depend on true-positive (TP) and
true-negative (TN) values, which represent correctly identified
cases, and false-positive (FP) and false-negative (FN) values,
which indicate misclassified cases [37].

Precision = TP
TP + FP

(1)

Recall
(
Sensitivity

) = TP
(TP + FN)

(2)

Specificity = TN
TN + FP

(3)

F1 − Measure = 2.TP
2.TP + FP + FN

(4)

Accuracy = TP + TN
TP + TN + FP + FN

(5)
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Additionally, the Area under the curve (AUC) measures how
well the classifier can distinguish between two classes.

AUC = Spnp(nn + 1)/2
npnn

(6)

Sp is the sum of all positive example. np is the number of
positive examples. nn is the number of negative examples.

Results
Visualization of loss and accuracy curve
The loss curves displaying the classification of ischemia and
infection before and after the CNN models were integrated
with the suggested head models are presented in Figures 6
and 7, respectively. These graphs clearly show that the CNN
models achieve optimal learning with the designed head mod-
els in place. Before adding the head models, the loss graph
indicated overfitting issues, as the training loss consistently
decreased while the validation loss initially dropped and then
increased. Once the head models were integrated, both training
and validation curves declined, indicating improved learning.
The CNN model’s accuracy trend is displayed in Figure 8. The
model’s accuracy trend for ischemia classification is visible both
before and after adding the head model. The second figure,
Figure 9, shows the accuracy trend for infection classification.
The images visually indicate the difference in validation accu-
racy before and after adding the head model. In addition, the
integration of the proposed head model decreased the gap in
training and validation accuracy, resulting in improved model
accuracy overall.

Comparative analysis
We present the results of the evaluation of the CNN models
on the ischemia and infection classification tasks and inspect
the performance of DenseNet121, ResNet101, InceptionV3,
InceptionResNetV2, VGG16, EfficientNetB0, and MobileNetV2,
while using pretrained weights from the ImageNet dataset.
Table 5 displays the ischemia results, and Table 6 depicts
the results of the infection task. The EfficientNetB0 model
achieved the best scores and outperformed the competition.
The results in Tables 5 and 6 indicate that the Efficient-
NetB0 and ResNet101 models performed exceptionally well
on the DFU-Part (B) dataset for classification tasks, show-
ing high accuracy in identifying both ischemia and infection.
Although the ResNet101 model trained faster, with a differ-
ence of less than three minutes, the superior performance
of EfficientNetB0 makes it a preferable choice. Additionally,
DenseNet121 and VGG16 also achieved strong and similar met-
rics in DFU binary classifications, with DenseNet121 requir-
ing less training time than VGG16. Overall, EfficientNetB0,
ResNet101, and DenseNet121 are effective DL models for DFU
binary ischemia and infection classifications.

According to the data presented in Tables 7 and 8, the
modified EfficientNetB0 and ResNet101 models exhibited
superior performance in classifying the DFU-Part (B) dataset.
Both models achieved high accuracy in identifying ischemia
and infection cases. Notably, the training duration for the
EfficientNetB0 model was substantially reduced compared

to that of the ResNet101 model. Furthermore, the modified
DenseNet121 and VGG16 models also performed well, with
metrics that were closely matched, although DenseNet121
required less training time than VGG16. Conversely, the
MobileNetV2 model, both before and after modification,
demonstrated the shortest computational time but had the
lowest accuracy. Overall, the findings indicate that the modified
EfficientNetB0 model outperformed other transfer learning
models in the binary classification of ischemia and infection
in DFU cases.

Figure 10A shows the ROC curves for the CNN models in
ischemia classification, while Figure 10B illustrates the ROC
curves for the CNN models in infection classification. The Effi-
cientNetB0 CNN model shows excellent performance in clas-
sifying both ischemia and infection, as indicated by its ROC
curve being closer to the top left corner. This suggests that
EfficientNetB0 has a higher TP rate and a lower FP rate than
other models, making it an ideal choice for applications that
require high accuracy, such as medical diagnosis.

Analysis of modified architecture
In Table 7, the findings of the CNN models that utilize the
suggested head model for categorizing ischemia are exhibited.
Additionally, Table 8 illustrates the outcomes of the models that
employed the suggested head model for detecting infection.
The findings highlight the superior performance of combin-
ing the head model with the EfficientNetB0 model in classi-
fying both ischemia and infection compared to other models
using the same methodology. Notably, this combination man-
aged to outperform its generic counterparts and achieve the
most impressive scores in differentiating the conditions. Specif-
ically, for the detection of ischemia, the combination of the
EfficientNetB0 model and the suggested head model yielded an
accuracy of 0.965, a sensitivity of 0.971, and a precision of 0.959.
As for infection identification, the same combination secured an
accuracy of 0.919, a sensitivity of 0.883, and a precision of 0.951.

After incorporating the suggested head model into the CNN
models, a significant improvement in ischemia classification
was observed for EfficientNetB0, ResNet101, DenseNet121,
and InceptionResNetV2. Furthermore, the integration of
the proposed head model yielded superior performance in
the classification of infections for ResNet101, DenseNet121,
EfficientNetB0, InceptionResNetV2, and VGG16. In summary,
the inclusion of the suggested head model contributed to
the overall improvement in the accuracy of all CNN models
by mitigating the tendency to overfit, which is frequently
encountered in these types of models. By including the head
model described in this study, we were able to improve the
performance of our CNN models. This is reflected in the fluctu-
ations in the loss and accuracy graphs in Figures 6–9 throughout
training for both classifying whether an image is symptomatic
of ischemia and determining if a COVID-19-infected person
has pneumonia, as well as whether the pneumonia is viral or
bacterial.

Possessing models that showcase an ideal learning curve
is more crucial than having models with superior precision
that are susceptible to overfitting. By incorporating the rec-
ommended head model, the learning curve is significantly
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Figure 6. The training and validation loss curves for each pretrained model, shown before and after incorporating the proposed head model,
illustrate improvements in ischemia classification performance.
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Figure 7. The training and validation loss curves for each pretrained model, displayed before and after incorporating the proposed head model,
demonstrate enhanced performance in infection classification.
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Figure 8. The training and validation accuracy curves for each pretrained model, shown before and after integrating the proposed head model,
reveal improved performance in ischemia classification accuracy.
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Figure 9. The training and validation accuracy curves for each pretrained model, displayed before and after integrating the proposed head model,
demonstrate significant improvements in infection classification accuracy.
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Table 5. Ischemia classification results of CNN pretrained models

Name of pre-trained CNN model Acc. Prec. Sens. Sp. F1 score AUC Time (s)

EfficientNetB0 [30] 0.947 0.950 0.943 0.950 0.947 0.947 1895

ResNet101 [32] 0.925 0.912 0.940 0.909 0.926 0.925 1688

DenseNet121 [31] 0.899 0.883 0.920 0.878 0.901 0.899 1135

VGG16 [33] 0.886 0.892 0.878 0.894 0.885 0.886 1632

InceptionV3 [34] 0.819 0.766 0.919 0.719 0.835 0.819 1105

MobileNetV2 [35] 0.832 0.809 0.869 0.795 0.838 0.832 880

InceptionResNetV2 [36] 0.560 0.534 0.950 0.21 0.684 0.560 2163

Table 6. Infection classification results of CNN pretrained models

Name of pre-trained CNN model Acc. Prec. Sens. Sp. F1 score AUC Time (s)

EfficientNetB0 [30] 0.904 0.886 0.926 0.881 0.906 0.904 831

ResNet101 [32] 0.896 0.917 0.872 0.921 0.894 0.896 2109

DenseNet121 [31] 0.829 0.814 0.853 0.805 0.833 0.829 653

VGG16 [33] 0.827 0.822 0.834 0.819 0.828 0.827 1010

InceptionV3 [34] 0.763 0.824 0.668 0.857 0.738 0.763 725

MobileNetV2 [35] 0.747 0.717 0.817 0.677 0.764 0.747 747

InceptionResNetV2 [36] 0.535 0.522 0.810 0.260 0.635 0.535 1193

Table 7. Ischemia classification results of CNN pretrained models with the proposed head model

Name of the modified model Acc. Prec. Sens. Sp. F1 score AUC Time (s)

Modified EfficientNetB0 (E-DFu-Net) 0.965 0.959 0.971 0.958 0.965 0.965 1263

Modified ResNet101 0.933 0.939 0.925 0.940 0.932 0.933 2383

Modified DenseNet121 0.902 0.922 0.879 0.925 0.900 0.902 1226

Modified VGG16 0.878 0.897 0.853 0.902 0.875 0.878 1581

Modified InceptionV3 0.775 0.854 0.665 0.886 0.748 0.775 1173

Modified MobileNetV2 0.785 0.766 0.818 0.751 0.792 0.785 1046

Modified InceptionResNetV2 0.638 0.596 0.851 0.425 0.701 0.638 2540

Table 8. Infection classification results of CNN pretrained models with the proposed head model

Name of the modified model Acc. Prec. Sens. Sp. F1 score AUC Time (s)

Modified EfficientNetB0 (E-DFu-Net) 0.919 0.951 0.883 0.954 0.916 0.919 1209

Modified ResNet101 0.899 0.918 0.876 0.921 0.896 0.899 2311

Modified DenseNet121 0.868 0.935 0.791 0.945 0.857 0.868 981

Modified VGG16 0.847 0.915 0.765 0.928 0.833 0.847 1143

Modified InceptionV3 0.707 0.761 0.604 0.810 0.673 0.707 1241

Modified MobileNetV2 0.738 0.741 0.732 0.744 0.736 0.738 841

Modified InceptionResNetV2 0.561 0.732 0.194 0.928 0.307 0.561 2740

improved, successfully addressing the overfitting issue. Thus,
the models convey superior generalizability and precision
because the head model fits the appropriate complex structure,
making them more reliable for real-life utility.

In Tables 7 and 8, the temporal metric shows a slight increase
following the inclusion of the head model in the majority of
the models. This is due to an escalation in complexity brought
about by the added layers and regularization measures, such as
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Figure 10. The ROC curves of the CNN pretrained models are presented for (A) ischemia and (B) infection classification, highlighting their diagnostic
performance and ability to distinguish between conditions in each task.

Figure 11. The ROC curves of the CNN pretrained models with the proposed head model are shown for (A) ischemia and (B) infection classification,
illustrating enhanced diagnostic performance and discrimination ability in both tasks.

Figure 12. Confusion matrix of EfficientNetB0 with the proposed head
in ischemia classification.

dropout, L1, and L2, which have been implemented to combat
overfitting and enhance generalizability to new and unseen
data points.

Figure 13. Confusion matrix of EfficientNetB0 with the proposed head
model in infection classification.

Figure 11A displays the ROC curves for CNN models with
the proposed head model in ischemia classification. Con-
versely, Figure 11B shows the ROC curves for the same head

Almufadi et al.
An efficient DFU diagnosis model using CNNs 457 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


Figure 14. A sample of correctly classified ischemia images in the ischemia classification task using E-DFu-Net, highlighting its precision and efficacy
in identifying ischemic conditions.

Figure 15. A sample of correctly classified infection images in the infection classification task performed by E-DFu-Net, showcasing its accuracy and
effectiveness.

model in infection classification. The curves indicate that
the EfficientNetB0 CNN model, using the proposed head
model, outperforms other models like DenseNet121, ResNet101,
InceptionV3, InceptionResNetV2, VGG16, and MobileNetV2
in both tasks. Figure 12 displays the confusion matrix for
E-DFu-Net in ischemia classification. Figure 13, on the other
hand, shows the confusion matrix for E-DFu-Net in infection
classification. In Figure 14, examples of ischemia accurately
classified by E-DFu-Net can be easily identified. Meanwhile,
Figure 15 presents images correctly classified as infections by
E-DFu-Net. Table 9 presents a comparison between the pro-
posed model and other studies.

Discussion
This research aimed to categorize DFU images into two separate
groups: one representing ischemia and the other representing
infection. The primary goal was to prevent the misdiagnosis
of DFUs, addressing the confusion between DFUs and malig-
nancies. The challenge of distinguishing DFUs from skin can-
cers, especially in elderly patients, could potentially be solved
through the application of computer vision technology [38].
The approach proposed in this study is expected to aid in the
development of more advanced automatic telemedicine systems
through which the identification of DFUs can be performed.
These systems, in turn, are expected to assist in making early
and efficient diagnoses, leading to timely treatment. Further-
more, complications arising from diabetic foot problems can

also be prevented. The study found that the EfficientNetB0
pretrained model surpassed other such pretrained models,
including ResNet101, DenseNet121, InceptionV3, VGG16, Incep-
tionResNetV2, and MobileNetV2, in two tasks: classifying
ischemia and infection. The study also emphasized that the
head model, a unique technique introduced in the study,
could largely prevent pretrained CNN models from overfitting,
leading to a better learning curve and, consequently, better
performance of the models.
The results of this study surpass previous research using pre-
trained CNN models for classifying DFU images. Goyal et al. [11]
utilized three pretrained models, achieving 90% accuracy
for ischemia classification and 73% for infection. Al-Garaawi
et al. [24] used a pretrained GoogLeNet CNN model, obtaining
92% accuracy for ischemia and 73% for infected DFUs. Our study
achieved notably higher accuracy, reaching 97% for ischemia
and 92% for infected tissues. Integrating the suggested head
model with CNN models boosts their accuracy, reliability, and
ability to handle new data. Most CNN models show improved
performance on all evaluation metrics when this head model
is used. The EfficientNetB0 pretrained CNN model, combined
with the proposed head model, achieves the highest ischemia
classification results, with an accuracy of 0.965, precision of
0.959, sensitivity of 0.971, specificity of 0.958, F1 score of 0.965,
and an AUC of 0.965. For infection classification, it also achieves
top results with an accuracy of 0.919, precision of 0.951,
sensitivity of 0.883, specificity of 0.954, F1 score of 0.916, and
an AUC of 0.919. In real-time scenarios, balancing validation
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Table 9. A comparison of the proposed model with the related work

Study Model Class Acc. Prec. Sens. Sp. F1 score AUC

Goyal et al., [11] Ensemble CNN. with SVM classifier Ischemia 0.903 0.918 0.886 0.921 0.902 0.904

Infection 0.727 0.735 0.709 0.744 0.722 0.731

Al-Garaawi et al., [24] GoogLNet CNN Ischemia 0.92 0.94 0.93 0.90 0.93 0.97

Infection 0.73 0.73 0.74 0.71 0.76 0.81

Proposed work (EfficientNetB0 + Head model) Ischemia 0.965 0.959 0.971 0.958 0.965 0.965

Infection 0.919 0.951 0.883 0.954 0.916 0.919

metrics and processing time, DenseNet121 and MobileNetV2
are practical lightweight models. DenseNet121 provides the best
trade-off for developing mobile applications for DFU diagnosis,
highlighting challenges in using EfficientNetB0-based models
for real-time diagnosis.

Conclusion
This paper presented an efficient deep fusion upsampled net-
work (E-DFu-Net) in pretrained models using an efficient
Fusion Network. The research involved comparing the perfor-
mance of various CNN-pretrained models with the proposed
model. In this study, pretrained models like VGG16, ResNet101,
EfficientNetB0, DenseNet121, InceptionV3, InceptionResNetV2,
and MobileNetV2 were integrated with the proposed model.
Transfer learning techniques and hyperparameter tuning were
applied to all CNN models used in this work. Experiments
were conducted on the binary classification of ischemia and
infection. For ischemia classification, the binary classes are
ischemia and non-ischemia. For infection classification, the
binary classes are infection and non-infection. The experiments
show that the proposed E-DFu-Net model overcomes the over-
fitting issues observed in all pretrained models of CNN and gives
better results compared to most of the pretrained models of
CNN, thus making these models ready to be implemented in
clinical environments.

Based on the research findings, EfficientNetB0, a pretrained
CNN model, outperformed other pretrained CNN models, such
as DenseNet121, ResNet101, InceptionV3, InceptionResNetV2,
VGG16, EfficientNetB0, and MobileNetV2 for both ischemia
and infection classification. Although the new proposed model
was integrated and evaluated, according to the experimental
results, EfficientNetB0 still produced the best performance in
both ischemia and infection classification in this study with
97% accuracy in ischemia classification and 92% accuracy in
infection classification. For future research, this work can be
applied to a larger dataset and explore disease classification
methodologies with improved image analysis techniques for
disease classification.

DFUs can be seamlessly integrated into healthcare settings
using simple tools that can be easily operated by clinical
staff. The workflow is compatible with existing Electronic
Health Record (EHR) systems and utilizes the Fast Healthcare
Interoperability Resources (FHIR) format. This setup grants
easy access to the diagnostic tool and data collection tool [R2]

and its utilization can be readily adopted in clinical environ-
ments. The integration of the interaction of the user interface
(UI) with the existing EHR systems was necessary to ensure
the proper functioning and compatibility of our DFU diagnos-
tic system within busy healthcare settings [39] such as: emer-
gency rooms (ERs), wound care clinics, primary care offices and
diabetes care centers.
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