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R E S E A R C H A R T I C L E

Deep learning approach based on a patch residual for
pediatric supracondylar subtle fracture detection
Qingming Ye 1#, Zhilu Wang 1#, Yi Lou 2#, Yang Yang 1#, Jue Hou 1∗ , Zheng Liu 1∗ , Weiguang Liu 2∗ , and Jiayu Li3#

Supracondylar humerus fractures in children are among the most common elbow fractures in pediatrics. However, their diagnosis can
be particularly challenging due to the anatomical characteristics and imaging features of the pediatric skeleton. In recent years,
convolutional neural networks (CNNs) have achieved notable success in medical image analysis, though their performance typically
relies on large-scale, high-quality labeled datasets. Unfortunately, labeled samples for pediatric supracondylar fractures are scarce and
difficult to obtain. To address this issue, this paper introduces a deep learning-based multi-scale patch residual network (MPR) for the
automatic detection and localization of subtle pediatric supracondylar fractures. The MPR framework combines a CNN for automatic
feature extraction with a multi-scale generative adversarial network to model skeletal integrity using healthy samples. By leveraging
healthy images to learn the normal skeletal distribution, the approach reduces the dependency on labeled fracture data and effectively
addresses the challenges posed by limited pediatric datasets. Datasets from two different hospitals were used, with data augmentation
techniques applied during both training and validation. On an independent test set, the proposed model achieves an accuracy of 90.5%,
with 89% sensitivity, 92% specificity, and an F1 score of 0.906—outperforming the diagnostic accuracy of emergency medicine
physicians and approaching that of pediatric radiologists. Furthermore, the model demonstrates a fast inference speed of 1.1 s per
sheet, underscoring its substantial potential for clinical application.
Keywords: Deep learning, DL, pediatric supracondylar subtle fracture, fracture detection, small data.

Introduction
Supracondylar humerus fractures are the most common type
of elbow fracture in children, but they pose distinct diagnos-
tic challenges [1]. During skeletal growth, the ligaments sur-
rounding a child’s elbow are more injury-prone than in adults
due to the ongoing remodeling of the distal humerus and the
thinning of the bone cortex. Minor or occult fractures may
show minimal displacement or lack visible fracture lines, while
the presence of ossification centers further complicates frac-
ture identification on pediatric radiographs [2]. Detecting these
fractures is particularly difficult for non-pediatric emergency
physicians, as subtle fractures often lack clear markers like
significant displacement or distinct fracture lines [3]. With
rapid advancements in machine learning (ML) techniques,
traditional bone detection methods have gained attention.
These approaches typically rely on classical ML algorithms,
such as support vector machines (SVMs) [4], random forests
(RFs) [5], and hand-crafted feature extraction [6]. However,
their dependence on domain-specific knowledge for feature
design, coupled with limited generalization capabilities, makes
it challenging to adapt them to the wide variability of anatom-
ical structures. To overcome these limitations, convolutional

neural networks (CNNs) have been introduced for bone detec-
tion due to their ability to automatically extract features [7–9].
Some methods combine feature extraction modules with clas-
sifiers to analyze radiological images and localize abnormal
regions using visualization techniques like Grad-CAM [10].
However, these approaches often lack the specificity needed
to detect fractures in children. While recent studies have suc-
cessfully localized fractures in the hip [11], leg [12], and radial
bones [13], they remain insufficient for identifying pediatric
supracondylar humerus fractures. In recent years, DL has sig-
nificantly advanced medical imaging, with CNNs achieving
high diagnostic accuracy in radiology [14]. However, CNN mod-
els require large volumes of labeled data to perform effectively,
and obtaining such data in medical contexts poses unique chal-
lenges. Labeling fracture images demands specialized physi-
cians who can identify and annotate subtle features, such
as faint fracture lines or irregularities in the bone cortex.
This process is time-consuming, labor-intensive, and subject
to variability among annotators, making it difficult to create
reliable, large-scale datasets. These challenges are especially
pronounced for supracondylar humerus fractures in children.
The pediatric skeleton’s unique anatomical and developmental
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characteristics, including ossification centers and ongoing bone
remodeling, obscure fracture features and complicate man-
ual annotation. Additionally, the limited availability of pedi-
atric supracondylar fracture images exacerbates the lack of
labeled datasets [15]. Consequently, CNN-based models trained
on small datasets struggle to generalize effectively to external
datasets or unseen cases, such as images from different health-
care providers or imaging devices.

The abundance and easy access to healthy bone images pro-
vide new opportunities for advancing fracture detection. Medi-
cal experts often rely on their knowledge of normal anatomical
structures to identify deviations indicative of fractures [16].
Inspired by this diagnostic approach, leveraging healthy images
to learn the feature distribution of normal bones offers a
promising solution to address the issue of data scarcity. Building
on this concept, this paper introduces a DL-based multi-scale
patch residual fracture detection network (MPR) designed to
detect and localize subtle supracondylar fractures in children.
The proposed framework utilizes healthy images to learn skele-
tal features and reconstruct fracture regions without requiring
detailed fracture annotations. The MPR network incorporates a
multi-scale generative adversarial network (MGAN) to capture
bone-consistent features, combined with a weighted binary
cross-entropy (W-BCE) loss function to improve the detection
accuracy of subtle fractures. This method effectively leverages
existing healthy data while reducing dependence on scarce
annotated datasets. Using a generative adversarial network
(GAN)-CNN hybrid architecture, the network emphasizes sub-
tle distinctions between positive and negative samples, enhanc-
ing the representation of fracture characteristics in pediatric
cases. By facilitating the calculation of residuals in fracture
samples, the proposed model achieves precise and reliable
detection. This also mitigates the negative impact of pediatric
anatomical variability on the model’s performance, resulting in
more accurate fracture identification. The primary contribu-
tions of this study are as follows.

Automatic diagnosis model: An automatic model for detecting
subtle supracondylar fractures based on CNNs is proposed. It
comprises three main components: elbow localization, subtle
fracture repair, and fracture detection.

Multi-scale architecture: A multi-scale model built on the Con-
vNeXt backbone, paired with a non-rectangular bounding box
localization method, is introduced to enhance fracture localiza-
tion accuracy.

High performance metrics: The proposed model significantly
improves detection performance, achieving 90.5% accuracy,
89% sensitivity, 92% specificity, and an F1 score of 0.906
on an independent test set. It surpasses emergency medicine
physicians in accuracy and approaches the performance of
pediatric radiologists. Additionally, it demonstrates excellent
inference speed (1.1 s per image), highlighting its poten-
tial for clinical deployment. The remainder of this paper is
structured as follows: Section II reviews related studies on
GAN-based fracture detection and anomaly detection, and
provides a detailed description of the proposed MPR frame-
work. Section III presents and discusses the experiments and
results. Finally, Section IV provides the conclusion and future

perspectives of this study. This revision improves clarity, elim-
inates redundancy, and enhances readability while maintaining
all key information.

Materials and methods
Fracture detection
Fracture detection is a vital aspect of clinical diagnostics, par-
ticularly in radiology, where image processing technologies are
increasingly used to assist physicians in identifying fractures.
Methods for fracture detection typically fall into two categories:
conventional ML methods and DL methods, each with its own
strengths and limitations. The choice between them depends
on the specific application context. Conventional ML methods
rely on manually extracted features from radiographic images,
which are then input into classifiers to predict the presence and
type of fractures. The effectiveness of these methods depends
heavily on the quality of selected features and classifiers. For
example: Umadevi et al. [17] extracted texture and shape fea-
tures from tibial images and tested three classifiers: back propa-
gation neural networks, K-nearest neighbors (KNN), and SVM.
They found that ensemble models, which combine multiple
classifiers, significantly improved fracture recognition quality.
Lum et al. [18] compared various classifier combinations (e.g.,
Bayesian and SVM) for femoral and radial fracture detection,
achieving excellent results. Al-Ayyoub et al. [19] employed four
classifiers—decision trees (DT), SVM, naive Bayes, and neural
networks—for long bone fracture classification. SVM achieved
the best accuracy, exceeding 85% after 10-fold cross-validation.
Other researchers have explored innovative feature extraction
techniques to enhance performance. For instance: Cao et al. [20]
introduced a stacked RF feature fusion approach that combined
multiple feature types, improving fracture detection accuracy.
Scholars in [21] extracted Harris corner points from sharpened
tibial images and applied DT and KNN for fracture detection and
classification. However, these methods are not without limita-
tions. Manual feature extraction is time-consuming, requires
domain expertise, and can introduce subjectivity. Addition-
ally, conventional ML models often struggle to generalize to
new fracture types or radiological conditions due to incomplete
feature sets. In contrast, DL—particularly CNNs—has trans-
formed fracture detection by eliminating the need for manual
feature extraction. CNNs automatically learn image features,
such as shapes, edges, and textures, to make predictions. This
capability has enabled CNNs to excel in diverse fracture detec-
tion scenarios [22]. For example: Hendrix et al. [23] devel-
oped a CNN model for scaphoid fracture detection in wrist and
hand images, achieving performance comparable to radiolo-
gists. Other studies [24, 25] demonstrated CNNs’ effectiveness
in pediatric elbow fracture detection and radial/ulnar frac-
ture localization in wrist X-rays. Guan et al. [26] proposed an
improved CNN model for arm bone X-ray fracture detection,
achieving state-of-the-art average precision (AP). Recent stud-
ies have further advanced CNN applications: Researchers [27]
fine-tuned pre-trained models (e.g., AlexNet and GoogleNet)
on 2009 X-ray images, achieving 99.56% accuracy. Saliency
maps were incorporated to enhance interpretability. However,
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reliance on small datasets and pre-trained models limited
generalizability. A DL approach [28, 29] using oversampling
and transfer learning with AlexNet and ResNet50 achieved
higher accuracy than traditional methods but faced challenges
with small datasets. By combining redefined residual learn-
ing with CNNs, researchers improved performance on com-
plex skeletal lesions but faced limited generalization on larger
datasets. An interpretable DL model [30] using transfer learn-
ing (ResNet, AlexNet) achieved 95% accuracy. Saliency maps
and feature visualization enhanced clinical transparency but
highlighted challenges with imaging variability and patient
diversity. Despite their promise, DL methods face common
challenges. Small dataset sizes often limit model training and
generalizability. Variability in imaging protocols and patient
populations further complicates real-world deployment. Nev-
ertheless, advancements in DL continue to drive improvements
in fracture detection accuracy and clinical decision-making
transparency.

In addition to CNN-based networks, transformer-based
approaches are increasingly being adopted for fracture
detection. For example, Tanzi et al. [31] highlight the use of
Vision Transformers (ViT) for classifying femur fractures,
demonstrating that ViT outperforms traditional CNNs and
enhances the accuracy of specialist diagnoses. Similarly,
Sarmadi et al. [32] explore the application of ViTs for medical
image analysis, specifically in diagnosing osteoporosis from
X-ray images. Their study concludes that ViTs outperform
CNNs when sufficient training data is available. Nejad et al. [33]
address the limited research on DL techniques for cervical
spine fracture detection. They propose a two-stage pipeline that
integrates a Global Context ViT for vertebrae detection with a
YOLOv8 model for fracture detection. Their approach outper-
forms popular models such as YOLOv5 in terms of effectiveness.
Zhu et al. [34] introduce a novel cross-view deformable trans-
former framework for detecting non-displaced hip fractures.
Their method overcomes challenges in identifying discrim-
inative features and extracting complementary information
from paired frontal and lateral X-ray images. This is achieved
through a deformable self-attention module and cross-view
representation modeling, which they evaluate on a dataset of
768 hip cases. Liu et al. [35] propose a hybrid transformer-CNN
(HTCNN)-based radiomics model for osteoporosis screening
using routine CT scans. Their model achieves superior seg-
mentation precision and better osteoporosis discrimination
compared to traditional Hounsfield unit (HU) values, boasting
high AUC scores in both training and test cohorts. Additionally,
Makwane et al. [36] present a hybrid approach that combines
the Swin transformer with traditional feature extraction
methods like SIFT for fracture identification and classifica-
tion. Their extensive experiments demonstrate the hybrid
model’s effectiveness in improving clinical decision-making
for fracture diagnosis. Despite the advantages of ViTs in
fracture detection, they are not without challenges. One notable
drawback is their slower speed and longer training times com-
pared to traditional CNNs, primarily due to the computational
complexity of the self-attention mechanism. Furthermore, ViTs
generally require large amounts of labeled data to perform

well, limiting their applicability to tasks with smaller datasets.
These constraints make ViTs less efficient for real-time appli-
cations and less suitable for scenarios with limited annotated
medical images. Consequently, we chose CNN-based models
for our fracture detection task. While DL models, includ-
ing CNNs and pre-trained architectures, have significantly
advanced fracture detection, they still face obstacles, such
as data scarcity and limited generalization. These studies
underscore that, although pre-trained models and transfer
learning techniques improve accuracy, their performance often
hinges on the size and diversity of the datasets. Even with
high accuracy on specific datasets, these models struggle to
generalize across different patient populations and imaging
conditions, posing a substantial challenge for their clinical
application.

Abnormal detection with GANs
With the growing challenge of data scarcity, anomaly detection
methods based on GANs have emerged as a promising solu-
tion. By learning the distribution of normal data, GANs can
reconstruct healthy data and identify deviations as anomalies,
eliminating the need for labeled datasets. Numerous studies
have explored the potential of GAN-based anomaly detection in
medical image analysis [37, 38]. For example, Schlegl et al. [39]
developed a GAN trained on healthy data and proposed a
method to quickly map new inputs into the GAN’s latent space.
Anomalies were identified using a comprehensive anomaly
score derived from discriminative residual and reconstruction
errors. Zhao et al. [40] introduced a reconstruction-based
approach that learns the manifold of normal data through
encoding-reconstruction transformations between image and
latent spaces. Reconstructed features were then utilized to dis-
tinguish anomalies from healthy data. Similarly, Zhou et al. [41]
proposed Sparse-GAN, a novel framework for disease screening
trained exclusively on healthy data. This method identifies
anomalies in the latent space using features constrained by
a sparse regularization network. These studies highlight the
efficacy of GANs in detecting anomalies that deviate from the
normal data distribution, with strong performance demon-
strated on publicly available medical datasets, such as OCT and
chest X-ray images [42]. However, their application to fracture
detection remains underexplored. This study leverages GANs
for anomaly detection and integrates a MPR network to address
the challenge of detecting subtle supracondylar fractures.
Unlike traditional CNN-based models that require large-scale
annotated datasets, this approach trains GANs to learn the
distribution of normal bone structures, overcoming the lim-
itation of limited labeled data. By incorporating multi-scale
CNNs with residual information, the proposed model accurately
localizes fracture regions and improves the detection of subtle
fractures. In contrast to existing GAN-based applications,
this method not only leverages normal data for enhanced
feature learning but also integrates auxiliary information
(e.g., texture and edges) to boost the accuracy of fracture
region identification. Consequently, the proposed approach
demonstrates superior performance in detecting subtle
fractures.
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Figure 1. Overall architecture of the proposed MPR approach. The blue box shows the location model. The obscured area repair process is illustrated
in the orange box. The fracture detection and location are presented in the red box. CNN: Convolutional neural network; MPR: Multi-scale patch residual
network.

Methods
To overcome the limitations of traditional DL models in detect-
ing subtle supracondylar fractures in pediatric elbow X-rays,
we propose an MPR framework. This framework comprises
three core modules: (1) an elbow localization module that
focuses on the region of interest, (2) a skeletal region repair
module that enhances fracture features through reconstruc-
tion, and (3) a fracture detection module that accurately
localizes and classifies fractures. The overall architecture is
illustrated in Figure 1.

Elbow localization
The supracondylar region of the humerus in children is rela-
tively small, occupying only a minor portion of X-ray images,
which makes global analysis both inefficient and error-prone.
To address this challenge, we utilized the YOLOv5 object detec-
tion model [43] to automatically localize the elbow region.
YOLOv5 was selected due to its optimal balance between accu-
racy and real-time performance, making it particularly suitable
for clinical applications. The localization module was trained to
detect the elbow region and crop it into standardized 256×256-
pixel images. This preprocessing step ensures that subsequent
models concentrate solely on the target region while also
reducing computational load. Importantly, the cropped images
preserve essential anatomical details, providing a robust foun-
dation for subsequent reconstruction and detection tasks.

Skeletal region repair
In X-ray images, fracture textures are often identified as poten-
tial fracture regions. However, due to the subtle differences

between positive and negative samples, previous methods have
struggled to detect hairline fractures effectively. To address
this challenge, we designed a marker specifically for healthy
samples. As shown in Figure 2, this marker allows for the com-
putation of residuals in fracture samples with greater ease. The
reconstruction module is responsible for rebuilding damaged or
occluded regions within cropped images. The output generated
by this module emphasizes fracture features by highlighting the
residual differences between the reconstructed image and the
original. Notably, image reconstruction is a widely utilized task
in computer vision.

Assuming we have a set of samples (i.e., xi ={x1, x2,...,xi}), the
reconstruction model generates corresponding X-ray images in
a healthy state. This implies that the reconstructed results for
healthy samples closely resemble their original counterparts,
while the damaged regions in fracture samples are corrected.
Thus, this process can be used to construct a recognition model:
R(xi) ≡ xi.

To convert the reconstruction problem into a conditional
generation problem, a small portion of the sample image is
randomly occluded, and the remaining region is used as the
condition. The generation problem for an unknown region in
a healthy sample can be expressed as follows [44]:

P (R|O) = GMGAN(R|O) (1)

where O represents the occluded image region, and R denotes
the reconstructed image region. As shown in Figure 3, by train-
ing the MGAN [38] using healthy normal data, the model learns
to retrieve data from the distribution of healthy samples.
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Figure 2. Proposed scheme for residual detection between a fracture input image and a healthy rebuilt image. MGAN: Multi-scale generative
adversarial network.

Figure 3. Overview of the identity model for positive and negative samples. MGAN: Multi-scale generative adversarial network.

Intuitively, the difference between a healthy sample and
a fracture sample can be clearly identified by a marker. The
residual equation constructed based on this property is as
follows [38]:

Diff = I − R (2)

where I denotes the original image and R represents the gener-
ated image. The Diff obtained from the input model of healthy
samples tends to zero, while the Diff obtained from abnormal
samples presents a non-zero state.

Edge information plays a critical role in reconstructing
fracture regions. Fractures typically disrupt cortical bone
and induce periosteal reactions, which often manifest as
distinct edges in imaging. Without accurately capturing
these edge details, reconstruction models may overlook
crucial fracture-related information, leading to incorrect
outcomes [45, 46]. To address this, we employed the HED
network [47] to extract edge information in skeletal reconstruc-
tion. The HED network, based on deep CNNs, excels at capturing
continuous edge details and is particularly well-suited for

complex anatomical structures like pediatric elbow joints.
Compared to traditional edge detection techniques, such
as Canny [48], HED not only preserves precision but also
provides more continuous and detailed edge information. This
is vital for reconstructing fracture regions. Traditional methods
like Canny are prone to noise sensitivity and struggle with
intricate skeletal structures. These limitations are especially
pronounced in pediatric bones, where ossification centers and
unique growth patterns complicate the detection of subtle
edge variations. In contrast, HED effectively addresses these
challenges, delivering more accurate and detailed edge infor-
mation, which helps the reconstruction model produce more
realistic results (see Figure 4). In addition to edge information,
texture characteristics of the fracture region are crucial during
the repair process. Texture features enable the model to
differentiate between normal bone and fracture regions, as
fracture areas often exhibit distinct textural patterns compared
to healthy bone. High-frequency texture variations frequently
reveal minute fracture details, making them essential for
the repair model. To capture these high-frequency texture
features, we apply a 2D Fourier transform. This transform
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Figure 4. Different methods used to obtain auxiliary information in the repair module. From left to right, the original image, Canny, HED, Fourier, and
HED + Fourier images are shown.

converts the image from the spatial domain to the frequency
domain, highlighting high-frequency texture information. In
fracture images—particularly those with microfractures or
fine cracks—such features are represented by high-frequency
variations. By leveraging the Fourier transform, we effectively
detect these subtle changes and provide the repair model
with detailed texture information, thereby enhancing the
reconstruction process. The Fourier transform of the image is
as follows:

F (u, v) =
M−1∑
x=0

N−1∑
y=0

f (x, y)e−j2π( ux
M + vy

N ) (3)

H (u, v) = F (u, v) ∗ (1 − e
−d
2λ2 ) (4)

where the image size is (M, N), f (x, y) represents the pixel
value of the image, and d represents the pixel centroid distance
matrix with a constant λ of 10. Finally, H (u, v) is the high fre-
quency information in the frequency domain of the processed
image. After applying an inverse Fourier transform to the data
and converting it back to the spatial domain, the texture map
shown in Figure 4 is generated. The impact of various auxiliary
information on the restoration effect will be discussed in the
following sections.

We define the bone region reconstruction task as follows:
Given a large training dataset of expert-screened normal elbow
anterior-posterior and lateral X-ray images, along with similar
test images, the objective is to train a model to learn the dis-
tribution of healthy bone structures and reconstruct occluded
regions to resemble these structures. To achieve this, we uti-
lized the backbone network of the classical MGAN to con-
struct both the generator and discriminator. In our method, an
occluded image undergoes adversarial reconstruction, as illus-
trated in the orange box of Figure 1. Specifically, this process
involves the supracondylar bone region in the cropped image
x′x′x′ and an auxiliary image containing bone edge textures
x′′x′′x′′. All cropped images are uniformly resized to 256 × 256
256 × 256 256 ×256 pixels. To ensure that the epicondylar
skeletal region is adequately covered, the central masking area
is set to 160 × 160 160 × 160 160 × 160 pixels. As shown in
Figure 1, the gray dashed line divides the masking area into 25
regions, each of which is filled with a solid color mask. During
training, the encoder (MEM_EME), decoder (MDM_DMD), and

discriminator (DfD_fDf) are optimized alternately. The entire
reconstruction model is supervised using a loss function that
incorporates three components: adversarial loss, perceptual
loss, and region reconstruction loss. These specific losses are
defined as follows.

Adversarial loss: As shown in Figure 1, the objective of
the discriminator is to distinguish between the original nor-
mal image and the image reconstructed by the generator.
Through adversarial training with the discriminator, the
encoder–decoder’s feature extraction and image reconstruction
abilities are enhanced. Furthermore, the encoder and decoder
progressively align with the distribution of real images, thereby
“fooling” the discriminator. The adversarial loss that supervises
the relationship between the encoder–decoder and the discrim-
inator is expressed by the following formula [49]:

min Ladv = −Exgt

[
log

(
1 − Dra

(
xgt, xout

))]

− Exout

[
log

(
Dra

(
xout, xgt

))]
(5)

where Dra
(

xgt, xout
) = sigmoid

(
C

(
xgt

) − Exout [C (xout)]
)

and
the data pairs

(
xgt, xout

)
are sampled from the ground truth and

output images.
Perceptual loss: In addition to the adversarial loss, which

aligns the distribution of the synthetic image with the real
image, we compute the perceptual error to capture high-level
semantics and simulate human perception of image quality.
We apply perceptual loss [50] in the encoder–decoder. Unlike
the commonly used pixel-wise mean squared error (MSE) loss,
perceptual loss focuses on high-level features and global infor-
mation between the output image and the ground truth. The
perceptual loss used to optimize the encoder–decoder is defined
as follows:

min Lprec =
∑

i

1
Nt

||∅i (Iout) − ∅i ∗ (Igt)||1 (6)

where ∅i is the activation map of the i-th layer of the VGG-16
backbone.

Region reconstruction loss: As noted previously, we consider
both structural and semantic information in the image after
reconstruction. Additionally, to enhance the model’s ability to
repair fractures, we measure the pixel differences before and

Ye et al.
Deep learning for pediatric fractures 1636 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


Figure 5. The blue box indicates the repair area, while the red box represents the fracture annotation area. The data label is a 9×9 two-dimensional
array.

after the reconstruction of the occluded regions. Since the mask
contains positional information, the repaired regions are acces-
sible. We use pixel-level loss to guide this measurement task
and improve the representation learning. This can be written
as:

min Lr = ∣∣x′
m − xm

∣∣ = |MD (ME (xm)) − xm| (7)

where xm is the masked area image and x′m is the restored
result.

Finally, the overall loss of the encoder ME, decoder MD, and
discriminator Df is optimized using the previously defined loss
function as follows:

L = αLadv + βLprec + γ Lr (8)

where α, β, and γ are the loss weights.

Fracture detection
The module is a critical component of the MPR framework,
designed to identify and localize fracture regions within
images. It combines multi-scale CNNs with FPNs to effectively
extract multi-scale features, enabling the accurate detection
and localization of subtle fractures, as illustrated in Figure 1.
The primary objective of this module is to leverage repaired

residual images alongside a high-efficiency DL model to pre-
cisely pinpoint fracture regions, particularly within complex
and small fracture structures. To achieve this, we trained a
multi-scale CNN on a labeled dataset containing both fracture
and non-fracture images.

This dataset (i.e., D′ = {(̂x1, y1
)

, . . . ,
(̂

xN, yN
)}) contains both

fracture and non-fracture images, yi is a two-dimensional array
where the value at each location corresponds to the area of
overlap between the bounding box and the repaired region, as
illustrated in Figure 5.

Additionally, we utilized ConnNeXt as the backbone
feed-forward neural network and integrated it with a feature
pyramid network (FPN) [51]. FPN, with its top-down feature
fusion structure, extracts finer details from higher-level
features while enriching lower-level features with this infor-
mation. This design is especially important for fracture
detection, as fracture regions often exhibit varying shapes
and characteristics across different scales. Once the FPN
generates feature maps at multiple spatial resolutions, these
maps undergo downsampling and 1×1 convolutions to produce
feature maps of the same size as the labels. The resulting feature
maps are then concatenated and further convolved to generate
the final output. During training, this output is compared with
the supervised labels to compute the training loss. Specifically,
we represent the image as a grid of cells, with each small block
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Figure 6. Overview of the dataset.

acting as a classification target. In typical fracture images,
there is a significant class imbalance: 95% of the label array
values are zeros, representing normal regions. Class imbalance
is a common issue in fracture detection models, particularly
for subtle fractures where fracture regions are significantly
smaller than non-fracture regions. Using standard binary
cross-entropy (BCE) loss in such cases may lead to overfitting
on the non-fracture regions while neglecting fracture regions.
To address this challenge, we employed a W-BCE loss [52].
The W-BCE loss function dynamically adjusts the importance
of different classes, ensuring that fracture region features are
not overlooked during training. By assigning higher weights to
fracture regions, W-BCE encourages the model to focus more on
this minority class, thereby improving sensitivity and detection
accuracy. This approach is particularly advantageous for subtle
fracture detection, as it enhances the model’s ability to identify
fracture regions while mitigating the effects of class imbalance.
The formula for the W-BCE loss is expressed as follows:

LW−BCE = −αt ·
∑

ij
Mgt

(
i, j

) · logσ
(

Mout
(

i, j
))

− (1 − αt)
∑

ij
(1 − Mgt(i, j) · log σ(1 − Mout(i, j))) (9)

where αt denotes the ratio of the nonfracture patches to
total patches and σ (·) denotes the sigmoid activation function.
Mout(i,j) and Mgt(i,j) represent the values under the output and
label indexes, respectively.

Ethical statement
Ethical approval for this study was obtained from the Institu-
tional Review Board of Hangzhou Children’s Hospital (HZCH).

All participants, including the guardians of pediatric patients,
were provided with detailed information about the study and
signed a written informed consent form. The study adhered
to the Declaration of Helsinki and complied with all applicable
ethical guidelines.

Results
In this section, we evaluate the performance of our proposed
MPR framework in detecting subtle supracondylar fractures
in children, utilizing data from two medical institutions. We
begin by describing the details of the datasets used in our study.
Next, we present the experimental results for the localization,
repair, and final detection models. Furthermore, we conduct
ablation studies on the repair and detection models to assess the
impact of edge and texture information on the repair process,
as well as the role of the repair model in improving detection
outcomes. Finally, we compare our experimental results with
those achieved by existing methods.

Datasets
An overview of the dataset is shown in Figure 6. All elbow
X-ray images were obtained from the Picture Archiving and
Communication System (PACS) at HZCH. These images were
reviewed and annotated by multiple pediatric radiologists to
reach a consensus. Images containing metal implants, displaced
fractures, or positive fat pad signs were excluded. In total, 3190
X-ray images were collected from 1563 patients between 2013
and 2022, comprising 2585 healthy images and 585 fracture
images. In this study, we adopted an image-based partition-
ing method rather than a patient-based partitioning approach.
While this choice offers practical advantages, it could also intro-
duce the risk of data leakage, as multiple similar images from
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the same patient might appear in both the training and testing
sets. This overlap could potentially inflate the model’s perfor-
mance, as the model might memorize patient-specific patterns
instead of learning generalizable features [53–55]. To mitigate
these potential risks, we implemented several strategies. To
approximate the effect of patient-based partitioning, we applied
advanced data augmentation techniques to increase the diver-
sity of images from the same patient. These techniques included
adding Gaussian or speckle noise to simulate variations in image
quality, adjusting brightness and contrast to mimic differ-
ent radiographic conditions, and applying slight translations,
rotations, scaling, and flips to introduce positional variations.
Additionally, elastic transformations were used to simulate soft
tissue movement or minor anatomical structural changes. Fur-
thermore, we incorporated regularization techniques, such as
dropout and weight decay, during model training to reduce the
likelihood of overfitting to patient-specific patterns.

Fractures, especially pediatric elbow fractures, are fre-
quently underdiagnosed. To minimize annotation errors, we
implemented a multi-expert review process. Three pediatric
orthopedic specialists independently annotated the X-ray
images. If at least two experts agreed on the presence of a
fracture, the image was labeled accordingly. In cases where only
one expert identified a fracture while the other two disagreed,
the image was escalated for review by a senior specialist to
provide the final annotation. The dataset consisted of 3190 X-ray
images, which were used to train and evaluate various models.
The dataset was randomly split into training and test sets. All
3190 images were used for training the localization model.
From the 2585 normal images, 2000 were randomly selected for
training and testing the reconstruction model. The remaining
1190 images were split into two subsets: D_train (1000 images)
for training and D_test (190 images) for evaluating the detection
model. To assess the model’s generalization ability, an I_test
comprising 200 X-ray images from 86 cases was collected
in 2023 at Zhongshan Hospital, affiliated with Huazhong
University of Science and Technology. This independent test set
was completely separate from the training and testing datasets
and was used to ensure an unbiased evaluation of the model’s
performance.

Experimental
The proposed method was implemented using the PyTorch
library. For the experiments, a 16GB Nvidia GeForce GTX
3080 Ti GPU was utilized for training. To standardize image
sizes, bicubic interpolation was applied. The network was opti-
mized using the Adaptive Moment Estimation (Adam) opti-
mizer, with an initial learning rate of 0.0001 that decayed
by 5% every 5 epochs. This learning rate schedule enabled
larger updates during the initial stages of training and gradual
fine-tuning as the model converged, ensuring stable training
and improved generalization. To mitigate overfitting, dropout
was applied with a rate of 0.5, randomly deactivating half of
the neurons during each training iteration. This technique pre-
vented the model from relying too heavily on specific features,
encouraging it to learn more robust and generalized patterns.
Additionally, early stopping was implemented to terminate

Figure 7. Overview of the accuracy of elbow location. AP: Average
precision.

training if the validation loss ceased improving, reducing the
risk of overfitting and saving computational resources. Given
the importance of execution speed in clinical applications, both
training time and inference time were evaluated. The model
required approximately 8 h to train for 100 epochs, with an
average inference time of 1.1 s per image on the GPU. These
considerations ensure the method is both efficient and practical
for real-world use. The specific training parameters are shown
in Table 1.

(1) Results of the elbow localization model: We initially eval-
uated the performance of our localization model using AP, a
widely recognized metric for target detection. The YOLOv5 tar-
get detection model was utilized to localize the supracondylar
bone in elbow radiographs. Figure 7 illustrates the experi-
mental results on the test set, which demonstrate that the
localization model achieved excellent accuracy. This outcome
highlights the model’s ability to precisely identify the target.
The high accuracy further indicates that the model can effec-
tively differentiate the condyle from surrounding anatomical
structures, thereby minimizing false positives. Nonetheless, it
is important to note that the model’s success depends not only
on its accuracy but also on its ability to generalize across diverse
cases. Our test set included radiographs with varying levels
of sharpness, ranging from high-resolution images with dis-
tinct bone landmarks to those with blurred bone structures and
occlusions. The model’s ability to maintain strong performance
under these challenging conditions underscores its robustness
and adaptability to real-world clinical scenarios, where image
quality may vary.

(2) Results of the repair model: The performance of the repair
model improved substantially with the incorporation of bone
edge and texture information. This additional data enabled
the model to reconstruct bone structures more effectively. As
shown in Figure 8, the model excelled in processing images
with clearly defined bone structures, particularly those fea-
turing well-defined bone edges and epiphyseal lines. These
results indicate that the model can reliably reconstruct normal
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Figure 8. Overview of the repair effect. The nonfracture occlusion images and fracture occlusion images are shown from top to bottom.

Table 1. Training hyperparameter values

Name Value

Initial learn rate 0.0001

Max epochs 100

Batch size 8

Dropout 0.5

Learning drop factor After 5 epochs if the accuracy has not increased

Optimizer Adaptive moment estimation (Adam)

anatomical structures, even when bone regions are unclear or
only partially visible. The challenge becomes more complex,
however, in the presence of fractures. Fracture lines often
resemble epiphyseal lines, making accurate fracture detection
more difficult. To address this, the repair model focuses on
reconstructing the epiphysis, a critical feature in distinguishing
fractures from normal anatomical structures. The model can
rebuild the normal bone shape in blurred or damaged regions
while using its self-residual mechanism to highlight fracture
areas. This capability aids in identifying even subtle deviations
from normal anatomy. The repair model makes a significant
contribution to fracture detection. By reconstructing missing
or unclear bone segments and emphasizing fracture regions, it
greatly enhances detection accuracy. In the following sections,
we provide a more detailed analysis of the model’s impact on
fracture detection, including its sensitivity to various fracture
types and its potential for clinical application.

(3) Results of the detection model: During training, the detec-
tion model utilized both images and repaired regions, with
sample labels derived from a preprocessed 2D array. The exper-
imental results demonstrate that the MPR model excels in
detecting subtle supracondylar fractures. To assess the model’s
robustness, we analyzed 200 pediatric elbow X-ray images
collected in 2023 from HZCH, all of which contained detailed
supracondylar fractures. The confusion matrices for the test

Table 2. Model performance results for D_test and I_test

SEN SPE ACC F1

D_test 0.968 0.915 0.942 0.943

I_test 0.89 0.92 0.905 0.906

and validation sets, along with the ROC curve and AUC values,
are displayed in Figure 9. Key evaluation metrics, including
sensitivity, specificity, F1 score, and accuracy, are summarized
in Table 2. On the test set, the model achieved an accuracy
of 94.2%, with a sensitivity of 96.8%, specificity of 91.5%, and
an F1 score of 0.943. For the independent validation dataset,
the model’s performance was slightly lower but still robust,
with an accuracy of 90.5%, sensitivity of 89%, specificity of
92%, and an F1 score of 0.906. These results underscore the
model’s strong generalization capability and its effectiveness in
managing image variations across different sources. The model
outputs a 2D array used for fracture localization. As illustrated
in Figure 5, each value in the array corresponds to a specific
region in the image. After applying the sigmoid function, the
fracture probability for each region is calculated. The resulting
heatmap (Figure 10) visually highlights the fracture location. It
is important to note that the final image quality may vary due to
differences in imaging devices across hospitals.

(4) Comparison with doctors: To evaluate the practical effec-
tiveness and clinical applicability of our model, we compared
its performance to the evaluations of two experienced doctors.
This comparison is crucial, as the model’s ability to match or
surpass human expert judgment serves as a critical benchmark
for its reliability and potential in real-world applications. The
observer study was conducted exclusively on the I_test dataset,
which was independently reviewed by two experienced doctors
from HZCH: Y.L. (Pediatric Radiologist) and J.Z.W. (Emergency
Physician). The doctors were provided with the original X-ray
images but were blinded to clinical information to prevent bias.
Both doctors assessed the presence of fractures based solely
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Figure 9. Confusion matrix and ROC curve for D_test and I_test.

on the image features and their professional expertise. The
evaluation results are summarized in Table 3. The emergency
physician achieved an ACC of 0.81 on the I_test dataset, which
was notably lower than the performance of our proposed model.
This relatively lower accuracy may be attributed to the inher-
ent difficulty of detecting subtle supracondylar fractures. The
complex bony anatomy of the elbow can obscure such fractures,
making them harder to identify, particularly when they are
minor. Additionally, since the emergency physician special-
izes in acute care rather than radiology, they may have less
experience in detecting subtle fractures, potentially leading to
occasional oversights. Conversely, the pediatric radiologist per-
formed exceptionally well, achieving significantly higher accu-
racy compared to the emergency physician. When we compared
the model’s results with those of the pediatric radiologist, we
found that the model’s accuracy was slightly lower. However,
the difference was minimal, underscoring the model’s strong
diagnostic capabilities. While the model has demonstrated con-
sistent and reliable performance, these findings also suggest
that further refinements could help it match or even surpass the
accuracy of expert pediatric radiologists.

(5) Comparison with existing algorithms: To evaluate the
performance of our model, we compared it against several
well-established fracture detection algorithms, including the
ResNet-based DL model [56], the YOLOv8-based model [57],
and the recently proposed Transformer-based ViT model [58].

Table 3. Results from the two physicians in the I_test set

SEN SPE ACC F1

Emergency physician 0.62 0.42 0.81 0.62

Children’s radiologist 0.92 0.942 0.93 0.929

For a fair comparison, all algorithms were trained on the same
training dataset (Detection dataset) and validated using the
I_test dataset. We assessed their performance using ACC, sensi-
tivity, specificity, and F1 score, with the results summarized in
Table 4. As shown in Table 4, our proposed MPR method outper-
forms the other three algorithms across all evaluated metrics.
Specifically, our model achieves a sensitivity of 0.89, a speci-
ficity of 0.92, an accuracy of 0.905, and an F1 score of 0.906.
When compared to the second-best performer, YOLOv8, our
model demonstrates a 0.01 higher sensitivity and a 0.051 higher
F1 score, highlighting its superior ability to detect subtle frac-
tures and manage complex scenarios. While the ViT model
shows slightly lower overall performance than YOLOv8, it
achieves a specificity of 0.90, suggesting a relative strength
in minimizing false positives. In contrast, the ResNet-based
model underperforms across all metrics, with a sensitivity of
just 0.82, which limits its utility for fracture detection tasks.
This performance gap is primarily attributed to the impact of
limited labeled data on model training, further underscoring
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Figure 10. Heatmap-assisted image identification of a supracondylar fracture. (A) HZCH elbow radiograph with a subtle supracondylar fracture (arrow);
(B) Image generated after detection model; (C) HZCH (2023) radiograph of an elbow fracture (arrow); (D) Heatmap-assisted image. HZCH: Hangzhou
Children’s Hospital.

Table 4. Performance comparison of different algorithms on I_test
dataset

SEN SPE ACC F1

ResNet-based 0.82 0.84 0.785 0.790

YOLOv8-based 0.88 0.85 0.860 0.855

ViT-based 0.84 0.90 0.825 0.802

Ours 0.89 0.92 0.905 0.906

the adaptability of our algorithm in addressing challenges posed
by scarce labeled datasets.

Ablation study
To assess the effectiveness of each component in enhancing the
model’s performance, we conducted a series of ablation exper-
iments. These experiments were designed to evaluate how dif-
ferent types of auxiliary information and modifications affect
the accuracy and reliability of the repair and detection models.
The experimental results are summarized in Tables 3 and 4.

We first analyzed the contribution of auxiliary information to
the performance of the repair model. Specifically, we inves-
tigated the impact of edge and texture features derived from
the Canny and HED methods. As shown in Table 5, the use of
these edge detection methods resulted in moderate improve-
ments in repair performance. However, when edge or texture
information was applied independently, the performance gains
were limited. This finding indicates that while these features
positively influence the model, they fail to fully unlock its
potential when used in isolation. In contrast, combining HED
with the Fourier transform produced a significant boost in the
repair model’s performance. This integration allowed the model
to capture both structural and frequency-domain information
more effectively, thereby maximizing its repair capabilities.
These results highlight that the joint application of edge and
texture features, alongside Fourier frequency-domain informa-
tion, offers a more comprehensive understanding of the image,
leading to substantial improvements in repair accuracy.

Next, we evaluate the contributions of the repair module
and the optimized loss function (W-BCE) to the crack detec-
tion model. The repair module is designed to extract residual
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Table 5. Ablation studies with different auxiliary information

Canny HED Fourier SSIM↑ PSNR↑ FID↓
� 0.936 27.92 13.19

� 0.946 29.13 10.92

� � 0.951 30.34 9.53

Table 6. Ablation studies with different parts of the detection model

BCE Repair area W-BCE SEN SPE ACC F1

� 0.634 0.968 0.800 0.750

� 0.757 0.989 0.870 0.850

� 0.76 1.00 0.880 0.860

� � 0.968 0.915 0.942 0.943

W-BCE: Weighted binary cross-entropy.

information from repaired regions and pass it to the detection
model, enhancing crack detection accuracy. Additionally, we
analyze the role of the W-BCE loss function, which improves the
learning process in the detection task through weighted cross-
entropy. The results in Table 6 highlight a significant perfor-
mance difference between the baseline model using BCE loss
and the model incorporating W-BCE. Specifically, the baseline
model achieves a SEN of 0.634, whereas the W-BCE model
demonstrates a marked improvement, with sensitivity ris-
ing to 0.757. This increase indicates that W-BCE effectively
directs the network to focus on critical regions of the image,
thereby enhancing crack detection accuracy. The substantial
performance gap underscores the importance of weighted loss
functions in addressing class imbalance issues. In addition,
incorporating the repair module improves sensitivity even fur-
ther, from 0.634 to 0.76. This confirms that the repair module
helps the model learn detailed feature information, such as tex-
ture and complete edge details, which are crucial for accurate
crack detection. These results suggest that the repair module
enables the network to capture richer feature representations,
leading to improved overall performance. The ablation experi-
ments clearly demonstrate the effectiveness of both the repair
module and the W-BCE loss function. The repair module sup-
plies essential supplementary information, enabling the net-
work to learn comprehensive feature representations from both
the original and repaired regions. Meanwhile, the W-BCE loss
function significantly enhances crack detection by addressing
class imbalance and concentrating the learning on the most
relevant features. Together, these components deliver the best
performance, as evidenced by the substantial improvements
in sensitivity and detection accuracy across various evaluation
metrics.

Discussion
We propose a method for detecting subtle pediatric supracondy-
lar fractures using GANs and a multi-scale CNN. To develop the

MPR repair model, we address two main challenges: detecting
supracondylar fractures in children and the limited availabil-
ity of labeled datasets. Our approach leverages healthy elbow
images for training the repair model and a small, annotated
dataset for training the fracture detection and localization mod-
ule. The fracture detection process begins with cropping the
input image using a localization model, ensuring the elbow
region is centered with the supracondylar fracture area high-
lighted. The cropped image is then masked with a small solid
region, which incorporates a reconstructed encoder and gener-
ator. For normal images, the reconstruction closely resembles
the original. In contrast, for abnormal images, the reconstruc-
tion aligns with the normal image except for deviations in the
fracture area. The reconstructed regions and the original image
are subsequently fed into the multi-scale CNN for fracture local-
ization. Unlike traditional methods that rely solely on the orig-
inal image features or latent space features for classification
and localization, our approach uses GANs to learn the distribu-
tion of normal data. This enables enhanced feature extraction
in abnormal regions, facilitating precise fracture localization
through targeted regional repair. By focusing on key differences
between normal and abnormal areas, our method significantly
improves the accuracy of fracture localization.

We explored the impact of different edge and texture infor-
mation on image reconstruction. Due to the complex sur-
face structure of pediatric elbows, the Canny edge detector
was unable to capture complete edge information. However,
the HED and Fourier transform methods proved effective in
extracting both edge and texture details, enabling the repair
model to generate more realistic images. By training the detec-
tion model with the reconstructed regions, we significantly
enhanced its ability to recognize and locate fractures. Addition-
ally, we incorporated the W-BCE loss function into the detection
model, which optimized fracture detection and localization.
Compared to conventional cross-entropy loss, W-BCE acceler-
ated model convergence by placing greater emphasis on frac-
ture locations during training, thereby improving sensitivity
and specificity. To validate the effectiveness of our method,
we compared the results from our model with those of ED
physicians and pediatric radiologists on an independent test
set. Our model achieved an accuracy of 90.5%, significantly
outperforming the ED physicians (accuracy: 81%) but slightly
underperforming the pediatric radiologists (accuracy: 93%).
The model’s processing speed (1.1 s per image) further under-
scores its advantages, particularly in high-throughput clinical
settings, where it can significantly improve work efficiency.
Additionally, this rapid processing offers potential benefits in
emergency situations. For example, in fast-paced ED environ-
ments, the model can provide preliminary results on fracture
type identification within a very short time, aiding in subse-
quent treatment decisions. This efficient processing is crucial
for clinical decision-making, especially in high-pressure envi-
ronments with a large patient volume, as it reduces physicians’
workloads and enhances diagnostic efficiency. Despite the
model’s strong performance, some challenges remain. Firstly,
the model’s accuracy could be influenced by the quality and
diversity of the training data. Expanding the training dataset
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in the future, particularly by incorporating clinical data from a
broader range of hospitals and regions, will be vital for improv-
ing the model’s generalization and robustness. Secondly, while
the current model accurately detects fractures, there is room
for improvement in certain complex cases, particularly when
image quality is poor or fractures are subtle. Future work will
focus on enhancing the model’s adaptability to these challenges,
further refining its accuracy and generalization capabilities.

Conclusion
This study introduces a DL method for detecting pediatric
supracondylar fractures using GANs and a multi-scale CNN.
The approach effectively tackles major challenges in fracture
detection, such as the limited availability of labeled data and
the subtle presentation of pediatric fractures, by employing
advanced image reconstruction and localization techniques.
Tested on an independent dataset, the model achieved 90.5%
accuracy, with 89% sensitivity, 92% specificity, and an F1 score
of 0.906. These metrics surpass the diagnostic performance of
emergency medicine physicians and closely align with that of
pediatric radiologists. With its high accuracy and rapid process-
ing speed, this model has the potential to significantly improve
diagnostic efficiency, particularly in high-throughput settings
such as emergency departments.
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