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R E V I E W

Molecular aspects of Angelman syndrome: Defining the
new path forward
Jacqueline Fátima Martins de Almeida 1, Ilaria Tonazzini 2, and Simona Daniele 1∗

As a rare neuro-genetic disease, Angelman syndrome (AS) affects about 15 to 500 thousand people worldwide. The AS is an imprinting
genomic disease characterized by the loss of function of the maternal UBE3A gene, located in the 15q11-q13. This gene encodes a
∼100 kDa protein, the Ubiquitin-protein ligase E3A (UBE3A), that participates in the ubiquitination process, one of the
post-translational protein modifications. In the brain, under normal conditions, the paternal allele of the UBE3A gene is silenced, with
only the maternal allele being active. However, in individuals with AS, the maternal loss of function of this gene leads to the complete
absence of UBE3A expression, resulting in multiple pathological features. Clinically, children diagnosed with AS exhibit a characteristic
behavioral phenotype, including a happy demeanor, frequent and unmotivated laughter, movement, speech impairment, severe
intellectual disability, and sleep problems. Since its discovery in 1965, significant progress has been made in understanding the genetic
and pathophysiological aspects of AS. However, despite these advances, the molecular mechanisms underlying the disease remain
incompletely understood, and no effective treatment currently exists. Current therapies focus solely on symptom management, and no
approach has yet succeeded in reactivating the silenced paternal UBE3A allele. Therefore, this review highlights the epigenetic aspects
involved in the AS in order to provide a better understanding and clarification of the mechanisms, hopefully paving the way for future
research to improve the treatment of affected individuals.
Keywords: Angelman syndrome, AS, epigenetic repression, genetic imprinting disorders, neuronal plasticity, ubiquitin-protein
ligase E3A, UBE3A, silencing mechanism.

Introduction
Neurological conditions are the leading cause of illness and
disability worldwide [1]. In 2021, more than three billion people
suffered from neurological disorders [2]. Among these, neu-
rogenetic disorders—including neurodevelopmental disorders
(NDDs)—represent one of the most significant and challenging
groups.

NDDs encompass a diverse range of conditions that typically
manifest early in life and are primarily associated with neu-
rodevelopmental impairments. In 1965, Angelman syndrome
(AS) was added to this group. AS is caused by the loss of function
of the maternally inherited UBE3A gene, located in the 15q11-q13
chromosomal region [3, 4]. The UBE3A gene encodes ubiquitin-
protein ligase E3A, a ∼100 kDa protein involved in ubiquitina-
tion, a key post-translational modification [3].

The loss of a functional UBE3A gene directly and indirectly
contributes to several pathological features. Although children
with AS typically have a normal prenatal and birth history, as
well as normal laboratory parameters, developmental delays
become noticeable only around six months of age [5]. Many clin-
ical features of AS overlap with characteristics of other NDDs,
such as movement and balance disorders, speech impairments,

and behavioral abnormalities. As a result, diagnosis is often
delayed until approximately 12–20 months of age [6].

Significant advances in understanding the genetic aspects
of this disease have been made since its discovery in 1965.
Notably, in 1984, researchers identified AS as a striking example
of genomic imprinting—an epigenetic phenomenon in which a
gene is expressed from only one parental allele. Under normal
conditions, the paternal allele of the UBE3A gene is silenced,
leaving only the maternal allele active. However, in individuals
with AS, a loss of function in the maternal allele prevents UBE3A
expression.

Genetic imprinting is just one example of many epigenetic
phenomena, in this case modulated by DNA methylation. In
the UBE3A gene region, located on chromosome 15q11-q13, an
imprinting center (IC) situated 35 kb upstream of the SNURF-
SNRPN promoter regulates the imprinting area through DNA
methylation. This process may be coordinated by the long non-
coding antisense RNA SNHG14 [7]. The imprinted domain on
human chromosome 15 consists of two oppositely imprinted
gene clusters, both under the coordinated control of the IC at the
5’ end of the SNURF-SNRPN gene. In this way, the maternal-only
expression of UBE3A may be regulated indirectly through a
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Table 1. Overview of clinical features and genetic cause of AS patients, from studies with large cohort published in the last 5 years

Characteristics| Authors
Du et al., 2024
(PMID: 36011358)

Carriero et al., 2024
(PMID: 38930051)

Bindels-de Heus
et al., 2019
(PMID: 31729827)

Den Besten
et al., 2020
(PMID: 33108066)

Manoubi et al., 2024
(PMID: 38322471)

Total of patients 695 62 100 95 50

Mean or range of age
(months)

6.34 ± 2.94 8.0 ± 17.7 5.7 ± 4.8 31.6 ± 12.6 12–84 months

Country of the study China Italy Netherlands Netherlands Tunisia

Age at diagnosis (months) 31.7 ± 24.1 4 24 ± 11.4 30 ± 27.6 NR NR

Symptoms

Epilepsy 554 (79.7%) 51 (82.2%) 82 (82%) 84 (89.4%) 44 (88%)
Sleep problem 613 (88.2%) 43 (69.4%) 91 (91%) 81 (88%) 45 (90%)
Feeding problems 564 (81.2) 40 (64.5%) 45 (45%) 45/91 (49%) 47 (94%)
Speech impairment 695 (100%) 49 (79%) NR 95 (100%) 40 (80%)
Strabismus 375 (54%) 42 (67.8%) 40 (40%) 30 (32%) NR
Behavioral features 647 (93.1%) 57 (92%) NR NR 48 (96%)

Genetic cause

Deletions 577 (83%) 36 (58%) 62 (62%) 56 (58.9%) NR
Non-deletions mutations 118 (17%) 26 (42%) 38 (38%) 39 (41.1%) NR 7 (14%)

NR: Nonreported; AS: Angelman syndrome.

paternally expressed antisense transcript. Specifically, a pro-
cessed antisense transcript of UBE3A originates at the IC. The
SNURF-SNRPN sense/UBE3A antisense transcription unit con-
tains at least 148 exons, including the previously identified IPW
exons (e.g., HBII-13, HBII-85, and HBII-52 snoRNAs), as well as
four additional snoRNAs: HBII-436, HBII-437, HBII-438A, and
HBII-438B [3, 7, 8].

Despite significant progress in understanding the molec-
ular complexity of this disease, it remains a puzzle, and,
unfortunately, no effective treatment currently exists. Cur-
rent therapies focus solely on managing symptoms, and
there is still no known method to reverse the imprint-
ing of the paternally silenced gene. This review aims to
summarize the molecular aspects of AS, emphasizing the
lack of sufficient epigenetic research in this area. By high-
lighting these gaps, we hope to pave the way for future
studies that could lead to improved treatments for affected
individuals.

Clinical aspects
Neurogenetic disorders encompass a wide range of diseases that
arise during nervous system development. The overlapping
clinical features among NDDs contribute to a broad differential
diagnosis, encompassing at least 13 neurological diseases, which
makes early and precise diagnosis challenging [9, 10].

In 1965, a new neurological disorder was identified when an
English physician, Harry Angelman, observed three unrelated
children with similar characteristics, including flat heads, jerky
movements, protruding tongues, and frequent bouts of laugh-
ter. During a vacation in Italy, Angelman encountered an oil
painting titled A Boy with a Puppet, which reminded him of
these children. Inspired by this, he published the first descrip-
tion of the condition, initially referring to the affected patients

as “puppet children.” The disorder was later named (AS) in his
honor [11].

AS is a rare neurogenetic disorder affecting approximately
15,000 to 500,000 people worldwide (Angelman Syndrome
Foundation). Reports in the literature suggest a low incidence
rate, ranging from 1 in 10,000 to 1 in 24,000 [12, 13].

Despite overlapping clinical features with other neurolog-
ical disorders, the most characteristic findings in individuals
with AS include severe developmental delay by 6–12 months of
age, delayed achievement of developmental milestones without
regression, absence of speech, epilepsy, sleep disturbances, gas-
trointestinal issues, a fascination with water, and a consistent
behavioral phenotype. This phenotype is marked by a happy
demeanor, easily provoked laughter, and hypermotoric behav-
ior (Table 1) [4, 14–16].

Diagnosing AS is challenging due to overlapping clinical
characteristics, with diagnosis typically occurring between 12
and 30 months (Table 1) [14–21]. Non-invasive prenatal tests for
microdeletions, particularly for AS, have low sensitivity and
positive predictive value, presenting critical limitations that
hinder early diagnostic certainty [22].

Genetic aspects
In 1987, in separate studies, Lawrence Kaplan and Ellen
Magenis [23, 24] observed a deletion on the long arm of
chromosome 15 in patients with AS, suggesting a potential
genetic cause for the disease. This same deletion had already
been identified in another genetic disorder, Prader-Willi
syndrome (PWS).

By the late 1980s, studies on a small cohort of patients sug-
gested a possible maternal origin of AS [25–28]. This was con-
firmed in 1992 by Smith and colleagues in a larger cohort of
25 individuals, all of whom exhibited a maternal inheritance
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Figure 1. Genetic cause distribution in Angelman syndrome with their clinical classification by the DNA methylation status: Classes I–III typically
show abnormal DNA methylation, while Class IV and V present normal methylation patterns.

pattern. Their findings established that PWS results from the
loss of part of chromosome 15 from the paternal lineage,
whereas AS arises from the loss of the same chromosomal region
but from the maternal lineage [29]. Finally, in 1997, Kishino
et al. [30] identified the gene responsible for AS: the UBE3A gene,
which encodes the E6AP-E3 ubiquitin-protein ligase.

The 15q11-q13 region, which contains all the genes involved
in both PWS and AS, is regulated by genomic imprinting and
is known as the IC. Genomic imprinting is an epigenetic phe-
nomenon in which a gene is expressed from only one allele,
depending on its parental origin. These two syndromes serve as
striking examples of imprinting disorders: the loss of the pater-
nal chromosome leads to the clinical features of PWS, while the
loss of the maternal chromosome results in AS.

The gene UBE3A is biallelically expressed in non-neuronal
cells, whereas in neuronal cells, only the maternally inher-
ited allele is expressed [31]. This imprinting pattern is regu-
lated by the UBE3A antisense transcript, formerly known as
UBE3A-ATS and now referred to as SNHG14, which silences
the paternal allele specifically in neuronal cells. This mech-
anism will be discussed in more detail in the following
section [31].

Initially, the deletion of 15q11.2 was thought to be the sole
cause of AS. However, by 1990, studies revealed that not all
patients exhibited this chromosomal deletion, suggesting the
presence of additional molecular causes [32, 33].

It is now well known that AS has four molecular causes
related to maternal loss of chromosome 15q11-q13. The most
common is a de novo deletion of approximately 4 Mb in this

region, occurring in 70%–85% of cases (patients classified as
Class I) [30, 34]. The second most frequent cause involves intra-
genic mutations in the UBE3A gene (Class IV), accounting for
10%–30% of cases [35–38]. Less common causes include paternal
uniparental disomy (UPD), present in 2%–5% of cases (Class II),
and defects in the imprinting process, occurring in 3%–5% of
cases (Class III) [4, 30, 39, 40]. Additionally, a fifth group of
patients (Class V) does not fit into any of these categories. While
they exhibit the main clinical features of AS, their genetic cause
remains unidentified [40]. Unlike patients in Classes I–III, those
in Classes IV and V show normal DNA methylation patterns,
which can be confirmed through DNA methylation analysis of
the 15q11-q13 IC [40, 41] (Figure 1).

The classification of patients based on their molecular status
appears to influence the clinical course and progression of the
disease. Given the complexity of the molecular mechanisms
involved in AS, accurate classification is crucial for clinicians
to better understand its clinical features and for researchers to
develop effective treatments.

To achieve this, an AS diagnostic algorithm is used, begin-
ning with DNA methylation analysis of the 15q11-q13 region. If
the methylation pattern is normal, a mutation test is performed
to classify patients into either Class IV (UBE3A mutation) or
Class V (unknown cause). If DNA methylation is abnormal, fur-
ther analysis is conducted using FISH or microarray techniques
to detect microdeletions, which are characteristic of Class III
patients (imprinting defect). If no microdeletion is found, DNA
marker testing for UPD is performed to identify Class II patients
(UPD) [16].
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Molecular epigenetics of AS
Epigenomic signatures include histone variants and modifica-
tions, alterations in nucleosome positioning, DNA methylation,
and non-coding RNAs (ncRNAs) [42]. The first study to suggest a
possible gender influence on offspring’s genetic inheritance was
published in 1984 [43, 44]. In this work, Davor [43] and James
McGrath, along with Surani et al. [44, 45], independently tested
embryos containing either two sets of chromosomes inher-
ited exclusively from the father or the mother. These embryos
were transferred into pseudo-pregnant recipient females but
failed to develop to term. This experiment demonstrated that
although the chromosomes were genetically identical, they
were not functionally equivalent without the presence of the
opposite parental origin. Thus, normal embryonic develop-
ment requires one set of chromosomes from each parent [46].
This phenomenon, known as genomic imprinting, refers to
epigenetic inheritance in which gene regulation is influenced
by parental origin. Offspring inherit an imprinted marker-
called the gametic differentially methylated region (gDMR).
This term was first used in 1991 when the first imprinted
genes—Igf2r, Igf2, and H19—were discovered [47–50]. The dif-
ferentially methylated region (DMR) inherited from a parent
directs parental-specific allelic expression and is referred to
as the IC. In genomic imprinting disorders, such as PWS and
AS, DNA methylation plays a crucial role in maintaining the
complexity of imprinting [8].

In 1992, it was discovered that the well-conserved region of
the D15S63 locus in 15q11-q13 is methylated on the maternally
inherited chromosome in PWS but remains unmethylated on
the paternally inherited chromosome. In contrast, the opposite
pattern occurs in AS [51, 52], making DNA methylation a valu-
able diagnostic marker for classifying AS patients [40]. Methy-
lationat the IC of chromosome 15 suppresses gene expression,
leading to gene silencing. Therefore, identifying the specific
gene or gene cluster within the DMR is crucial for understand-
ing the epigenetics of imprinting disorders [7].

In healthy individuals, the UBE3A gene is exclusively
expressed from the maternal allele in the brain, while the
paternal allele is silenced through genomic imprinting. This
silencing is regulated by the bicistronic SNURF-SNRPN gene
and orchestrated by the long noncoding antisense RNA SNHG14
(formerly, UBE3A-ATS) [7, 53]. On the maternal chromosome
15q11-q13, the PWS-IC region is methylated. This epigenetic
modification prevents transcription factors from binding to the
promoter, thereby silencing the gene. In contrast, the pater-
nal allele remains unmethylated, allowing the SNURF-SNRPN
gene to transcribe lncRNA SNHG14, which contributes to UBE3A
silencing [54].

Long ncRNAs (lncRNAs), as their name suggests, are not
translated into proteins and are defined as being longer than
200 base pairs (bp) [8]. The SNHG14 lncRNA is particularly
long at 3700 kilobases (kb) and is classified as a macro ncRNA.
LncRNAs can be found spliced in the cytoplasm or primarily
unspliced in the nucleus, which contributes to their typically
shorter half-life compared to messenger RNA (mRNA) [8, 55].

In mouse neurons, the Snhg14 lncRNA is expressed only
from the paternal allele, while Ube3a is expressed only from

the maternal allele. The proposed model for Ube3a silenc-
ing on the paternal chromosome in neurons is known as
the collision model. This model suggests that during Snhg14
transcription, the transcriptional machinery extends into the
Ube3a termination region. This overlap leads to transcrip-
tional collisions between RNA polymerases, causing truncated
elongation and subsequent degradation of the paternal Ube3a
transcript [8] (Figure 2). Therefore, inhibiting Snhg14 could be
a potential therapeutic strategy to unsilence the paternal copy
of UBE3A [56]. An American research group observed that mice
with a maternally deleted Ube3a allele (m−/p+) treated with
topotecan, a Topoisomerase I inhibitor, exhibited increased
UBE3A expression compared to wild-type mice [57]. This find-
ing suggests that Topoisomerase I inhibition disrupts tran-
scriptional progression along the Snhg14 region. Since Snhg14 is
not expressed from the paternal chromosome, this disruption
allows UBE3A to be expressed. However, topotecan and other
Topoisomerase I inhibitors affect more than just the UBE3A
locus on chromosome 15q11-q13, limiting their specificity and
making them a less attractive therapeutic option for humans.

As evidenced by the information reported above, literature
on epigenetic mechanisms in AS remains limited. However, ele-
gant studies on NDDs with clinical similarities to AS have pro-
vided valuable insights (reviewed in [42]). Research on children
with neurodevelopmental defects indicates that DNA methy-
lation and histone modification are crucial for normal brain
development [58]. Moreover, proper transcriptional regulation
through chromatin remodeling, as well as the action of ncRNAs,
such as miRNAs and lncRNAs, plays a crucial role in neurode-
velopmental processes [53, 59–62].

Currently, the most advanced approach for treating AS
involves the use of antisense oligonucleotides (ASOs) targeting
a conserved region of SNHG14. This strategy represses SNHG14
transcription, thereby enabling the expression of paternal
UBE3A [63, 64]. Dindot and colleagues achieved promising
results with this ASO in both in vitro and in vivo studies using
monkey specimens [63]. This therapeutic approach is now
being evaluated in clinical trials (GeneTx NCT04259281; Roche
NCT04428281). However, beyond the challenge of determin-
ing the optimal timing for restoring functional paternal UBE3A
expression in human trials, another critical consideration is
UBE3A’s interaction with other proteins and pathways that may
be disrupted by its absence in the brain (Figure 3A) [64]. These
interactions must be carefully assessed when developing new
therapies.

The homeostatic level of UBE3A expression is critical to
maintaining normal neuronal function
The ubiquitin-proteasome system (UPS) is a major pathway for
intracellular protein degradation in eukaryotic cells, involving
a large group of post-translational modification proteins [3, 65].
Ubiquitination plays a crucial role in maintaining cellu-
lar homeostasis by regulating various functions, including
proteasomal degradation, selective autophagy, cell signaling,
endocytosis, receptor trafficking, DNA damage response, cell
cycle control, and programmed cell death [3]. The UBE3A
gene encodes a ubiquitin-protein E3 ligase, a ∼100 kDa
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Figure 2. Schematic of the epigenetic imprinting regulation in Angelman syndrome, located in chromosome 15q11-q13 of neuron cells and the
plausible theory of silencing mechanism of paternal UBE3A gene. UBE3A: Ubiquitin-protein ligase E3A.

Figure 3. (A) UBE3A protein interactions based on UniProt data. Blue circles indicate interactions associated with Angelman syndrome,
yellow circles indicate associations with other diseases, and gray circles indicate interactions with no known disease association. (Modified from: https://
www.uniprot.org/uniprotkb/Q05086/entry#interaction.) (B) The absence or deficiency of UBE3A ubiquitin protein and transcripts in the nervous system
disrupts several cellular functions and negatively affects neuronal cell physiology. UBE3A: Ubiquitin-protein ligase E3A.

enzyme involved in the three-step ubiquitination process,
which requires a cascade of three enzymes: E1, E2, and E3 [3, 15].
First, E1 enzymes activate ubiquitin (Ub) by attaching it to E2.
Then, E3 ligases recognize the E2-Ub complex and facilitate the
transfer of Ub to the target protein [66].

The E3 ubiquitin ligase is responsible for ensuring the speci-
ficity of the ubiquitination process, so it is plausible to have
a large number of these enzymes—more than 800 have been
identified so far—while only a small portion of E1 activating
enzymes and E2 conjugating enzymes exist [65, 66]. E3 ligases
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can be classified into four types: the most common Really Inter-
esting New Gene (RING) finger type and the Homologous to the
E6-associated protein (E6-AP) Carboxyl Terminus (HECT) type,
as well as the less common U-box and RBR types [66].

The UBE3A protein was originally known as E6-AP because
it interacts with the Human Papillomavirus (HPV) E6 oncopro-
tein to degrade the cell cycle protein p53 [67]. However, later
research revealed that this degradation occurs only in the pres-
ence of and in association with the E6 viral oncoprotein [68].

In 1998, Jiang and colleagues established a mouse model
for AS [69] by completely knocking out the maternal UBE3A
gene at exon 2. These mice exhibited key clinical features of
AS, including motor disabilities, seizures, sleep disturbances,
and learning and memory deficits. Additionally, they showed
increased cytoplasmic p53 levels in postmitotic Purkinje cells
in m−/p+ mice. Considering Cooper’s findings in 2003 [68],
it is possible that E6-AP plays a significant role in regulating
p53 levels in vivo by utilizing a substitute molecule for E6, as
previously suggested by Jiang et al. [69].

The UBE3A protein plays a crucial role in target protein
recognition, ensuring specificity in the ubiquitination process.
Therefore, its absence or deficiency in the nervous system can
be highly detrimental to neurons. While UBE3A deficiency leads
to AS, elevated levels of the protein are associated with autism
spectrum disorder (ASD) [41]. The duplication of the 15q11-q13
chromosome region increases UBE3A levels, exacerbating ASD
symptoms—a phenomenon observed in rodent models [69].
This highlights that the precise regulation of UBE3A is critical
in determining the clinical outcomes of affected individuals.

The gene UBE3A plays a crucial role in gene expression by
generating several transcription factors that interact with var-
ious molecules. In a 2011 study using Drosophila flies, Ferdousy
and colleagues demonstrated that UBE3A (Dube3A) acts as a
transcriptional coactivator, upregulating GTP cyclohydrolase
I (GCH1). Consequently, the absence of Dube3A in Drosophila
leads to increased levels of dopamine and its precursors [70].

Additionally, evidence suggests that UBE3A transcription
is essential for maintaining the circadian clock by regulat-
ing the transcription factor Brain and Muscle ARNT-Like 1
(BMAL1). Gossan and colleagues have demonstrated that UBE3A
levels in vivo are critical for regulating the circadian system
in both mammals and flies. Their findings indicate that, in
the absence of UBE3A, BMAL1 protein levels are higher in
wild-type rodents [71]. Moreover, UBE3A interacts with the fac-
tors ECT2 (Epithelial Cell Transforming Factor) and Ephexin V
(E5). These molecules regulate Rho GTPases, which are essen-
tial for maintaining proper dendritic spine density and, con-
sequently, neuronal plasticity in the brain. The loss of UBE3A
expression disrupts the regulation of these molecules, poten-
tially leading to memory and learning impairments [72].

The UBE3A protein also functions as a coactivator for steroid
hormone receptors, including progesterone, estrogen, andro-
gen, glucocorticoid, retinoic acid receptor-α, and thyroid hor-
mone receptors [73]. A deficiency or improper regulation of
functional UBE3A in the brain can lead to the accumulation of
its target proteins, potentially contributing to the pathogenesis
of AS (Figure 3B).

The impact of UBE3A deficiency on cellular pathways
Studies demonstrate that UBE3A levels influence key cel-
lular pathways, including cAMP, MAPK, c-Jun N-terminal
kinase (JNK), and extracellular signal-regulated kinase (ERK).
Filonova and colleagues (2015) showed that in an AS mouse
model (Ube3a m−/p+), the activation of p44/p42 ERK1/2 is
impaired following neuronal depolarization. This finding indi-
cates that the absence of UBE3A reduces MAPK activation in the
brain [74], which in turn affects synaptic plasticity and memory
formation. Additionally, the lack of UBE3A leads to increased
JNK activity—a stress signaling pathway—and a decreased
p-ERK/ERK ratio in heterozygous (m−/p+) mice compared to
wild-type [75]. JNK activation in the brain may contribute to
neurodegeneration by phosphorylating c-Jun, thereby trigger-
ing neuronal death. This suggests that JNK signaling inhibitors
could be a promising treatment target (Figure 3B). Since
UBE3A is a key ubiquitin-protein ligase responsible for degrad-
ing intracellular proteins, its absence may result in the
accumulation of various substrates, directly affecting cell
signaling.

Vatsa and colleagues also demonstrated in a mouse model
of AS that in rodents with Ube3a (m−/p+), miRNA-708 is
downregulated in the brain. Since miRNA-708 plays a crucial
role in regulating intracellular calcium homeostasis—essential
for neuronal function—its deregulation leads to an abnormal
increase in calcium signaling in AS mice. This disruption may,
in turn, affect synaptic plasticity in the context of AS [76].

In the AS mouse model (m−/p+), there is a disruption in
neuroplasticity, specifically in long-term potentiation (LTP)
within the hippocampus [69, 77]. Maintaining basal synap-
tic plasticity and transmission involves a coordinated process
between adenosine G protein-coupled receptors (GPCRs), par-
ticularly the adenosine A2A receptor (A2AR) and A1 receptor
(A1R) [78–80]. Under normal conditions, A2AR expression
in the brain is low compared to A1R. However, during
high-frequency synaptic activity, A2AR is upregulated, mean-
ing it is recruited only during intense nerve stimulation that
induces synaptic changes, such as LTP [79]. Given this, evidence
suggests that A2AR may play a role in the pathophysiology of
AS. In 2020, a Portuguese research group investigated whether
blocking A2AR could improve memory dysfunction and synap-
tic plasticity. They found that AS mice (Ube3a m−/p+) exhib-
ited impaired hippocampal-dependent learning and memory in
the Morris Water Maze, along with increased A2AR expression
in hippocampal tissue. Chronic treatment with a selective A2AR
antagonist restored hippocampal-dependent learning strate-
gies and rescued LTD deficits [81].

If the absence of Ube3a in rodents leads to an accumulation
of A2AR, it is plausible that the lack of UBE3A in humans could
also interfere with the expression of adenosine receptors in
the brain. In fact, A2BR plays a crucial role in energy regu-
lation in the brain, participating in cAMP signaling in astro-
cytes to modulate their metabolic activation via the cAMP–PKA
signaling pathway. Moreover, an upregulation of this adeno-
sine receptor in the brain has been observed to support this
function [82]. Therefore, investigating the role of adenosine
receptors in UBE3A models could provide valuable insights into
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the pathophysiology of AS and potentially lead to new combina-
tion treatment approaches.

Future perspectives
Genetic imprinting is one of the most fascinating aspects of
molecular genetics, and AS is a notable imprinting disor-
der affecting up to 500,000 people worldwide. Over the past
60 years, significant progress has been made in understanding
its molecular and genetic mechanisms. However, an effective
treatment remains elusive.

Currently, the most studied therapeutic approach focuses
on inhibiting SNHG14, either directly through ASOs or indi-
rectly via topotecan-mediated inhibition. Despite this progress,
concerns remain regarding the specificity and efficacy of this
strategy in in vivo models, as well as the optimal timing
for restoring functional paternal UBE3A expression in human
clinical trials.

Conclusion
In conclusion, elucidating the molecular mechanisms behind
the silencing of the paternal UBE3A allele is crucial for address-
ing the root cause of AS and restoring functional UBE3A protein
expression in affected individuals. However, given UBE3A’s
extensive interactions with other proteins in the brain, it is
equally important to consider modulating abnormal signaling
pathways for a more effective combination therapy. Addition-
ally, investigating receptor expression imbalances in neuronal
cells of AS models may be key to unlocking promising new
treatment targets.
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