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R E S E A R C H A R T I C L E

Genomic correlation, shared loci, and causal link between
obesity and diabetic microvascular complications:
A genome-wide pleiotropic analysis
Wei Zhang 1#, Qinghua Zhang 2#, Yan Luo 3#, Leilei Ma 2, Xuejun Wang 2, Qiao Zheng 2, Xiaotian Zhang 2, Shentao Wu 2,
Zhan Li 4, and Yingfei Bi 1∗

Observational studies have identified a connection between obesity and microvascular complications in diabetes, yet the genetic
contributions to their co-occurrence remain incompletely understood. Our research aims to explore the shared genetic architecture
underlying both conditions. We employed linkage disequilibrium score regression (LDSC) and Local Analysis of [co]Variant Association
(LAVA) to assess genetic correlations between obesity and diabetic microvascular complications. To validate shared genetic regions,
we conducted pleiotropic analysis under the composite null hypothesis (PLACO), functional mapping and annotation (FUMA), and
colocalization analysis. Additionally, we applied Multimarker Analysis of GenoMic Annotation (MAGMA), Summary-based Mendelian
Randomization (MR), multi-trait colocalization, and enrichment analysis to identify potential functional genes and pathways. Finally,
MR and latent causal variable (LCV) analysis were used to clarify causal and pleiotropic relationships across trait pairs. Among 21 trait
pairs analyzed, 15 exhibited significant global genetic correlations, and 97 regions showed significant local correlations. PLACO
identified 3659–20,489 potentially pleiotropic single nucleotide polymorphisms (SNPs) across 15 trait pairs, with 828 lead SNPs
detected via FUMA. Colocalization analysis confirmed 52 shared loci. Gene-based analysis identified seven unique candidate pleiotropic
genes, with ribosomal protein S26 (RPS26) emerging as the strongest shared gene. MR and LCV analyses supported a causal relationship
between BMI and diabetic kidney disease (DKD). Our findings highlight a shared genetic basis linking obesity with diabetic
microvascular complications. These insights offer potential pathways for understanding the mechanisms driving their comorbidity and
may inform more integrated therapeutic approaches.
Keywords: Shared genetic architecture, obesity, diabetic microvascular complications, global genetic correlation.

Introduction
Diabetic microvascular complications are a significant cause
of mortality in patients with diabetes [1]. Diabetic kidney dis-
ease (DKD), diabetic retinopathy (DR), and diabetic neuropa-
thy (DN) are hallmark manifestations of these complications
and frequently co-occur in affected individuals [2]. DKD can
rapidly progress to end-stage kidney disease, and currently,
there are no specific and effective drug treatments available
to halt its progression [3]. Additionally, DR can lead to vision
loss, significantly impairing patients’ quality of life [4]. DN—
which includes both peripheral and autonomic forms—is a
common complication among individuals with diabetes. It often
presents with a “stocking and glove” distribution of sensory
symptoms and may also affect vital organs, such as the heart,
kidneys, and bladder [5]. Obesity plays a central role in the

development of diabetes mellitus and significantly exacerbates
both its microvascular and macrovascular complications [6].
Weight management is therefore a fundamental strategy for
reducing the risk of microvascular complications in people with
diabetes [7], and optimizing lipid profiles can further enhance
these protective effects [8, 9]. Research suggests that a com-
bination of lifestyle interventions and early pharmacological
treatment can help preserve microvascular function in indi-
viduals with prediabetes [10]. Moreover, Roux-en-Y gastric
bypass (RYGB) surgery has been shown to reduce proteinuria
in patients with type 2 diabetes mellitus (T2DM) and obesity
who are in the early stages of chronic kidney disease [11].
As a result, the American Diabetes Association (ADA) empha-
sizes the importance of behavioral modifications, pharma-
cotherapy, and surgical interventions for achieving weight loss

mailto:15684891719@163.com
https://doi.org/10.17305/bb.2025.11897
https://creativecommons.org/licenses/by/4.0/
https://www.biomolbiomed.com
https://www.biomolbiomed.com
https://orcid.org/0009-0004-8764-1501
https://orcid.org/0009-0008-1710-1592
https://orcid.org/0009-0007-6749-8615
https://orcid.org/0009-0006-6417-2866
https://orcid.org/0009-0009-4339-4621
https://orcid.org/0009-0004-4842-5582
https://orcid.org/0009-0002-4213-8932
https://orcid.org/0009-0001-5822-4248
https://orcid.org/0009-0004-5006-0607
https://orcid.org/0009-0004-8342-6820


and reducing obesity-related complications in patients with
T2DM [12]. In conclusion, while the strong link between obesity
and diabetic microvascular complications is well recognized,
the underlying mechanisms remain incompletely understood
and warrant further investigation. Genetic studies provide
compelling evidence that weight management is an effective
strategy for preventing these complications—independent of
glucose control—offering a novel perspective to explore poten-
tial shared genetic pathways between obesity and diabetic
microvascular complications [13].

Obesity and diabetic microvascular complications are
believed to share a significant genetic basis. Large-scale
genome-wide association studies (GWAS) have identified
numerous genetic markers linked to both conditions, lending
strong support to this perspective [14, 15]. The field of research
exploring the interplay between genetics and disease has
made considerable progress. For example, genetic associations
have been established between body mass index (BMI) and
polycystic ovary syndrome [16], as well as between multiple
sclerosis and inflammatory bowel disease [17]. However, the
genetic connection between obesity and diabetic microvascular
complications remains relatively underexplored. Despite the
complex and multifactorial nature of these diseases, genetic
factors are known to play a critical role in both their onset and
progression. A more detailed investigation of specific genetic
loci underlying these correlations is essential for deepening our
understanding of their genetic foundations and for developing
more targeted strategies for prevention and treatment [18].

In this comprehensive genome-wide study of shared
genetics, we conducted an extensive comparative analysis of
seven obesity-related traits—BMI, waist-to-hip ratio (WHR),
WHR adjusted for BMI (WHRadjBMI), low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol
(HDL-C), total cholesterol (TC), and triglycerides (TG)—
alongside three types of diabetic microvascular complications:
DKD, DR, and DN. Our primary objective was to identify
potential shared genetic factors between these traits using
a range of statistical genetics methodologies. We began by
examining global and local genetic correlations between each
pair of traits. This was followed by the application of a compre-
hensive suite of analytic tools—including pleiotropic analysis
under the composite null hypothesis (PLACO), functional
mapping and annotation (FUMA), colocalization analysis,
Multimarker Analysis of GenoMic Annotation (MAGMA),
summary data–based Mendelian randomization (SMR), and
multi-trait colocalization—to detect pleiotropic variants and
genes. Lastly, we explored potential causal relationships or
pleiotropy underlying these traits using Mendelian random-
ization (MR) and the latent causal variable (LCV) approach. A
flowchart outlining the main analytical steps is presented in
Figure 1.

Materials and methods
GWAS data sets
The obesity-related data in this study were primarily derived
from two main sources. The first dataset included information

on BMI, WHR, and WHRadjBMI, obtained from a large-scale
meta-analysis combining data from the UK Biobank and the
GIANT consortium [19]. This study represents the most exten-
sive genome-wide association analysis of obesity to date,
incorporating approximately 700,000 individuals of Euro-
pean ancestry [19]. The second dataset consisted of summary
statistics from the Global Lipids Genetics Consortium, which
included 1,654,960 participants from five distinct genetic ances-
try groups [20]. For our analysis, we specifically used GWAS
summary data for four lipid traits—LDL-C, HDL-C, TC, and
TG—limited to participants of European descent. These GWAS
analyses were adjusted for age, age squared, sex, principal com-
ponents, and study-specific covariates to account for poten-
tial confounding factors [20]. The genetic data for diabetic
microvascular complications were sourced from the Finnish
Biobank Alliance (FinnGen), version 9. The GWAS cohorts for
DKD, DN, and DR comprised 4,111, 2,843, and 10,413 cases,
respectively, with corresponding control groups of 308,539,
271,817, and 308,633 individuals [21]. These complications were
identified using ICD-10 codes. All datasets utilized in this study
are publicly available, as detailed in Table S1.

Statistical analysis
Identification of genetic correlations
Linkage disequilibrium score regression (LDSC) is a widely used
method for estimating genetic correlations between traits using
GWAS summary statistics. In this study, we employed LDSC to
assess the genetic correlations between obesity-related traits
and diabetic microvascular complications [22]. Prior to anal-
ysis, we preprocessed the data by filtering single nucleotide
polymorphisms (SNPs) using the HapMap3 reference panel,
ensuring high-quality and consistent SNP selection. LDSC esti-
mates genetic correlation (rg) on a scale from −1 to 1. An absolute
rg value closer to one indicates a strong genetic correlation,
suggesting a substantial shared genetic basis between the traits,
while values closer to 0 imply a weaker correlation. In general,
an rg greater than 0.1 is considered indicative of a meaningful
genetic relationship. To determine statistical significance, we
applied a Bonferroni correction for multiple comparisons, set-
ting the threshold at P < 0.002 (0.05/21). While LDSC assesses
genome-wide correlations, it may overlook regional associa-
tions. To address this limitation, we also applied the Local
Analysis of [co]Variant Association (LAVA) method, which
enables investigation of local genetic correlations within spe-
cific genomic regions [23]. The LAVA approach partitions the
human genome into 2495 independent segments, each approx-
imately 1 Mb in size, allowing for more precise detection of
shared genetic architecture at the regional level. For this analy-
sis, we applied a Bonferroni-corrected significance threshold of
P < 0.00002 (0.05/2495).

Identification of pleiotropic regions
PLACO is a novel statistical method designed to identify
pleiotropic SNPs shared between two traits [24]. Its core con-
cept involves testing each SNP against a composite null hypoth-
esis that assumes the SNP is associated with either one trait
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Figure 1. Overview of statistical analyses performed in the study. GWAS summary statistics on 7 obesity-related traits and diabetic microvascular
complications were retrieved. First, we investigated the global and local genetic correlations among each pair of traits. Subsequently, we used a series
of comprehensive approaches to identify pleiotropic variants and genes. Finally, the potential causality or pleiotropy behind these diseases were further
explored. LDSC: Linkage disequilibrium score; LAVA: Local Analysis of [co]Variant Association; PLACO: Pleiotropic analysis under composite null hypothesis;
FUMA: Functional mapping and annotation of genetic associations; MAGMA: Multimarker Analysis of GenoMic Annotation; SMR: Summary-based Mendelian
Randomization; MR: Mendelian Randomization; LCV: Latent causal variable; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes;
DKD: Diabetic kidney disease; DR: Diabetic retinopathy; DN: Diabetic neuropathy; BMI: Body mass index; WHR: Waist-to-hip ratio; WHRadjBMI: Waist-
to-hip ratio adjusted for body mass index; HDL-C: High-density lipoprotein cholesterol; TG: Triglycerides.

or neither. By using the product of two sets of Z-statistics as
input, PLACO decomposes the composite null into three sub-
scenarios, alongside an alternative hypothesis that represents
true pleiotropic association. Unlike traditional SNP-based asso-
ciation analyses, PLACO’s composite hypothesis framework
reduces false positives that can arise from imbalanced SNP
effects between traits. Following PLACO analysis, SNPs with

P < 5 × 10−8 are considered significant pleiotropic variants,
suggesting potential influence across multiple traits. However,
PLACO does not directly identify which specific SNPs con-
tribute most to the observed linkage disequilibrium (LD). To
refine our findings, we used FUMA, which incorporates LD
information and additional genomic data to identify lead SNPs
from the PLACO results. This analysis applied an LD threshold of
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R2 < 0.1 within a 1 Mb window [25]. To further investigate the
biological relevance of these lead SNPs, we performed a com-
prehensive colocalization analysis on the loci containing them.
Colocalization analysis evaluates the likelihood that observed
associations for two traits arise from the same causal variant,
based on five mutually exclusive hypotheses: H0 (no association
with either trait), H1 and H2 (association with only one of the
two traits), H3 (association with both traits, but due to distinct
causal variants), and H4 (association with both traits due to a
shared causal variant). A posterior probability for H4 (PPH4)
exceeding 0.95 indicates strong evidence of a shared genetic
basis at that locus [26].

Functional annotation and enrichment analysis
MAGMA is a widely used tool for gene-based analysis of GWAS
data. It aggregates the associations of multiple SNPs within
defined gene regions while accounting for LD between SNPs,
enabling efficient mapping of associated variants to their cor-
responding genes and laying the groundwork for compre-
hensive genome annotation. In this study, we followed the
default settings in the FUMA software and incorporated SNP
P values derived from the earlier PLACO analysis to perform
MAGMA-based gene analysis [27]. Additionally, we employed
SMR, a method that integrates GWAS data with functional
biological information—such as gene expression and protein
abundance—to examine associations between genes or pro-
teins and target traits [28]. Specifically, we selected SNPs
from eight different GWAS datasets representing traits, such
as BMI, WHR, WHRadjBMI, TG, HDL-C, DKD, DR, and DN as
instrumental variables. These SNPs were then jointly analyzed
with expression quantitative trait loci (eQTL) data from blood,
kidney, and pancreas tissues, as well as protein quantitative
trait loci (pQTL) data from blood, in order to investigate their
functional roles across different tissues [29, 30]. To evaluate
whether the observed relationships between QTLs and traits
were influenced by intergenic linkage effects or collinearity,
we applied the heterogeneity in dependent instruments (HEIDI)
test. We considered associations significant if they met both
a Bonferroni-corrected P value threshold (calculated as 0.05
divided by the number of tests in each group) and a HEIDI
P value greater than 0.05. To further assess the causality of
SMR findings, we utilized the Hypothesis Prioritization for
Multi-trait Colocalization (HyPrColoc) method. This approach
identifies shared genetic influences contributing to multiple
traits by prioritizing plausible causal configurations. HyPr-
Coloc is capable of efficiently analyzing large numbers of traits
and focuses on a small set of likely causal variants. We con-
sidered results with a PPH4 greater than 0.7 to be highly
stringent and indicative of shared genetic architecture across
traits [31]. Finally, to gain insight into the potential biologi-
cal functions of genes identified through both colocalization
and MAGMA analyses, we conducted Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses. These were performed using the cluster-
Profiler and pathview R packages, with significance defined as
P < 0.05 [32, 33].

Assessment causal and pleiotropy relationship
MR and LCV analyses were employed to investigate causal
and pleiotropic relationships between various trait pairs, offer-
ing complementary perspectives. MR uses genetic variants as
instrumental variables to assess potential causal relationships
between exposures—such as environmental factors or behav-
iors—and disease outcomes. The underlying premise is that if a
genetic variant is strongly associated with an exposure, and the
exposure is in turn associated with disease risk, then the vari-
ant may exert a causal effect on disease susceptibility [34, 35].
To assess the robustness of MR findings, we used Cochran’s
Q test to detect heterogeneity in the individual causal effects
and applied MR-Egger’s intercept test to evaluate the presence
of horizontal pleiotropy. LCV offers a more nuanced framework
for disentangling the causal structure underlying genetic corre-
lations. It introduces an LCV that mediates genetic effects across
traits. When a trait shows strong genetic correlation with this
latent variable, it is inferred to exert a partial genetic causal
effect on the other trait. LCV quantifies this relationship using
the genetic causality proportion (GCP) metric: a GCP close to
one suggests a predominant causal genetic influence, while a
value near 0 indicates that pleiotropy plays a larger role. The
sign of the GCP also indicates the direction of the causal effect.
In this study, a GCP value above 0.7 was interpreted as evidence
of a substantial genetic causal effect, suggesting that most of
the observed genetic correlation was likely driven by causal
mechanisms [35]. Together, MR and LCV provided a robust
analytical framework for distinguishing between pleiotropic
effects and true causal relationships, offering a more compre-
hensive understanding of the genetic architecture underlying
complex diseases. To control for false positives due to multiple
testing, we applied a Bonferroni correction.

Results
Overall and local genetic correlation
The overall genetic correlation results indicate that BMI, WHR,
WHRadjBMI, TG, and HDL-C exhibit moderate positive corre-
lations with both diabetic microvascular complications. Among
them, BMI and WHR display the strongest correlation with
DKD (rg = 0.47, P = 4.725e-26; rg = 0.47, P = 4.40e-22).
Additionally, TG demonstrates a negative genetic correlation
with DKD, DR and DN (rg = –0.42, P = 8.062e-16; rg =
–0.31, P = 2.181e-14; rg = –0.27, P = 8.41e-09). However, TC
demonstrates nearly negligible correlation with DKD, DR and
DN (rg = –0.01, P = 0.704; rg = –0.02, P = 0.547), similar to
the results observed for LDL-C (rg = –0.05, P = 0.301; rg =
–0.04, P = 0.358; rg = 0.05, P = 0.257). In summary, out of
the 21 trait pairs analyzed, only 15 showed significant global
genetic correlations (Table 1, Figure S1, and Table S2). The LAVA
analysis identified a total of 97 significant local genetic correla-
tions across these trait pairs. Notably, LDL-C and HDL-C exhib-
ited the highest number of significant local correlations with
DKD, each contributing 10 regions. Interestingly, these findings
contrast with the global genetic correlation analysis, which did
not detect a significant relationship between LDL-C and either
DR or DKD. Similarly, a positive global genetic correlation was
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Table 1. Genome-wide genetic correlation between diabetic
microvascular complications and obesity-related traits

Trait1 Trait2 rg SE P value

DKD BMI 0.47 0.0447 4.73e-26

DKD WHR 0.47 0.0488 4.40e-22

DKD WHRadjBMI 0.22 0.0437 5.07e-07

DKD LDL-C −0.05 0.0447 3.01e-01

DKD HDL-C 0.43 0.0473 2.17e-19

DKD TC −0.01 0.0378 7.04e-01

DKD TG −0.42 0.0519 8.06e-16

DR BMI 0.38 0.0348 1.28e-27

DR WHR 0.40 0.0347 8.54e-31

DR WHRadjBMI 0.20 0.0321 6.72e-10

DR LDL-C −0.04 0.0382 3.58e-01

DR HDL-C 0.32 0.0412 6.19e-15

DR TC −0.02 0.0324 5.47e-01

DR TG −0.31 0.0402 2.18e-14

DN BMI 0.36 0.0487 1.45e-13

DN WHR 0.33 0.0425 5.01e-15

DN WHRadjBMI 0.13 0.0368 3.01e-04

DN LDL-C 0.05 0.0453 2.57e-01

DN HDL-C 0.29 0.0475 7.47e-10

DN TC 0.05 0.0403 1.97e-01

DN TG −0.27 0.0464 8.41e-09

rg: Genetic correlation; SE: Standard error; BMI: Body mass index; WHR:
Waist-to-hip ratio; WHRadjBMI: Waist-to-hip ratio adjusted for body mass
index; LDL-C: Low-density lipoproteins cholesterol; HDL-C: High-density
lipoprotein cholesterol; TC: Total cholesterol; TG: Triglycerides; DKD: Dia-
betic kidney disease; DR: Diabetic retinopathy; DN: Diabetic neuropathy.

observed between WHRadjBMI and DKD; however, no corre-
sponding local genetic correlation was found between these
traits in the LAVA analysis. Surprisingly, despite the weak or
negligible global genetic correlations between TC and DKD, DR,
or DN, LAVA revealed 7, 9, and 9 significant local correlations
for these trait pairs, respectively (Figure 2 and Table S3).

Pleiotropic regions validation
Within the scope of these 15 distinct traits, PLACO analy-
sis revealed a spectrum of potential pleiotropic SNPs rang-
ing from 3659 to 20,489, with a total of 37,738 unique SNPs
(Figure S2). Subsequent meticulous scrutiny using FUMA iden-
tified a subset of 828 independent SNPs, representing instances
of pleiotropy. Among these, the HDL-C and DR trait pair exhib-
ited the highest abundance, with 103 lead SNPs, while the
TG-DN trait pair displayed the lowest count, with 25 lead SNPs.
Additionally, among these lead SNPs, rs429358 concurrently
influenced 11 pairs of traits, while rs7903146 impacted seven
pairs of traits (Table S4). According to ANNOVAR’s catego-
rization, as a facet of FUMA’s capabilities, among the 828 lead

SNPs, 41.7% were found to be intronic variants, while 34.6%
were intergenic variants. Exonic variants, which included eight
noncoding RNA exonic variants, made up only 5.4% of the
total. Furthermore, there were 20 UTR3 variants (2.4%) and
six UTR5 variants (0.7%) (Table S4). Subsequent colocalization
analysis unveiled 52 loci with strong colocalization signals, all
surpassing a PPH4 threshold of 0.95. Notably, among these
loci, 10 were associated with DKD, 40 with DR, and two with
DN. Within these loci, rs10938397 emerged as a pivotal can-
didate locus linked to DR, exhibiting concurrent evidence of
associations with BMI, HDL-C, and WHR. Moreover, another
SNP, rs429358, demonstrated colocalization evidence in both
DKD and DR, displaying significant correlations with HDL-C,
WHR, and WHRadjBMI traits. Similarly, rs7144011 showed a
significant association with DR, and further analysis revealed
its associations with a range of obesity-related characteristics,
including BMI, HDL-C, TG, and WHR (Table 2, Figure S3, and
Table S5).

Shared gene function and enrichment analysis
In this study, we employed various analytical methods to delve
into potential shared genetic influences among multiple traits.
Firstly, we identified a total of 4164 pleiotropic genes through
MAGMA analysis, of which 88 overlapped with genes in the
region of the colocalization analysis results (Table S6). Notably,
several genes, such as APOE, PVRL2, and TOMM40 exhibited
significance across all seven pairs of traits, followed by APOC1,
which was implicated in five trait pairs. Subsequently, we con-
ducted SMR analyses on GWAS data, eQTL data (including
whole blood, kidney, and pancreas), and whole-blood pQTL
data, leading to the discovery of 879 shared genes and pro-
teins. In the eQTL analysis, we found 348, 91, and 259 shared
genes in the non-MHC regions of whole blood, kidney, and
pancreas, respectively. Particularly in kidney tissue, C4A was
identified as a shared gene across multiple traits, encompass-
ing WHR and DR/DKD/DN, TG and DR/DKD/DN, as well as
BMI and DR/DKD/DN. Additionally, we observed the pres-
ence of XXbac-BPG254F23.7 as shared between HDL-C and
DR/DKD/DN, and intriguingly, ribosomal protein S26 (RPS26)
emerged as a shared gene not only between TG and DR but also
between HDL-C and DR/DKD. Notably, it’s important to high-
light that previous colocalization analyses focusing on HDL-C
and DR had already pinpointed RPS26 as one of the shared
genetic variants. Similarly, in pancreas tissue, RPS26 was iden-
tified as a shared gene between TG and DR. However, no shared
genes were identified in blood tissue (Table S7). Using pQTL
data, MANBA (associated with the corresponding protein) was
exclusively found in the BMI-DR pair (Table S8). Lastly, in
the multi-trait colocalization analysis, we discovered a series
of shared genes across different trait pairs, including JAZF1,
NCR3LG1, RP1-239B22.5, SUOX, ZBTB20, IKZF4, and NIPSNAP1
(Table S9). However, the most surprising finding was the iden-
tification of RPS26 between HDL-C and DR, as well as in the
eQTL (kidney) analyses. This result was consistently validated
across the multi-trait colocalization analysis, SMR analysis, and
previous colocalization analyses. Moreover, all three analytical
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Figure 2. Local genetic correlations between obesity-related traits and diabetic microvascular complications. Distinct colors are used to represent
different traits, while the width of the connecting bands (chords) reflects the strength of the relationships between genes. A wider band indicates a
stronger correlation between traits, while a narrower band signifies a weaker correlation. Only correlations meeting P < 0.00002 (0.05/2495) are displayed.
DKD: Diabetic kidney disease; DR: Diabetic retinopathy; DN: Diabetic neuropathy; BMI: Body mass index; WHR: Waist-to-hip ratio; WHRadjBMI: Waist-to-hip
ratio adjusted for body mass index; HDL-C: High-density lipoprotein cholesterol; TG: Triglycerides.

methods supported the lead SNP: rs11171739. In the GO enrich-
ment analysis, we identified 311 enriched biological process (BP)
pathways, 33 enriched cellular component (CC) pathways, and
57 enriched molecular function (MF) pathways. For example,
the “regulation of insulin secretion” (GO:0050796, P = 1.89e-07)
pathway exhibited the most significant enrichment in BP, while
“chylomicron” (GO:0042627, P = 3.98e-04) and “MAP kinase
kinase activity” (GO:0004708, P = 8.39e-04) showed significant
enrichment in CC and MF, respectively (Figure 3A). Addition-
ally, we conducted KEGG pathway enrichment analysis and
identified 13 significantly enriched pathways, with “Insulin
secretion” (KEGG: hsa04911, P = 2.41-3e) displaying significant
enrichment (Figure 3B).

Causal and pleiotropy inference
To delve into the causal relationships between diabetic
microvascular complications (DKD, DR, and DN) and
obesity-related traits (HDL-C, TG, BMI, WHRadjBMI, and
WHR), we employed a bidirectional MR approach with the
inverse variance weighted (IVW) method as the primary analyt-
ical tool. The results show clear causal relationships in only six
pairs: BMI-DKD (PIVW = 5.12e-11, OR = 1.68[1.44, 1.97]), BMI-DR

(PIVW = 4.76e-13, OR = 1.44[1.30, 1.58]), WHRadjBMI-DKD
(PIVW = 7.43e-06, OR = 1.47[1.24, 1.74]), WHRadjBMI-DR (PIVW
= 5.96e-07, OR = 1.32[1.18, 1.47], WHR-DN (PIVW = 1.10e-07,
0R = 1.81[1.45, 2.25]), and WHRadjBMI-DN (PIVW = 8.8e-04,
0R = 1.38[1.14, 1.67]). Additionally, all the aforementioned
results have been subjected to heterogeneity (P > 0.05) and
pleiotropy testing (P > 0.05). Notably, no evidence of reverse
causation was observed among these factors (Figure 4 and
Table S10). To fortify the integrity of our findings, we judi-
ciously employed LCV. This rigorous approach reaffirmed the
causal nexus between BMI and DKD (P = 1.55e-4, GCP = 0.75),
substantiating the robustness of this association. In contrast to
the MR findings, there is also a strong genetic causality between
HDL-C and DN (P = 4.71e-14, GCP = 0.82) (Table S11).

Discussion
To the best of our knowledge, this is the first comprehensive
genome-wide study to investigate the pleiotropic associations
underlying the co-occurrence of obesity and microvascular
complications in diabetes. We employed a multifaceted array
of statistical methods to rigorously assess genetic correlations,
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Table 2. 52 colocalized loci identified by colocalization analysis

Trait pair Lead SNP CHR Locus boundary* PPH4 Trait pair Lead SNP CHR Locus boundary* PP.H4

BMI-DKD rs7903146 10 114722134-114818754 0.991 TG-DR rs9379084 6 7231843-7231843 0.980

BMI-DKD rs76895963 12 4384844-4384844 1.000 TG-DR rs7451008 6 20641336-20727570 0.982

BMI-DR rs10938397 4 45068929-45193147 0.996 TG-DR rs1708302 7 28142088-28209953 0.967

BMI-DR rs849135 7 28142088-28209953 0.977 TG-DR rs3802177 8 118184783-118220270 0.957

BMI-DR rs6602411 10 10255003-10264200 0.993 TG-DR rs10811661 9 22132076-22136489 0.989

BMI-DR rs7903146 10 114729482-114867427 0.977 TG-DR rs7903146 10 114729482-114818754 0.994

BMI-DR rs1557765 11 17368013-17421886 0.987 TG-DR rs10765572 11 92668975-92708710 0.957

BMI-DR rs76895963 12 4384844-4384844 1.000 TG-DR rs76895963 12 4384844-4384844 1.000

BMI-DR rs12885454 14 29680331-29777492 0.965 TG-DR rs7144011 14 79833494-79945162 0.979

BMI-DR rs7144011 14 79703248-79945162 0.980 TG-DR rs483082 19 45232161-45524119 0.967

HDL-C-DKD rs429358 19 45337918-45523583 0.999 WHR-DKD rs429358 19 45392254-45424351 0.999

HDL-C-DR rs11708067 3 122936084-123131254 0.957 WHR-DR rs11705729 3 185488303-185538006 0.955

HDL-C-DR rs10938397 4 45164637-45187622 0.996 WHR-DR rs10938397 4 45164637-45187622 0.995

HDL-C-DR rs1574285 9 4282536-4296430 0.980 WHR-DR rs1513272 7 28142088-28209953 0.986

HDL-C-DR rs11171739 12 56368078-56584247 0.984 WHR-DR rs7144011 14 79833494-79945162 0.984

HDL-C-DR rs3184504 12 111662984-113218868 0.995 WHR-DR rs9923544 16 53797908-53848561 0.951

HDL-C-DR rs7144011 14 79833494-79945162 0.979 WHR-DR rs429358 19 45386467-45428234 1.000

HDL-C-DR rs151249695 15 38909425-38909425 0.997 WHRadjBMI-DKD rs9356744 6 20635719-20727570 0.962

HDL-C-DR rs429358 19 45324138-45623467 1.000 WHRadjBMI-DKD rs429358 19 45392254-45424351 0.998

TG-DKD rs7766070 6 20652717-20703952 0.974 WHRadjBMI-DR rs112256201 3 50599511-50724724 0.959

TG-DKD rs7903146 10 114729482-114817009 0.996 WHRadjBMI-DR rs4686696 3 185488303-185538006 0.959

TG-DKD rs76895963 12 4328521-4384844 1,000 WHRadjBMI-DR rs1513272 7 28142088-28256240 0.981

TG-DKD rs695399 22 29889324-30082569 0.951 WHRadjBMI-DR rs1002226 11 17368013-17421886 0.980

TG-DR rs28408152 3 115063640-115102814 0.966 WHRadjBMI-DR rs7310615 12 111826477-112906415 0.961

TG-DR rs11716713 3 185488303-185538006 0.959 WHRadjBMI-DR rs429358 19 45388500-45424351 0.999

BMI-DN rs7903146 10 114749734-114817009 0.970 TG-DN rs7903146 10 114749734-114817009 0.986

*Locus boundary displays the region (start-end) defined by FUMA analysis. SNP: Single nucleotide polymorphism; CHR: Chromosome; PPH4: Posterior
probability of H4; BMI: Body mass index; WHR: Waist-to-hip ratio; WHRadjBMI: Waist-to-hip ratio adjusted for body mass index; HDL-C: High-density
lipoprotein cholesterol; TG: Triglycerides; DKD: Diabetic kidney disease; DR: Diabetic retinopathy; DN: Diabetic neuropathy.

pleiotropic variants and loci, and to explore potential shared
gene sets, causal relationships, and relevant biological path-
ways. These findings help mitigate confounding factors present
in observational studies, shed light on the etiology and comor-
bidity patterns between obesity and diabetic microvascular
complications, and ultimately contribute to simplifying disease
prevention and management.

We investigated the genetic connections between
obesity-related traits and microvascular complications
in diabetes and found incomplete concordance between
genome-wide signals and those from specific genomic regions.
For example, while the overall correlation between TC/LDL-C
and diabetic microvascular complications is generally weak
at the global genome level, it becomes more pronounced
within particular regions. This likely reflects the complex
and heterogeneous genetic architecture of these traits, where

multiple loci may exert effects in opposing directions or have
small effect sizes. Such signals can cancel each other out in
global analyses, resulting in diluted correlations that fall short
of statistical significance. Some loci may carry both risk and
protective alleles simultaneously, or involve distinct biological
pathways with antagonistic effects on the phenotype. Local
analytical approaches are especially valuable in this context,
as they can disentangle these opposing effects and reveal
region-specific associations that global methods overlook. This
precision enhances the identification of biologically meaningful
targets for mechanistic studies and provides insight into
context-dependent genetic contributions that are otherwise
masked in genome-wide analyses.

In our global genetic correlation analysis, we observed a
notably strong genetic association between BMI and DKD,
aligning well with findings from both MR and LCV analyses.
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Figure 3. The GO and KEGG enrichment analysis of genes in the region of the colocalization analysis results. (A) Different colors are used to represent
the three main categories of Gene Ontology terms: BP, CC, and MF. Each bar in the chart corresponds to enrichment score of the GO term within the
respective category. (B) The x-axis represents enrichment score, and y-axis represents different biological pathways. The size of circle represents gene
count, with larger circles indicating more genes and smaller circles indicating fewer genes. Circle colors indicate P values, with blue representing higher
P values (less significant) and red representing lower P values (more significant). GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes;
CC: Cellular component; BP: Biological process; MF: Molecular function.

Specifically, the GCP for the BMI-DKD relationship was 0.75,
exceeding the commonly used threshold of 0.7. This suggests
that the genetic link between BMI and DKD is largely driven by
a causal relationship, with minimal influence from horizontal
pleiotropy. Additionally, the positive GCP value, combined with
MR results showing no evidence of reverse causality, supports
a directional pathway: genetic factors influence BMI (trait 1),
which in turn affects DKD (trait 2). These findings are con-
sistent with epidemiological data. A comprehensive system-
atic review and meta-analysis of 20 cohort studies identified
BMI as an independent risk factor for DKD. Specifically, each
5 kg/m2 increase in BMI was associated with a 16% higher
risk of developing DKD [36]. This convergence of genetic and
epidemiological evidence reinforces the notion of a causal rela-
tionship between BMI and DKD. Using LDSC, we also identified
a significant genetic correlation between HDL-C and diabetic
nephropathy, with supporting evidence from LCV analysis.
However, MR did not detect a significant causal effect in this
case. This discrepancy likely reflects methodological differ-
ences: MR depends on instrumental variables and assumes a
proportional relationship between genetic effects and the expo-
sure, while LCV models genetic correlations more flexibly and
accounts for pleiotropy. LCV’s broader instrument assumptions
and efficient use of sample data confer greater statistical power,
especially in studies with limited sample sizes. Moreover, LCV
can detect partial causal components that MR might miss by
quantifying the genetic causality proportion—an advantage
when examining complex genetic architectures.

In our investigation of the shared genetic architecture
underlying complex traits, we conducted a comprehensive
analysis of pleiotropy at both the SNP and gene levels. To
identify pleiotropic SNPs associated with specific traits, we
employed a rigorous, multi-step analytical pipeline. We began

with an initial screening using PLACO, which enabled the detec-
tion of candidate pleiotropic SNPs and laid the groundwork
for subsequent analyses. Next, we used FUMA to refine these
results, identifying 828 lead SNPs while carefully removing
those in LD. Colocalization analysis then confirmed 52 loci with
strong supporting evidence. To further explore the functional
relevance of these loci, we applied an integrative approach
combining MAGMA, SMR, and multivariate colocalization, ulti-
mately identifying 102 genes associated with the 52 pleiotropic
loci, 48 of which were unique. Among these, RPS26, along
with its lead SNP rs11171739, emerged as the most robustly
supported pleiotropic risk gene. RPS26 encodes ribosomal
protein S26, which plays a vital role in ribosome biogene-
sis by participating in the processing of pre-ribosomal RNA.
Beyond its canonical function, RPS26 exerts significant reg-
ulatory control over the conformational stability and tran-
scriptional activity of p53, a key transcription factor that
mediates cellular stress responses and maintains genomic
integrity. Experimental studies have shown that both over-
expression and suppression of RPS26 can enhance p53 stabi-
lization, leading to downstream cellular effects, such as cell
cycle arrest and apoptosis [37]. In the context of diabetes mel-
litus, p53 plays a largely detrimental role, disrupting cellular
function and metabolic regulation. Cytoplasmic accumulation
of p53 in pancreatic β-cells has been linked to the inhibi-
tion of Parkin-mediated mitophagy, contributing to mitochon-
drial dysfunction and impaired insulin secretion [38]. In renal
tubules, p53 impairs autophagy by inducing miR-214, which
suppresses ULK1, a key autophagy-initiating kinase [39]. Addi-
tionally, recent studies suggest that O-GlcNAc–mediated regu-
lation of p53 stability may contribute to hyperglycemia-induced
cell death in retinal pericytes [40]. Moreover, RPS26 appears to
regulate T-cell survival through a p53-dependent mechanism.
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Figure 4. Summary of bi-directional MR analyses between obesity-related traits and diabetic microvascular complications. Error bars represent
the 95% confidence intervals for the associated MR estimates. The primary method for P value calculation is the IVW method. The MR-Egger intercept
and Cochrane’s Q test were used to assess pleiotropy and heterogeneity. A significant MR-Egger intercept (P < 0.05) suggests pleiotropic effects, while
a significant Cochrane’s Q test (P < 0.05) indicates heterogeneity. DKD: Diabetic kidney disease; DR: Diabetic retinopathy; DN: Diabetic neuropathy;
BMI: Body mass index; WHR: Waist-to-hip ratio; WHRadjBMI: Waist-to-hip ratio adjusted for body mass index; HDL-C: High-density lipoprotein cholesterol;
TG: Triglycerides; MR: Mendelian randomization.

Murine studies have revealed elevated expression of RPS26 in
T lymphocytes, and its deletion results in peripheral T-cell
instability and disrupted thymic T-cell development [41]. This
observation is particularly relevant given the immune sys-
tem’s central role in the pathogenesis of diabetes. p53 has also
been implicated in obesity-related pathways, including lipid
metabolism, energy balance, and hormone sensitivity [42–44],
further suggesting a potential link between RPS26, p53, and
metabolic disorders. Based on these findings, we hypothe-
size that RPS26 contributes to diabetic microvascular com-
plications and obesity through mechanisms involving p53
activation and stabilization. To investigate this hypothesis,
co-immunoprecipitation (co-IP) and p53-responsive luciferase
reporter assays should be conducted to assess protein–protein
interactions and transcriptional modulation. In vivo studies
using RPS26 transgenic or knockout mice can help determine
its physiological relevance through blood glucose monitoring,
insulin sensitivity testing, and histological examination of dia-
betic complications. In vitro, cell models with RPS26 overex-
pression or knockdown can be established via transfection
with overexpression plasmids or siRNA, respectively. Western

blotting would then be used to evaluate p53 protein levels under
different RPS26 expression states.

In addition to the pronounced pleiotropic effects observed
for RPS26, several other genes identified through multivariate
colocalization analysis also exhibit substantial genetic influ-
ence. However, it is important to note that these genes did not
surpass the stringent significance threshold in the SMR analy-
sis—primarily due to the strong correction pressure imposed
by their extensive pleiotropy. Among them, JAZF1 (Zinc Fin-
ger Protein 1), which is predominantly expressed in pancreatic
tissue, is recognized as a key regulator of glucose and lipid
metabolism. It interacts with several critical pathways, includ-
ing adenosine monophosphate (AMP), AMP-activated protein
kinase (AMPK), and mitogen-activated protein kinase (MAPK),
exerting anti-glycemic, anti-lipidemic, and anti-inflammatory
effects [45, 46]. Similarly, ZBTB20, another zinc finger protein
highly expressed in pancreatic β-cells, contributes to glucose
homeostasis by repressing the transcription of Fructose-1,6-
bisphosphatase 1 (FBP1) [47]. This regulatory function supports
β-cell performance and overall glucose regulation. In addition
to its role in β-cells, ZBTB20 also contributes to hepatic de novo
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lipogenesis (DNL), thereby playing an important role in sys-
temic lipid metabolism. Nipsnap1 has been extensively studied
for its role in mitophagy, particularly in the recruitment of
autophagy-related proteins to the mitochondrial outer mem-
brane. This function is crucial for maintaining mitochondrial
quality control and has significant implications for diabetes
and its complications [48, 49]. Under chronic cold exposure,
impairment or inhibition of Nipsnap1 can compromise cellu-
lar DNL and mitochondrial lipid β-oxidation capacity, further
affecting metabolic balance [50]. IKZF4 and SUOX have been
identified as susceptibility loci for diabetes [51, 52]; however,
their involvement in obesity remains underexplored, with lim-
ited and inconclusive findings to date. Conversely, NCR3LG1 has
primarily been associated with various cancer types [53, 54],
while RP1-239B22.5 has received minimal research atten-
tion—only one study to date has reported elevated expression
in late-stage cancer [55]. The limited functional annota-
tion of these latter genes suggests that further investiga-
tion is necessary to clarify their potential roles in metabolic
disorders.

In enrichment analysis, the regulation of insulin hormone
secretion is highlighted in both the BP domain of GO and
in KEGG pathways. This suggests that maintaining blood
glucose homeostasis is a key factor in mitigating microvascular
complications in diabetes. Additionally, the analysis shows that
enrichment in the CC category is primarily associated with lipid
metabolism, further emphasizing the link between obesity and
diabetic microvascular complications. MF enrichment spans
several areas, including signal transduction, ion transport,
protein kinase activity, calcium-dependent processes, ATPase
coupling, and more. These signaling pathways are critical for
processes, such as cell proliferation, differentiation, survival,
and apoptosis. Dysregulation of these pathways can contribute
to cellular dysfunction, metabolic disorders, impaired insulin
secretion, and vascular abnormalities [56–58]. For example, the
MAPK family—which includes extracellular signal-regulated
kinases (ERKs), Jun N-terminal kinases (JNKs), and p38/SAPKs
(stress-activated protein kinases)—plays pivotal roles in the
development of these conditions through mechanisms, such
as promoting inflammation, disrupting insulin signaling,
altering lipid metabolism, and impairing pancreatic islet
function [59–61].

While our study has yielded important findings, several lim-
itations should be acknowledged. First, although we utilized
large-scale GWAS data for obesity-related traits, the available
data for DKD, DR, and DN remain limited, which may affect
the comprehensiveness of our findings. Second, all data sources
were derived from individuals of European descent, potentially
limiting the generalizability of our results to other populations.
Future studies should aim to include a more diverse range of
ancestries to better capture the genetic architecture of the traits
under investigation. Lastly, to gain deeper insights into the
functional and mechanistic roles of shared risk genes in the
microvasculature associated with diabetes and obesity, further
in vitro and in vivo studies are needed. These should account
for tissue specificity, including but not limited to whole blood,
kidney, and pancreas.

Conclusion
In summary, our study identified significant genetic cor-
relations between obesity and microvascular complications
in diabetes, successfully pinpointing shared risk SNPs and
genes—most notably, RPS26, which showed the strongest
genetic association. We also explored causal and pleiotropic
relationships in depth, offering valuable insights into the
genetic mechanisms underlying these traits. These findings lay
a strong foundation for future research into the pathogenesis
and potential therapeutic strategies for these conditions.
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