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ABSTRACT 

Glioblastoma multiforme (GBM), the most aggressive form of glioma, remains the most 

malignant tumor of the central nervous system. Despite a range of therapeutic strategies, the 

prognosis for GBM patients remains poor, underscoring the urgent need for novel treatments 

to inhibit GBM progression. The tumor microenvironment (TME) plays a critical role in 

tumor development, with cancer-associated fibroblasts (CAFs) acting as key components. 

However, the origin, composition, and spatial distribution of CAFs within the GBM 

microenvironment remain poorly understood. To address this gap, our research aims to 

investigate the etiology, cellular composition, and precise localization of CAFs in GBM, with 

the goal of elucidating their role in oncogenesis and tumor progression, thereby providing 

new avenues for therapeutic intervention. In this study, we developed a novel CAF-related 

prognostic model using data from the TCGA and GEO databases and identified SERPINH1 

and COL5A1 as CAF-related genes in GBM. We established a GBM mouse model as well as 

a GBM cell and astrocyte co-culture system to examine the expression of SERPINH1 and 

COL5A1 in astrocytes under a simulated tumor microenvironment. Our findings revealed that 

these genes were more highly expressed in peritumoral tissue compared to normal brain 

tissue and showed strong co-localization with astrocytes. Furthermore, we found that normal 

astrocytes can be induced by GBM cells to activate the AKT/mTOR signaling pathway, 

migrate to the peritumoral region, and upregulate CAF-associated proteins 

(SERPINH1/COL5A1). These results suggest that astrocytes may serve as a potential source 

of CAF precursor cells within the GBM tumor microenvironment. 

Keywords: glioblastoma; cancer-associated fibroblasts; CAFs; astrocytes; SERPINH1; 

COL5A1; AKT/mTOR pathway. 

INTRODUCTION 

Glioblastoma multiforme (GBM), also known as glioblastoma or malignant glioma, accounts 

for approximately 57% of all gliomas and 48% of all primary malignant central nervous 

system (CNS) tumors(1). Despite recent advances in the treatment of glioblastoma, including 

surgical resection, radiotherapy, systemic therapies (chemotherapy, targeted therapy), and 

https://doi.org/10.17305/bb.2025.11898
https://doi.org/10.17305/bb.2025.11898
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supportive care, the overall prognosis remains poor, with low long-term survival rates. The 

median overall survival among patients with glioblastoma is approximately 12 to 18 

months(2). GBM mainly originates from glial cells, and can also develop from neural stem 

cells(3). Temozolomide (TMZ) is a second-generation anti-cancer drug that can easily pass 

through the blood-brain barrier (BBB) and is currently used as a first-line chemotherapeutic 

agent against GBM. However, GBM can quickly become resistant to TMZ and can 

potentially relapse after TMZ-mediated treatment(4, 5). To find new therapeutic approaches, 

recent studies have been focused not only on the treatment of GBM, but also on the tumor 

microenvironment (TME). 

The TME is made up of tumor cells, their surrounding immune cells, and the associated 

stromal components. The TME includes the extracellular matrix (ECM), stromal cells (such 

as fibroblasts and immune, inflammatory, endothelial, and bone marrow-derived cells), 

cytokines, and chemokines(6-9). The TME is associated with GBM resistance to targeted 

therapy(10), intra-tumor heterogeneity(11), and invasiveness(12). Therefore, studying the 

interactions between TME and GBM may lead to the discovery of new mechanisms related to 

the treatment of GBM. 

Cancer-associated fibroblasts (CAFs) play essential roles as components of TME. These roles 

include deposition and remodeling of the extracellular matrix (ECM), immunomodulation, 

promotion of angiogenesis, facilitation of metabolic processes, and reprogramming of the 

TME(13-16). The origins of CAFs are diverse and include, but are not limited to, intrinsic 

fibroblasts, tumor epithelial and endothelial cells, and normal epithelial-tissue cells(16). 

CAFs show different degrees of heterogeneity and have different markers(16). Growing 

evidence indicates that CAFs are involved, and play important roles, in the development, 

progression, immunosuppression, and drug resistance of various cancers. Current research 

examining the roles of CAFs in tumorigenesis and treatment resistance has been focused on 

subgroup analyses and functional studies. These approaches rely on CAF-specific markers 

(FAP, α-SMA) and secretagogues (IFN-γ, TGF-β), which are expressed at different levels in 

a context-specific manner at different cancer stages(17, 18). In a recent study, Phillip et al. 

discovered, through single-cell sequencing and bioinformatics analysis, the presence of a 

limited population of CAFs within GBM. Despite their relative scarcity, these CAFs were 

found to play a crucial role in tumor grading and patient prognosis(19). Considering the 

significant role of CAFs in various tumors, their origin, composition, and precise localization 

within the microenvironment of GBM remain to be fully elucidated. Therefore, studying the 
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interaction between CAFs and GBM may lead to the development of new anti-GBM 

therapies. 

To identify genes associated with CAFs that are uniquely expressed in GBM, we used the 

combined TCGA- and GEO-derived GBM datasets to construct a new CAF-related GBM 

prognostic model. Two CAF hub genes (SERPINH1 and COL5A1) expressed in GBM were 

screened using this model. These two genes were then confirmed as CAF markers for GBM 

using a CAF scoring correlation analysis. A GBM mouse model was constructed to verify the 

expression of SERPINH1 and COL5A1 in GBM. Our results obtained using this model show 

that protein expression levels of SERPINH1 and COL5A1 were high in the peritumor tissue 

relative to those in normal tissue. A co-localization assay performed using mouse brain tissue 

was used to explore the localization of SERPINH1 and COL5A1 in the peritumor tissue. We 

found that large aggregates of activated astrocytes around the tumor were highly correlated 

with increased protein expression levels of SERPINH1 and COL5A1. Results obtained using 

our in-vitro cell co-culture model showed that GBM cells could indeed recruit astrocytes to 

the periphery of the tumor, and activate and overexpress SERPINH1 and COL5A1. Results 

obtained using bioinformatics and western blotting showed that this activation may have 

occurred via the AKT/mTOR pathway. In conclusion, our results indicate that GBM exerted 

regulatory effects on peripheral cells (particularly astrocytes) via the AKT/mTOR-

SERPINH1/COL5A1 axis, directing these astrocytes to become activated and play CAF-like 

roles. It is possible that these CAF-like cells are potentially involved in a wide range of 

pathological conditions. 

MATERIALS AND METHODS  

Data acquisition 

Clinical information, and transcriptional and mutation data, for GBM were obtained using 

The Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov/) and GEO 

(https://www.ncbi.nlm.nih.gov/geo/) databases. TCGA database contained 600 tumor 

samples with clinical characteristics including age, sex, survival status, survival time, and 

tumor grade IV. TCGA mutation data were also downloaded for subsequent analysis. The 

probe matrix (GSE43378) and platform (GPL570) files for the expression data obtained from 

patients with glioma, including age, sex, survival status, and survival time, were downloaded 

from the GEO dataset. TCGA and GEO data were annotated, and mRNA expression data 

https://www.ncbi.nlm.nih.gov/geo/
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were differentiated, separately for subsequent analyses. The steps used in this procedure are 

shown in the following flowchart. 

Fibroblast and TIDE scoring 

Tumor immune dysfunction and exclusion (TIDE) (http://tide.dfci.harvard.edu/login/), 

designed by Jiang et al(20)., is a new computational framework used to predict the role of 

tumor immune escape mechanisms and resistance to immunotherapy. In our present study, 

this framework was used to obtain the tumor immune dysfunction and exclusion TIDE 

scoring file and fibroblast scoring file from TCGA and GEO. Perl was utilized to prepare the 

TIDE scoring file using average recurring mRNA expression. We then removed the normal 

samples and took the logarithm of the mRNA expression value. Fibroblast scoring was 

performed using the R packages “EPIC,” “MCPcounter,” and “xCell”(21). Model 

construction and subsequent bioinformatics analysis were performed using genes screened by 

EPCI. For the x-cell algorithm, it can classify cells in the TME, including CAFs. However, 

during the calculation process, after filtering the common gene set and performing survival 

analysis, we found that the trend of high- and low-risk groups in the results of the x-cell 

algorithm was opposite. Therefore, we concluded that the gene set screened by x-cell 

algorithm was not suitable for subsequent research. Thus, we excluded this algorithm. Then, 

the tumor microenvironment was analyzed using the R package “estimate,” which included 

stromal cell scoring. Fibroblast and stromal cell-scoring files were combined and exported. 

Differential analysis was carried out using the multiple R package “limma”. 

CAF scoring survival analysis 

The clinical file, generated using TCGA and GEO databases, included patient ID, survival 

time, and survival status. We then combined and cycled the clinical, fibroblast-scoring, and 

TIDE-scoring files to obtain the optimal cut-off value, which was used to divide the clinical 

samples into the high- and low-risk groups. The high- and low-risk groups across all the data 

sets were then evaluated using the Kaplan-Meier (K-M) analysis in the “survival” R package 

to assess feasibility and analyze survival. Survival curves were plotted using the “survivor” 

and “surminer” in the R package (22). 

WGCNA screen for CAF hub genes 

From the integrated TCGA and GEO dataset files, the top 5000 genes with large fluctuations 

in expression were selected as reference for EPIC scoring. We used “WGCNA” in the R 

package to analyze all values, remove free values, and obtain the best power value (value = 8) 

http://tide.dfci.harvard.edu/login/
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after conversion. Similar modules (number of genes = 30) were merged after clustering using 

a threshold of 0.2. Then, 1000 genes were randomly selected and used to draw a module gene 

heat map. Finally, a correlation heat map was constructed to illustrate the relationships 

between modules and CAF scoring. For the obtained modules and genes, a geneSigFilter 

value of 0.4 and a moduleSigFilter value of 0.8 were set, and the final hub genes of each 

module were output. 

Functional enrichment analysis of the hub genes 

Our GO analysis had three components: biological processes (BP), cellular components (CC), 

and molecular functions (MF). The biological functions of CC, MF, and BP target genes were 

obtained from the GO database(23). The Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (https://www.kegg.jp/) incorporates chemical, genomic, and system functional 

information; it is a commonly utilized database for obtaining biological pathway 

information(24). Therefore, we utilized GO and KEGG analysis to analyze the signaling 

pathways and biological functions of the major enrichment of the intersecting hub genes 

using “clusterProfiler” in the R package. 

Construction of prognosis-related hub genes model 

After combining survival and gene expression data from TCGA, survival was analyzed using 

“survivor” and “survminer” in the R package. The one-way significance filter was set at 

p≤0.05, and core genes were cycled to find prognosis-related genes. Forest plots were drawn 

after extracting the expression of single-factor significant genes. Next, we used TCGA 

dataset as the training group and the GEO dataset as the test group to construct the prognostic 

model. The lasso regression model was constructed using “glmnet” in the R package to plot 

the cross-validation graph. We found the point with the lowest cross-validation error and 

outputted the model formula (gene expression level ∗ gene coefficient). Based on the median 

value of the sample risk score, the clinical samples were divided into high- and low-risk 

groups for subsequent analysis. Risk score = (0.0210157891801135 ∗ SERPINH1 expression 

level) + (0.110327492669992 ∗ COL5A1 expression level). 

Survival analysis 

To assess the predictive capacity of the model, K-M analysis of the high- and low-risk groups 

was conducted using “survival” in the R package. A variable was considered to be 

independently prognostic when the p-value for univariate and multivariate Cox regression 
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analysis was less than 0.05. K-M analysis was also used to determine the potential differences 

in progression-free survival (PFS) between the high- and low-risk groups. 

Immunotherapy analysis and tumor mutation burden 

Immunotherapy analysis was performed by inputting the TIDE file and using “plyr" in the R 

package(25). TIDE plot was then visualized, and the ROC curves were plotted. AUC values 

were calculated using “pROC” in the R package. Then, tumor mutation analysis and 

correlation with CAF scores were performed using “maftools” in the R package. 

Drug sensitivity analysis 

The Genomics of Drug Sensitivity in Cancer (GDSC) database 

(https://www.cancerrxgene.org/) is the largest public resource for tumor-cell drug sensitivity 

and anti-tumor therapeutic genomic data(26). Drug sensitivity was predicted for high- and 

low-risk groups by downloading the GDSC expression and drug-sensitivity files using the R 

packages “limma” and “ggpubr”. The filtering condition was set at P < 0.05. The lower the 

value of IC50, the higher the tumor sensitivity to the drug. 

CCLE, HPA, and CGGA database validation 

The Cancer Cell Line Encyclopedia (CCLE) is an open access database that contains multi-

omics data on thousands of cancer-cell lines, and additional information that includes genetic 

mutations, RNA splicing, and protein modifications(27). From CCLE, we downloaded the 

GBM data; we also searched model genes for expression-verification data, which was then 

compared with fibroblast-expression data. The Human Protein Atlas (HPA) is an open access 

database based on proteomic, transcriptomic, and systems-biology data used to map tissues, 

cells, and organs. HPA includes not only tumor-related data, but also those on normal tissues. 

HPA additionally provides access to the survival curves of patients with cancer. In our 

present study, we used the HPA database to validate our model gene-expression maps in 

tumor and normal tissues. The Chinese Glioma Genome Atlas (CGGA) is also an open access 

database that uses genomic techniques combined with bioinformatics analysis to 

comprehensively map the glioma genome in the Chinese population. Here, we used the 

CGGA database to improve the integrity of the data on our model genes. 

Cell culture and co-culture 

The following cultured cell lines were used in this study: human normal astrocyte cell line 

SVGP12 (Hunan Fenghui Biotechnology Co., Ltd.), human GBM cell line U87 (GBM-like 

https://www.cancerrxgene.org/
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cell, Hunan Fenghui Biotechnology Co., Ltd.), mouse GBM cell line G422-GFP-LUC 

(Hunan Fenghui Biotechnology Co., Ltd.), human GBM cell line T98G (Fuheng Co., Ltd.), 

human GBM cell line LN229 (Se Ou Biology Co., Ltd.), and human GBM cell line U343 

(MeilunBio Co., Ltd.). The cells were expanded and cultured in Dulbecco’s Modified Eagle 

Medium or Minimum Essential Medium supplemented with 100 u/mL penicillin/ 

streptomycin, and 10% fetal bovine serum (FBS). Cells were incubated at 37°C and a 

humidified atmosphere of 5% CO2. G422-GFP-LUC cells were selected using 1 μg/ml 

puromycin. All human cells were identified using short tandem repeat (STR) profiling, G422-

GFP-LUC mouse species identification provided by the company (Hunan Fenghui 

Biotechnology Co., Ltd.). Cells were co-cultured using cell-culture plates with 0.4 μm 

transwell inserts (LABSELECT, LOT: 14112, PET, 24 mm, 0.4 μm). The upper chamber was 

seeded with SVGP12 cells, and the lower chamber was seeded with U87, T98G, LN229, or 

U343 cells. Cells in the upper and lower chamber were seeded at the density of 1.5 * 10^5. 

The upper chamber was placed into the corresponding wells after the cells had attached to the 

well. Cells were collected after 72 h of co-culture.  

Cell function assay 

Scratch assay was performed using six-well plates with 0.4 μm transwell chambers 

(LABSELECT, LOT: 14112, PET, 24 mm, 0.4 μm). SVGP12 cells were co-cultured with 

tumor cells for 72 h (1.5*10^5). After that, the chambers were rinsed three times with PBS 

pre-warmed at 37℃. Remove the chambers and place it on the inverted six - well plate lid. 

Draw lines using a 200μL pipette tip. Replace the chamber in the corresponding wells of the 

six - well plate after scratching. Rinse the chamber three times with PBS pre - warmed at 

37℃, then add 2 mL of complete DMEM culture medium for incubation. Then, a wound 

healing assay was performed in the chambers for 0, 12, and 24 h. Migration experiments were 

performed using 12-well plates with 12 μm transwell chambers (JETBIOFIL, LOT: 

TCS100024, PC, 24 mm, 12 μm). SVGP12 cells were cultured in the upper chamber, while 

tumor cells were cultured in the lower chamber (1*10^5). The membrane between the 

transwell chambers was removed, and crystal violet staining and microscopy were performed 

after a 72 h co-culture. 

Establishment of the GBM mouse model 

Ten-week-old adult female BALB/c mice (18–22 g) were purchased from Guangdong Sijia 

Jinda Biotechnology Co. All procedures involving animals were approved by the Laboratory 
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Animal Ethics Committee of the Shantou University Medical College (SUMCSY2024-002, 

Material S1). Unfortunately, due to the strict ethical scrutiny of our research organization and 

the very small number of clinical cases, we do not have immediate access to human GBM 

tissue samples for our experiments. Additionally, in conducting the experimental design, we 

have considered normal brain samples as a control group. However, due to the strict ethical 

scrutiny of our research organization, we couldn’t access to normal brain tissue for our 

experiments. Therefore, a mouse model was employed as a substitute. 

Mice were housed in the animal center facility of the Shantou University Medical College. In 

this study, a total of 35 mice were used in the animal experiments. Among them, 21 mice 

were used for building GBM model and normal control, and the remaining normal mice were 

used as backups. Mice were anesthetized using tribromoethanol, and the fur on the heads was 

removed by shaving. The head of each mouse was immobilized using a rodent stereotaxic 

apparatus (RWD, 68025, China). The scalp was cut along the middle suture, and a burr hole 

was drilled into the skull (fontanel 2 mm to the right and 1 mm forward). G422-GFP-LUC 

cells (1*10^5) suspended in 5 ul saline were injected at 0.5 μl/min into the burr hole using a 

microsyringe extending 2 mm down from the opening. Preoperative (1 day) and 

postoperative (3, 7, 14 day) GBM mice were detected using a small animal in vivo imaging 

system (IVIS Kinetic, USA), using an intraperitoneal injection of fluorescein potassium salt 

(15 mg/ml PBS, ST196, Beyotime, China). Tumor tissues, peritumor tissues (According to 

the definition by Marc Aubry and colleagues, in this study, the peritumoral area of 

glioblastoma multiforme (GBM) is defined as the peripheral brain zone and the interface 

zone. During tissue sampling, the area within 2 - 3 mm of the tumour tissue, as assessed by 

microscopic examination, is considered peritumoral tissue(28).), and contralateral normal 

tissues were dissected using microscopy after the tumor had grown sufficiently. 

Quantitative real-time PCR 

The collected SVGP12 and tumor cells were lysed using Trizol to extract RNA, and cDNA 

was obtained by reverse transcription using a HiScript II First Strand cDNA Synthesis Kit 

(+gDNA Wiper) (Vazyme, China). RT-qPCR was carried out on an ABI 7500 Real Time 

PCR platform using ChamQ Universal SYBR qPCR Master Mix (Vazyme). The results were 

reliable when the Ct value was between 10 to 35. Changes in the expression of SERPINH1 

and COL5A1 were detected. GAPDH was used as a reference gene. The 2−ΔΔCT method was 

used for data analysis. The primers used in this assay are listed in the Table S1. 
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Western blotting 

The collected cells and animal tissues were lysed on ice for 30 min using RIPA buffer 

(Beyotime, P0013C) supplemented with 1 mM protease and phosphatase inhibitors 

(Beyotime, P1045), and centrifuged at 16900* g for 40 min. Supernatants were then 

collected. Electrophoresis was performed using 4–20% SDS-PAGE gels, and proteins were 

transferred onto a PVDF membrane (Millipore, Tullagreen, Carrigtwohill, Ireland). The 

membrane was blocked using 5% bovine serum albumin (BSA) (ST023, Beyotime, China) 

dissolved in TBST for 2 h and then incubated at 4°C overnight with the following primary 

antibodies specific for: SERPINH1 (sc-5293, Santa Cruz, 1:1000); COL5A1 (sc-133162, 

Santa Cruz, 1:1000); GAPDH (GB15002, Servicebio, 1:2000); AKT (#4685, CST, 1:1000); 

P-AKT (#4060, CST, 1:1000); mTor (ET1608-5, HUABIO, 1:1000); P-mTor (HA600094, 

HUABIO, 1:1000); FAP (AF5344, Affinity, 1:800); S100A4 (CY5799, Abways, 1:1000). 

The membrane was then incubated at 4°C for 3 h using the following secondary antibodies: 

HRP-labeled Goat Anti-Mouse IgG(H+L) (A0216, Beyotime, 1:1000) and HRP-labeled Goat 

Anti-Rabbit IgG(H+L) (A0208, Beyotime, 1:1000). Protein bands were visualized using 

ultra-high sensitivity ECL (BL520B, Biosharp, Anhui, China) and imaged using a Mini 

Chemi610 Mini Chemiluminescent Imaging and Analysis System (SINSAGE, Beijing, 

China). Photographs were taken using the instrument's own software (SageCaptur), and 

ImageJ was used to analyze the grayscale values. Images of full exposure membranes are 

shown in S1_raw_images. 

Multicolor immunohistochemistry and HE staining 

The mice were fully anesthetized using tribromoethanol and perfused using 4% 

paraformaldehyde. The brains were rapidly removed and placed into 4% paraformaldehyde 

for 48 h at 4°C. (G1101, Servicebio). Whole brains were embedded in paraffin and sectioned 

at the thickness of 3 μm (Leica, RM2235, German). Sections were affixed onto slides and 

stored at room temperature. Tissues were dewaxed (Xylene, 5 minutes, twice) and stained 

(75%–100% gradient alcohol, 5 minutes, once), using a using a four-color multiple 

fluorescent immunohistochemical staining kit (AFIHC024, AiFang Biological, Hunan, 

China), then incubated at 4°C overnight with the following primary antibodies specific for: 

SERPINH1 (sc-5293, Santa Cruz, 1:100); COL5A1 (WLH4136, Wanleibio, 1:100); GFAP 

(HA600094, HUABIO, 1:500); MBP (Wl03919, Wanleibi, 1:50); IBA1 (sc-32725, Santa 

Cruz, 1:100); FAP (AF5344, Affinity, 1:50); S100A4 (CY5799, Abways, 1:100). We also 

employed an anti-mouse/rabbit secondary antibody (AIFang, AFIHCC024). Imaging was 
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performed using a confocal microscope (ZEISS, LSM800, German). Whole-brain 

fluorescence scans were performed by Servicebio (Wuhan, China). Hematoxylin and eosin 

(HE) staining was carried out using a Hematoxylin and Eosin Staining Kit (C0105S, 

Beyotime), and scans were performed using an iScan Coreo slide scanner (Roche 

Diagnostics). 

Ethical statement 

All animal treatments and experiments in this study were approved by the Laboratory Animal 

Ethics Committee of Shantou University Medical College (The ethical review number: 

SUMCSY2024-002, Material S1).  

Statistical analysis 

All the bioinformatics analysis data were analyzed and visualized using R statistical 

programming language (version 4.2.3). The correlation matrix was constructed using 

Spearman’s test. Differences were considered statistically significant at p-value less than 

0.05. All experiments were repeated independently more than three times. GraphPad Prism 8 

was used for statistical analysis, and Image J was used for image processing. For all 

experimental data, the Student's t-test was used for comparisons between two groups, while 

one-way ANOVA (analysis of variance) was employed for comparisons among multiple 

groups. All of the experiment was repeated three times, and the results are representative of 

three independent experiments. A p-value less than 0.05 was considered statistically 

significant.  In the statistical figures, p-values are indicated with asterisks, where * represents 

p < 0.05, ** represents p < 0.01, *** represents p < 0.001, and **** represents p < 0.0001. 

RESULTS 

Identification of 2 CAF-related hub genes with prognostic significance 

Drawing upon the established findings of prior research(29), we collected 606 samples 

(TCGA) and 50 samples (GEO) of GBM data from TCGA and GEO databases, respectively. 

The tumor samples contained clinical characteristics including age, sex, survival status, 

survival time, tumor grade IV, and mutation data. The 606 tumor samples from TCGA were 

used as the experimental group, and the 50 tumor samples from GEO were used as the 

control group for validation. These two datasets were scored using the following four 

algorithms: CAF-EPIC, CAF-MCPcounter, CAF-xCell and stromal cell scoring (Table S2 - 

S3). The two datasets were then classified into the high- and low-scoring groups based on 
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their respective score, and survival analysis was performed for each group. Except for the 

results obtained using CAF-xCell, the survival rates of the low-scoring group were better than 

those of the high-scoring group (Figure1A, B). This suggests that CAFs could effectively 

influence the prognosis of GBM. Next, we used WGCNA to find gene modules related to 

CAFs in the high- and low-scoring groups; we then extracted the core genes (Figure1C, D). 

We found the seven core genes (SERPINH1, LAMC1, LAMB1, COL5A2, ADAM12, 

COL5A1, COL6A2) by taking the intersection of the gene sets within the minimum p-value 

(Figure1E). 

We combined seven hub genes with the survival data and constructed a forest map 

(Figure1F). A total of four prognostic-related high-risk genes (SERPINH1, LAMB1, 

COL5A1, COL6A2) were obtained. Based on the four hub genes, a prognosis-related model 

was constructed. Using the lasso regression model and cross-validation, we identified two 

hub genes (SERPINH1 and COL5A1) (Figure1G, H). Using these two hub genes, we 

performed a survival analysis using the two datasets, and found that the prognosis for the 

low-risk group was better than that for the high-risk group (Figure1I). This finding suggests 

that the model based on the two hub genes was successful and reflected the prognosis of 

patients with GBM. The CGGA-independent raw data analysis(30) system was used to 

validate the correlation between these two genes and the prognosis for patients with GBM in 

an external dataset. Our results indicate that SERPINH1 and COL5A1 showed increased 

expression in GBM (Figure S1, S2), which impacted the overall survival of patients with 

GBM (Figure1J, K). The result of the analysis in CGGA is detailed in Figure S3, S4. 

Correlation analysis was performed to compare CAF scores with patient risk scores 

(Figure1L). All CAF scores were positively correlated with patient risk scores. The highest 

score (0.86) was obtained using an MCPcounter, indicating that CAF scores could be used as 

scoring criteria for GBM development. We also compared the CAF genes described in the 

published literature with the two hub genes identified in our present study. Our results 

indicate that the model genes showed consistent expression in the high-risk group, and 

showed positive correlation with the reported CAF-related genes in the literature (Figure1M, 

N). The two hub genes were consistent with the genes described in the published literature 

and showed the same predictive ability. We performed an immunotherapy analysis, tumor 

mutation and drug screen using these two hub genes. TIDE (Tumor Immune Dysfunction and 

Exclusion) is used to evaluate the potential clinical efficacy of immunotherapy in different 

risk groups and reflects the potential ability of tumor immune evasion. In our results, the 



 

13 

 

high-risk group had a higher TIDE score, which means the high-risk group had a higher 

immune evasion ability and worse immunotherapy outcomes (Figure S5). There was no 

significant difference between the high-and low-risk group when the total TMB was counted 

(Figure S5). The drug sensitivity showed that the top three drugs are daporinad, 

staurosporine, and sabutoclax. The details are described in Figure S5. In summary, we 

identified two CAF-related hub genes (SERPINH1, COL5A1) that may influence GBM 

prognosis. 

SERPINH1 and COL5A1 are highly expressed in the GBM and peritumor tissue 

The Chinese Glioma Genome Atlas (CCLE) and Human Protein Atlas (HPA) databases were 

used to compare the expression of SERPINH1 and COL5A1 in normal and GBM tissues. Our 

results indicate that these two hub genes showed higher expression levels in fibroblasts 

compared with those in the GBM tissues from the CCLE database (p ＜0.05, Figure 2A). In 

the HPA database, the protein expression of SERPINH1 and COL5A1 was higher in the 

tumor tissues than in normal tissues (Figure 2B, C). Next, we further evaluated the expression 

of these two genes in vivo. To simulate the complex microenvironment of the brain, we 

established an orthotopic G422-GFP-LUC GBM mouse model. Tumor implantation status 

was validated using bioluminescence imaging (Figure 2D). Results obtained using multi-

color immunohistochemistry (mIHC) showed that protein expression of SERPINH1 and 

COL5A1 was increased in the tumor and peritumor tissues (Figure 2E, F). Elevated 

SERPINH1 and COL5A1 expression in mouse tumor tissues was consistent with the outcome 

shown in Figure 2b, c. To ensure the accuracy of the mIHC assay, the protein expression of 

SERPINH1 and COL5A1 in mouse peritumor tissues and normal tissue obtained from the 

opposite side of the same brain, was assessed using western blotting. Our results indicate that 

the expression of SERPINH1 and COL5A1 was higher in the peritumor tissue than in normal 

tissue (Figure 2I, t-test, p ＜0.05, the statistical results are on the right side). This finding 

agrees with those obtained using IHC. Next, we used the two commonly used CAF markers, 

FAP and S100A4, to verify whether SERPINH1 and COL5A1 were specific CAF markers. 

IHC and western blotting showed that FAP and S100A4 were higher in the peritumor tissue 

than in normal tissue, which yielded the same results as those obtained for the expression of 

SERPINH1 and COL5A1 (Figure 2G, H, J, t-test, p ＜0.05, the statistical results are on the 

right side). However, HE staining showed that there were normal brain tissue cells, no 

specific stained cells, and no specific pathological pattern in the peritumor tissue. (Figure 

2K). This suggests that SERPINH1 and COL5A1 were indeed CAF-specific genes associated 
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with GBM, and that this particular expression profile may be responsible for some of the 

challenges involved in treating GBM. The statistical results are shown in Figure S7. 

GBM peritumor tissues recruit GFAP-positive astrocytes expressing CAF-related 

proteins 

To identify the cellular components of peritumor tissue in the GBM mouse model, multicolor 

IHC was used on whole-brain sections to label the expression of the three common types of 

glial cells: astrocytes, oligodendrocytes, and microglial cells.   Interestingly, our study results 

indicate that, compared with normal brain tissue regions, the peritumoral tissues harbor 30% 

to 50% of microglia as previously documented in the literature (31) (Figure 3A-C, Figure S7,  

one-way ANOVA, p < 0.05). Concurrently, we also observed a substantial presence of 

astrocytes and a relatively small number of oligodendrocytes in the peritumoral tissues. 

(Figure 3A-C, Figure S7, one-way ANOVA, p < 0.05). Based on this finding, we postulated 

that the presence of a tumor may cause the migration and activation of astrocytes. To test this 

notion, we used a co-localization assay to evaluate the expression patterns of SERPINH1 and 

COL5A1, and astrocytes (Figure 3D-G). Our results indicate that SERPINH1 and COL5A1 

co-localized with GFAP-positive astrocytes that were abundantly present in the peritumor 

tissue. Notably, the results of co-localization assay used to assess the expression patterns of 

FAP and S100A4, and astrocytes, showed that FAP and S100A4 were expressed not only in 

GFAP-positive astrocytes, but also in GFAP-negative astrocytes ( Figure 3H-K, one-way 

ANOVA, p < 0.05). These findings suggest that the expression of SERPINH1 and COL5A1 

was more specific to GFAP-positive astrocytes Therefore, we postulated that GBM recruited 

a large number of GFAP-positive astrocytes to the peritumor tissue during tumor 

development, and induced astrocytes to express CAF-related proteins. The statistical results 

are shown in Figure S7. 

GBM cells recruit astrocytes and induce them to express CAF-related proteins 

The mRNA and protein expression of SERPINH1 and COL5A1 in GBM cell lines and 

astrocytes (SVGP12), verified using RT-qPCR and western blotting (Figure 4A-B, one-way 

ANOVA, p < 0.05, the statistical results are on the right side), were inconsistent. The mRNA 

expression of SERPINH1 and COL5A1 was higher in SVGP12 than in GBM cell lines, but 

protein expression of SERPINH1 in LN229 was significantly higher than that in SVGP12 and 

other GBM cell lines (This may be attributed to post-transcriptional regulation). Thus, the 

mRNA and protein expression of SERPINH1 and COL5A1 were not specifically elevated in 
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GBM. To verify whether GBM induced astrocytes to express CAF-related proteins, a co-

culture of human GBM cell lines and astrocytes was established using a transwell assay 

(Figure 4E). The expression of SERPINH1 and COL5A1 in the co-cultured cells was verified 

using RT-qPCR and western blotting. Compared with that in untreated SVGP12 cells, the 

mRNA and protein expression of SERPINH1 and COL5A1 was elevated in SVGP12 cells 

co-cultured with GBM cell lines (Figure 4C-D, one-way ANOVA, p < 0.05, the statistical 

results are on the right side). To verify whether GBM cells could recruit astrocytes, a wound 

healing and migration assays were used to assess SVGP12 cells in the co-cultured groups. 

Our wound healing assay shows that the scratch width in the co-cultured groups had 

narrowed significantly (Figure 4F, one-way ANOVA, p < 0.05, the statistical results are on 

the right side). The migration assay shows that in the co-cultured groups, an increased 

number of cells had migrated from the upper surface to the lower surface (Figure 4G, one-

way ANOVA, p < 0.05, the statistical results are on the right side). These findings indicate 

that astrocytes in the co-cultured groups acquired an increased migration ability. In summary, 

these results suggest that GBM cells recruited astrocytes to the surrounding environment and 

induced the expression of CAF-related proteins in astrocytes. The statistical results are shown 

in Figure S7. 

The AKT/m-TOR pathway mediates the induction of astrocytes by GBM cells 

Pertinent to previous research, CAFs have their tumor-promoting effects in various cancer, 

and their activity is linked to an array of signaling pathways, notably PI3K/AKT/mTOR, 

WNT, and MAPK(32-34).To further investigate the aforementioned phenomenon, KEGG 

analysis was used to analyze the seven hub genes (SERPINH1, LAMC1, LAMB1, COL5A2, 

ADAM12, COL5A1, COL6A2). Our results show that these genes were enriched in the AKT 

pathway (Figure 5A). The AKT pathway regulates the growth, survival, proliferation, and 

migration of tumor cells. Protein expression of SERPINH1, COL5A1, p-AKT, and that of the 

downstream factor of p-AKT, p-mTOR, was detected in co-cultured SVGP12 cells using 

western blotting. Compared with that of the control group, the expression of p-AKT and p-

mTOR was increased in the co-culture groups, whereas that of AKT and mTOR remained 

unchanged (Figure 5B, one-way ANOVA, p < 0.05, the statistical results are on the right 

side).  These results indicate that GBM cells activated the AKT pathway in SVGP12 cells, 

which was followed by increased expression of SERPINH1 and COL5A1 in SVGP12 cells 

(Figure 4C, D, one-way ANOVA, p < 0.05, the statistical results are on the right side). 

Western blotting was performed in GBM mice. Our results indicate that the expression of p-
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AKT and p-mTOR was increased in the peritumor tissue of these mice, whereas that of AKT 

and mTOR remained unchanged (Figure 5C, t-test, p < 0.05, the statistical results are on the 

right side). To verify the regulatory relationship between the two CAF-specific genes 

(SERPINH1 and COL5A1) and the AKT pathway, the AKT agonist sc79 was used to treat 

SVGP12 cells, and the AKT inhibitor perifosine was used to treat the co-cultured SVGP12 

cells. Our results indicate that when p-AKT was activated in SVGP12 cells, the expression of 

SERPINH1 and COL5A1 was elevated (Figure 5D, t-test, p < 0.05,the statistical results are 

below the figure), and the migratory ability of SVGP12 cells was enhanced (Figure 5E). 

Conversely, when p-AKT was inhibited in co-cultured SVGP12 cells, the expression of 

SERPINH1 and COL5A1 was reduced (Figure5F-G, one-way ANOVA, p < 0.05, the 

statistical results are on the right side). In summary, our result show that GBM recruited 

astrocytes to the peritumor tissue and induced them to express the CAF-related proteins 

SERPINH1 and COL5A1 via the AKT pathway, which suggest that astrocytes may be a 

potential source of CAF precursor cells in the tumor microenvironment of GBM. The 

statistical results are shown in Figure S7. 

DISCUSSION 

Glioblastoma multiforme (GBM) is the most malignant type of glioma. Although the 

development of science and technology has spurred some advances in the treatment of 

glioma, there is currently no cure, and the prognosis of patients with glioma remains 

poor(35). GBM is highly invasive, even when the tumor is completely resected with adjuvant 

chemotherapy; this invasiveness presents one of the main challenges in the treatment of 

patients with glioma. GBM recurs mainly in, or within a few centimeters of, the resection 

cavity(36, 37). Much of the invasiveness and intractability of GBM also stems from its 

microenvironment(38). Cancer-associated fibroblasts (CAFs), which are indispensable 

components of this microenvironment, play a variety of roles(15). However, GBM differs 

from other types of tumors. Several studies have shown that there are no fibroblasts in the 

brain, except for a small number of fibroblasts in the vasculature of the brain(39). Evidence 

also suggests that CAFs do not originate from tumor-invaded peripheral cells, but instead 

originate from other cells in the surrounding environment such as bone marrow-derived 

precursor cells or mesenchymal stem cells(40-43). Therefore, the presence of CAFs in GBM 

is plausible. Several studies have identified cells that express CAF-associated markers in 

GBM; however, there are no gene-expression profiles confirming that these cells are indeed 

CAFs and no evidence showing their role in the biology of GBM(44-46). Although in situ 
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injection of GBM is already a well-established mouse model of GBM, this study represented 

a novel attempt to observe the distribution of CAFs in the whole brain of GBM. 

In our present study, TCGA and GEO data were combined, and a prognosis-related model 

was constructed using four CAF-related genes. Using this prognostic model, we determined 

that the survival of patients with GBM was associated with the CAF score. Using WGCNA, 

SERPINH1, and COL5A1 were identified as CAF-related hub genes that can be used to 

predict the survival prognosis of patients with GBM. 

SERPINH1, a member of the serine protease inhibitor superfamily, encodes heat shock 

protein 47, which functions as a collagen-specific molecular chaperone. SERPINH1 is 

abnormally expressed in various cancers and is associated with their malignant progression, 

potentially serving as a prognostic marker for cancer(47). Existing literature has indicated 

that SERPINH1 is associated with the prognosis of various cancers, including glioblastoma 

(GBM), gastric cancer, and lung cancer(48-50). SERPINH1, acting as an oncogene, is 

involved in the occurrence and progression of glioma. Inhibiting SERPINH1 can effectively 

suppress the proliferation, migration, and invasion of glioma cells and induce apoptosis. 

Knockout of SERPINH1 in vivo can effectively inhibit tumor growth(51). As a novel 

prognostic biomarker for glioma, SERPINH1 promotes tumor progression via pathways such 

as JAK-STAT and interacts with the immune microenvironment. High SERPINH1 

expression is linked to enhanced immune evasion and poor immunotherapy outcomes, 

offering a new target for personalized treatment(52). And SERPINH1 is positively correlated 

with immune cells and immune checkpoint molecules. This suggests its oncogenic role may 

be associated with impaired tumor immune function and indicates potential value in 

immunotherapy(52). Thus, further research is needed to investigate the role of SERPINH1 in 

glioma progression.  

COL5A1 (Type Vα1 collagen), a collagen protein, participates in the formation of the 

extracellular matrix(53). The product of COL5A1, a fibril-forming collagen, is a component 

of the extracellular matrix and is closely related to type XI collagen. Type V and XI collagen 

chains may form a single collagen type with tissue-specific chain combinations. Additionally, 

COL5A1 has been reported to be associated with hypoxia(54). Collagen deposition is 

typically considered a pathological feature of TME(55). Additionally, chemoresistance is 

associated with increased tissue stiffness mediated by specific collagen crosslinking(56). It is 

reported that COL5A1 is highly expressed in multiple cancers and is negatively correlated 
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with prognosis in various cancers(57, 58). COL5A1 is co-expressed with genes encoding the 

major histocompatibility complex, immune activators, immune suppressors, chemokines, 

chemokine receptors, mismatch repair genes, and immune checkpoints(57). However, the 

role of COL5A1 in human cancers remains unclear. More efforts are needed to elucidate its 

function in human tumors. 

In order to investigate the effects of SERPINH1 and COL5A1 on GBM, we established an 

orthotopic GBM mouse model to simulate the complex brain microenvironment, and to 

validate the expression of these two genes. SERPINH1 and COL5A1 showed increased 

expression in the peritumor tissue and were highly co-localized in the surrounding astrocytes. 

This finding can be explained using our in-vitro studies, showing that astrocytes were 

recruited to the peritumor tissue by GBM. Additionally, these GBM-recruited astrocytes 

expressed the CAF-associated proteins SERPINH1 and COL5A1 via the AKT pathway, and 

may have exerted CAF-like effects. Several studies have examined SERPINH1 and COL5A1 

in the context of GBM. However, to the best of our knowledge, our present study is the first 

to identify SERPINH1 and COL5A1 using CAF scores and predict their biological effects. 

Our GO and KEGG enrichment analysis showed that SERPINH1 and COL5A1 were mainly 

enriched in glial cell formation and construction, and ECM. In lieu of the absence of visible 

fibroblasts in the brain(59, 60), our findings suggest that astrocytes could serve as a potential 

origin for CAFs. We postulated that changes in the expression of SERPINH1 and COL5A1 

may trigger astrocytes to exert CAF-like effects, and may also regulate the invasiveness and 

metastasis of tumors. Under physiological conditions, astrocytes perform a variety of 

functions, including providing trophic and mechanical support to neurons, promoting 

synaptogenesis and maintaining normal synaptic function, pruning synapses through 

phagocytosis, contributing to the formation of the blood-brain barrier, and participating in 

other homeostatic maintenance functions(61). In our research, we observed that a large 

number of astrocytes were recruited in the peritumoral tissues, which expressed CAF-related 

factors, SERPINH1 and COL5A1. We speculate that the recruited astrocytes may exert CAF-

associated functions, contributing to the therapeutic resistance and recurrence of glioma. It 

has been discovered that astrocytes can be activated into two distinct polarization states: the 

neurotoxic or pro-inflammatory phenotype (A1) and the neuroprotective or anti-inflammatory 

phenotype (A2)(62). A1 astrocytes produce neurotoxic and pro-inflammatory cytokines, 

which contribute to the progression of neuronal injury. In contrast, A2 astrocytes can release 

anti-inflammatory cytokines and neurotrophic factors(63). Due to limitations in experimental 
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conditions, we are currently unable to further validate the phenotype of these astrocytes. In 

recent reports, A1-type astrocytes have been shown to have close connections with glioma 

cells, and A1 astrocytes regulate tumor and microenvironmental cells through cell-to-cell 

contact or the secretion of bioactive substances(64). Therefore, we speculate that the 

recruitment of astrocytes in the peritumoral tissues may be of the A1 subtype, which may be 

involved in the progression of glioma.  

In this study, we also used MCPcounter as scoring methods (Figure S6). Although numerous 

hub genes were available, EPIC and MCPcounter indicated that the most common genes were 

SERPINH1 and COL5A1.Therefore, SERPINH1 and COL5A1 were considered. Model 

construction and subsequent bioinformatics analysis were performed using genes screened by 

EPCI. For the x-cell algorithm, we initially used three well - recognized CAF scoring 

algorithms, which can classify cells in the TME, including CAFs. However, during the 

calculation process, after filtering the common gene set and performing survival analysis, we 

found that the trend of high- and low-risk groups in the results of the x-cell algorithm was 

opposite. Therefore, we concluded that the gene set screened by this algorithm was not 

suitable for subsequent research. Thus, we excluded this algorithm. 

 In our study, although astrocytes may represent precursor cells of CAFs in GBM, their 

specific role in the GBM immune microenvironment remains unclear. Our bioinformatics 

analysis revealed that the high-risk group exhibited higher TIDE scores, and literature reports 

indicate that CAFs play an immunosuppressive role in tumor progression(65). Thus, these 

CAFs-like astrocytes may exert immunosuppressive effects, a hypothesis that warrants 

further experimental validation. Using TMB analysis, we found that CAFs exerted no 

significant effects on GBM mutations, which was consistent with the prognosis results 

obtained using CGGA. This finding indicates that the accuracy of our prognostic results was 

high. For the overall prognostic analysis, our data were sourced from Europe, America, and 

Japan. Additionally, all data were grade IV GBM; however, survival prognosis using both 

genes (SERPINH1 and COL5A1) from CGGA was more inclined toward grade III GBM, 

which may be related to patient ethnicity or geographic setting. 

During our research, Western blot analysis of SERPINH1 and COL5A1 revealed multiple 

bands, potentially due to protein degradation, subtypes/splice variants, or antibody cross-

reactivity. We employed the widely accepted AKT inhibitor Perifosine to investigate changes 

in SERPINH1 and COL5A1. Results showed that inhibiting the AKT pathway reduced 
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SERPINH1 and COL5A1 protein expression in astrocytes and affected their migration 

capacity. Specific bands for SERPINH1 and COL5A1 are indicated by the red arrows in 

Figure 4C. 

In conclusion, we used CAF scores to analyze the GBM data from different sources. We 

identified two CAF-related genes that affected the prognosis of GBM. This finding may 

provide valuable information for the development of future targeted therapeutics. We believe 

that this study will provide new insights into the molecular therapeutic implications of CAF 

in GBM. Through our study, the distribution of CAF-like astrocytes can be localized by 

SERPINH1/COL5A1 to identify the extent of the tumor more precisely during the diagnosis 

and treatment of GBM. Moreover, it may be possible to increase the efficacy of AKT-

inhibiting drugs against GBM by modulating SERPINH1/COL5A1.Although the findings 

obtained in our present study advance the understanding of GBM, our study had several 

limitations. Determining whether SERPINH1 and COL5A1 directly affected the survival 

prognosis of GBM was necessary to perform the experimental analysis, and the more precise 

and numerous samples originating from human tissues were required, rather than a single cell 

line. Additionally, although bioinformatics was used as a predictive tool, the sources and 

formation of CAFs in GBM need to be proven by extensive in-vivo and in-vitro studies. 

Moreover, the role of CAFs in GBM is still not fully explained. Some studies have shown 

that CAFs have different effects on tumors, promoting(66, 67) or inhibiting(68, 69) tumor 

growth, but this activity seems to be occurring through a different pathway. Although our 

work elucidated the effect of GBM on astrocytes, we did not investigate the effect of 

astrocytes on GBM after the changes had occurred, which represents a future line of research. 

CONCLUSION 

In our study, two CAF-related genes, SERPINH1 and COL5A1, were identified in the GBM 

datasets and may affect the prognosis of GBM patients. Our findings indicate that these two 

genes were highly expressed in the peritumor tissue. We also found that GBM could recruit 

astrocytes to the peritumor tissue via activation of the AKT/mTOR pathway. GBM also 

induced these recruited astrocytes to express CAF-related proteins (SERPINH1 and 

COL5A1). Our results suggest that astrocytes may be a potential source of CAF precursor 

cells in the tumor microenvironment of GBM. Therefore, the distribution of CAF-like 

astrocytes can be localized by SERPINH1/COL5A1 to identify the extent of the tumor more 

precisely during the diagnosis and treatment of GBM. Moreover, it may be possible to 
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increase the efficacy of AKT-inhibiting drugs against GBM by modulating 

SERPINH1/COL5A1. 
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Figure 1. Construction of CAF prognostic model, and gene screening and validation. (A, 

B) Survival curves for TCGA (A) and GEO (B) data obtained using the four CAF-scoring 

algorithms. (C, D) Weighted correlation network analysis (WGCNA) of TCGA (C) and GEO 

data (D). Horizontal coordinates are the scored items, and vertical coordinates are the module 

names. Red color represents positive correlation, and blue represents negative correlation. 

The correlation coefficient is shown at the top of the module, and the p-value used for 

correlation assessment is shown at the bottom. p < 0.05 is correlated with CAFs expression 

levels. (E) Intersection genes in TCGA and GEO datasets. (F) Univariate Cox regression 

analysis. Red indicates high risk. (G, H) Lasso Cox regression analysis (lasso Lambda and 

lasso Cvfit). (I) Kaplan–Meier curves for the survival analysis of the high- and low-risk 

groups in TCGA and GEO datasets, respectively. (J, K) Prognostic analyses of SERPINH1 

(J) and COL5A1 (K) using mRNA data from the Chinese Glioma Genome Atlas (CGGA). 

(L) Correlation between CAF scores and patient risk scores. Correlation coefficient is shown 

at the top right. Scatter plot of correlations is shown in the lower left quadrant of the figure. 

The diagonal sequence of squares represents the type of scoring algorithm. The last column 

represents the correlation between the CAF scores and patient scores. (M) Heat map of two 

identified CAF-related genes and CAF genes reported in the literature. (N) Correlation 

analysis of CAF genes reported in the literature, the two identified CAF-related genes, and 

risk scores. 
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Figure 2. Detection, localization, and expression of SERPINH1 and COL5A1. 

(A)Expression of SERPINH1/COL5A1 in central nervous system (CNS) tumors and 

fibroblasts from the Cancer Cell Line Encyclopedia (CCLE) database. (B, C) 

Immunolabeling of SERPINH1 (B) and COL5A1 (C) in the GBM (left) and normal tissue 

(right) from the HPA database. (D) Tumor volumes were analyzed using bioluminescence 

imaging. (E-H) Multicolor IHC labeling of SERPINH1 (E), COL5A1 (F), FAP (G), and 

S100A4 (H) expression in the GBM mouse model. Green indicates G422-GFP expression. 

Red indicates the four CAF-associated proteins (SERPINH1, COL5A1, FAP, S100A4). 

Nuclei were stained using DAPI. Merge panel shows the combined image. White arrow 

indicates peritumor tissues with high expression of the indicated protein. (I-J) Western 

blotting analysis of the four CAF proteins in peritumor and normal tissues (FAP, 1.632 ± 

0.279, n = 3; S100A4, 1.269 ± 0.165, n = 3; SERPINH1, 3.014 ±0.855, n = 3; COL5A1, 

1.188 ±0.104, n = 3). (K) HE staining in the brain tissues of GBM mice. The experiment was 
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repeated three times, and the results are representative of three independent experiments. The 

statistical results are shown in Figure S7. 
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Figure 3. Localization of SERPINH1 and COL5A1. (A-C) Multicolor IHC staining of 

astrocytes (A, gfap), microglia (B, Iba1), and oligodendrocytes (C, MBP) in the GBM mouse 

model. Green indicates G422-GFP and Red indicates glial cells. Nuclei were stained using 

DAPI. The Merge panel shows the combined image. Red arrows indicate the localized 

recruitment of glial cells. The statistical results are shown in Figure S7. (D-G) Co-

localization labeling of SERPINH1 (D, 10×; E, 63×) and COL5A1 (F, 10×; G, 63×) with 

astrocytes in the GBM mouse model. Green indicates G422-GFP, and Red indicates 

astrocytes. White indicates SERPINH1/COL5A1 expression. Nuclei were stained using 

DAPI. The Merge panel shows the combined image. White arrows indicate areas with high 

levels of co-localization and the cells that co-localized. (H-K) Co-localization labeling of 

FAP (H, 10×; I, 63×) and S100A4 (J, 10×; K, 63×) with astrocytes in the GBM mouse model. 

Green indicates G422-GFP, and Red indicates astrocytes. White indicates FAP/S100A4 

expression. Nuclei were stained using DAPI. The Merge panel shows the combined image. 

White arrows indicate areas with high levels of co-localization and the cells that co-localized. 

Red arrows indicate FAP/S100A4-positive and GFAP-negative cells. (L) Statistical chart of 

tissue immunofluorescence localization (E, G, I, K) results SERPINH1,0.557 ± 0.011, n = 3; 

COL5A1, 0.590 ± 0.006, n = 3; FAP, 0.505 ± 0.013, n = 3; S100A4, 0.481 ± 0.003, n = 3. 

The experiment was repeated three times, and the results are representative of three 

independent experiments. In the statistical figures, p-values are indicated with asterisks, 

where * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, and **** 

represents p < 0.0001. 
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Figure 4. The expression of SERPINH1 /COL5A1 and cell function assays in a GBM-

astrocytes co-culture model. (A, B) Western blotting (A) (SERPINH1: SVGP12, 1 ± 0, n = 
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3; U87, 0.664 ± 0.054, n = 3; T98G, 0.490 ± 0.146, n = 3; LN229, 0.547 ± 0.023, n = 3; U343, 

0.487 ± 0.067, n = 3. COL5A1: SVGP12, 1 ± 0, n = 3; U87, 0.819 ± 0.169, n = 3; T98G, 

0.809 ± 0.089, n = 3; LN229, 1.280 ± 0.130, n = 3; U343, 0.789 ± 0.026, n = 3.)  and RT-

qPCR (B) (SERPINH1: SVGP12, 1 ± 0, n = 3; U87, 0.646 ± 0.041, n = 3; T98G, 0.077 ± 

0.012, n = 3; LN229, 0.147 ± 0.042, n = 3; U343, 0.250 ± 0.029, n = 3.COL5A1: SVGP12, 1 

± 0, n = 3; U87, 0.509 ± 0.054, n = 3; T98G, 0.268 ± 0.089, n = 3; LN229, 0.065 ± 0.023, n = 

3; U343, 0.007 ± 0.002, n = 3.) in SVGP12 and GBM cell lines. (C, D) Western blotting (C) 

（SERPINH1: SVGP12, 1 ± 0, n = 3; SVGP12-U87, 1.871 ± 0.077, n = 3; SVGP12-T98G, 

1.509 ± 0.117, n = 3; SVGP12-LN229, 1.628 ± 0.166, n = 3; SVGP12-U343, 1.635 ± 0.106, 

n = 3.COL5A1: SVGP12, 1 ± 0, n = 3; SVGP12-U87, 1.514 ± 0.088, n = 3; SVGP12-T98G, 

1.659 ± 0.108, n = 3; SVGP12-LN229, 1.836 ± 0.410, n = 3; SVGP12-U343, 1.990 ± 0.228, 

n = 3.） and RT-qPCR (D) (SERPINH1: SVGP12, 1 ± 0, n = 3; SVGP12-U87, 2.367 ± 0.217, 

n = 3; SVGP12-T98G, 2.211 ± 0.125, n = 3; SVGP12-LN229, 1.308 ± 0.128, n = 3; 

SVGP12-U343, 1.324 ± 0.348, n = 3.COL5A1: SVGP12, 1 ± 0, n = 3; SVGP12-U87, 2.759 ± 

0.425, n = 3; SVGP12-T98G, 7.595 ± 1.252, n = 3; SVGP12-LN229, 2.027 ± 0.629, n = 3; 

SVGP12-U343, 1.561 ± 0.246, n = 3.)  in a co-culture model. (E) Schematic diagram of 

GBM-astrocytes in co-culture. (F) Wound healing assay in co-cultured SVGP12 (24h: 

SVGP12, 0.692 ± 0.016, n = 3; U87, 0.264 ± 0.051, n = 3; T98G, 0 ± 0, n = 3; LN229, 0.174 

± 0.151, n = 3; U343, 0.137 ± 0.017, n = 3.).  (G) Migration assay in co-cultured 

SVGP12.(SVGP12, 1 ± 1, n = 3; U87, 603 ± 49.96, n = 3; T98G, 314 ± 55.05, n = 3; LN229, 

856.7 ± 100.3, n = 3; U343,124.0 ± 26.21, n = 3). The statistical results are shown in Figure 

S7.  The experiment was repeated three times, and the results are representative of three 

independent experiments. In the statistical figures, p-values are indicated with asterisks, 

where * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, and **** 

represents p < 0.0001. 
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Figure 5. The expression of SERPINH1/ COL5A1 and AKT/m-TOR pathway in a GBM 

and astrocytes co-culture model. (A) KEGG pathway enrichment. (B) Western blot shows 

the expression of the AKT/m-TOR pathway in co-cultured SVGP12 cells (p-mTOR: 

SVGP12, 1 ± 0, n = 3; SVGP12-U87, 4.776 ± 0.467, n = 3; SVGP12-T98G, 3.234 ± 0.316, n 
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= 3; SVGP12-LN229, 1.497 ± 0.349, n = 3; SVGP12-U343, 5.107 ± 0.456, n = 3.mTOR: 

SVGP12, 1 ± 0, n = 3; SVGP12-U87,1.367 ± 0.054, n = 3; SVGP12-T98G, 1.349 ± 0.043, n 

= 3; SVGP12-LN229, 1.350 ± 0.330, n = 3; SVGP12-U343, 1.261 ± 0.438, n = 3. p-AKT: 

SVGP12, 1 ± 0, n = 3; SVGP12-U87, 1.847 ± 0.168, n = 3; SVGP12-T98G, 1.880 ± 0.152, n 

= 3; SVGP12-LN229, 1.877 ± 0.053, n = 3; SVGP12-U343, 2.127 ± 0.213, n = 3.AKT: 

SVGP12, 1 ± 0, n = 3; SVGP12-U87, 1.089 ± 0.287, n = 3; SVGP12-T98G, 1.075 ± 0.044, n 

= 3; SVGP12-LN229, 1.183 ± 0.269, n = 3; SVGP12-U343, 1.237 ± 0.077, n = 3). (C) 

Western blot shows AKT/m-TOR pathway expression in peritumor and normal tissues of 

GBM mice (p-mTOR: Normal, 1 ± 0, n = 3; Peritumor, 2.578 ± 0.981, n = 3. mTOR: Normal, 

1 ± 0, n = 3; Peritumor,0.944 ± 0.413, n = 3. p-AKT: Normal, 1 ± 0, n = 3; Peritumor, 1.554 

± 0.349, n = 3. AKT: Normal, 1 ± 0, n = 3; Peritumor, 1.011 ± 0.218, n = 3). (D) Western 

blot shows SERPINH1 and COL5A1 expression in SVGP12 cells treated with the AKT 

agonist sc79 (SERPINH1:SVGP12, 1 ± 0, n = 3; SVGP12+SC79, 5.263 ± 0.584, n = 3. 

COL5A1:SVGP12, 1 ± 0, n = 3; SVGP12+SC79, 1.160 ± 0.033, n = 3).  (E) Migration of 

SVGP12 cells treated with the AKT agonist sc79 (right) and of untreated SVGP12 cells (left). 

(F, G) Western blot shows the expression of the AKT-mTOR pathway (F) (p-mTOR: 

SVGP12, 1 ± 0, n = 3; SVGP12+Perifosine, 0.782 ± 0.007, n = 3; SVGP12-U87+Perifosine, 

0.812 ± 0.018, n = 3; SVGP12-T98G+Perifosine, 0.588 ± 0.026, n = 3; SVGP12-

LN229+Perifosine, 0.451 ± 0.035, n = 3; SVGP12-U343+Perifosine, 0.574 ± 0.023, n = 3. p-

AKT: SVGP12, 1 ± 0, n = 3; SVGP12+Perifosine, 0.555 ± 0.036, n = 3; SVGP12-

U87+Perifosine, 0.690 ± 0.006, n = 3; SVGP12-T98G+Perifosine, 0.714 ± 0.030, n = 3; 

SVGP12-LN229+Perifosine, 0.665 ± 0.023, n = 3; SVGP12-U343+Perifosine, 0.677 ± 0.021, 

n = 3.)  and that of SERPINH1 and COL5A1 (G) in co-cultured SVGP12 cells, and in co-

cultured SVGP12 cells treated with the AKT inhibitor perifosine (SERPINH1: SVGP12, 1 ± 

0, n = 3; SVGP12+Perifosine, 0.876 ± 0.048, n = 3; SVGP12-U87+Perifosine, 0.959 ± 0.023, 

n = 3; SVGP12-T98G+Perifosine, 0.817 ± 0.050, n = 3; SVGP12-LN229+Perifosine, 0.748 ± 

0.070, n = 3; SVGP12-U343+Perifosine, 0.807 ± 0.046, n = 3.COL5A1:SVGP12, 1 ± 0, n = 3; 

SVGP12+Perifosine, 0.868 ± 0.072, n = 3; SVGP12-U87+Perifosine, 0.923 ± 0.034, n = 3; 

SVGP12-T98G+Perifosine, 0.859 ± 0.074, n = 3; SVGP12-LN229+Perifosine, 0.920 ± 0.011, 

n = 3; SVGP12-U343+Perifosine, 0.830 ± 0.028, n = 3).  (H) Statistical graph of changes in 

SERPINH1 and COL5A1 protein expression with the addition of perifosine. The experiment 

was repeated three times, and the results are representative of three independent experiments. 

The statistical results are shown in Figure S7. In the statistical figures, p-values are indicated 
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with asterisks, where * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, 

and **** represents p < 0.0001. 

 

SUPPLEMENTAL DATA 

Table S1. Sequences of primers used in this research 

Targets Forword5’-3’ Revers5’-3’ 

SERPINH1 TGCTAGTCAACGCCATGTTCT ATAGGACCGAGTCACCATGAA 

COL5A1 TACCCTGCGTCTGCATTTCC GCTCGTTGTAGATGGAGACCA 

β-actin AAGATCATTGCTCCTCCTG CATACTCCTGCTTGCTGAT 
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