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META-ANALYSIS

Influence of maternal diabetes during pregnancy on
ultrasound-measured fetal epicardial fat thickness:
A meta-analysis

5

Apizi Anwaier ®, Jian Li®, Wei Liu®, Liangjie Dong ®, Yunfei Ding ®, and Zhaoxia Yu

Maternal diabetes during pregnancy, including gestational diabetes mellitus (GDM) and pregestational diabetes mellitus (PDM),

has been linked to alterations in fetal development. This meta-analysis aimed to investigate the impact of maternal diabetes on fetal
epicardial fat thickness (fEFT), measured via ultrasound—a potential marker of cardiometabolic risk. A systematic search of PubMed,
Embase, and Web of Science was conducted to identify observational studies assessing fEFT in pregnant women with and without
diabetes. A random-effects model was used to calculate the mean difference (MD) in fEFT between groups. Heterogeneity was
evaluated using the /2 statistic, and sensitivity, subgroup, and meta-regression analyses were performed to explore sources of
variability. Data from 10 studies, comprising 12 datasets and 1303 participants, were pooled. Women with diabetes during pregnancy
had significantly higher fEFT compared to those without diabetes (MD: 0.37 mm, 95% confidence interval [Cl]: 0.26 to 0.49, P < 0.001),
with moderate heterogeneity (1> = 69%). Sensitivity analyses, conducted by excluding one dataset at a time, confirmed the robustness
of the findings (all P values < 0.05). Meta-regression revealed a positive correlation between gestational age (GA) at fEFT
measurement and fEFT differences (coefficient = 0.040, P = 0.005), accounting for 83.2% of the heterogeneity. Subgroup analyses
demonstrated consistent results across study designs, maternal diabetes types, and demographic factors but highlighted greater fEFT
differences in studies where GA at fEFT measurement was > 26 weeks. In conclusion, maternal diabetes during pregnancy is associated

with increased fEFT, particularly in later gestation.

Keywords: Gestational diabetes mellitus, GDM, pregestational diabetes mellitus, PDM, fetal epicardial fat thickness, fEFT,

metabolism, meta-analysis.

Introduction

Diabetes mellitus (DM) is a common metabolic disorder with
significant global health implications, particularly among
women of childbearing age [1, 2]. Gestational diabetes mellitus
(GDM), defined as glucose intolerance first recognized during
pregnancy [3], and pregestational diabetes mellitus (PDM),
which includes type 1 or type 2 diabetes diagnosed before
pregnancy [4], affect a substantial number of pregnancies
worldwide. GDM alone is estimated to complicate approxi-
mately 14% of pregnancies [5], while PDM incidence varies
by region, reflecting broader diabetes prevalence trends [6].
Both conditions are associated with adverse maternal and
fetal outcomes, including preeclampsia, preterm delivery,
fetal macrosomia, and perinatal complications [7-9]. These
risks highlight the need to better understand and mitigate the
impact of maternal DM on pregnancy and offspring health.
Emerging evidence suggests that maternal DM may influence
the cardiometabolic health of offspring, both in utero and
later in life [10, 11]. Fetal exposure to maternal hyperglycemia
is thought to disrupt metabolic programming, increasing

the risk of obesity, insulin resistance, and type 2 diabetes
in adolescence and adulthood [12]. This has led to growing
interest in identifying early markers of cardiometabolic risk
in fetuses exposed to maternal DM [13]. Among these, fetal
epicardial fat thickness (fEFT) has emerged as a promising
candidate. Epicardial fat, a metabolically active visceral fat
depot surrounding the myocardium and coronary arteries, is
linked to cardiometabolic disorders in adults [14,15]. Mea-
suring fEFT via ultrasound provides a non-invasive method
to assess fetal adiposity and may offer insights into early
metabolic alterations influenced by maternal factors [16].
Increased fEFT in fetuses and neonates correlates with higher
birth weight, greater adiposity, and early metabolic dysfunction
markers, such as hyperinsulinemia [17-20]. These findings
suggest that elevated fEFT in utero could serve as an early
indicator of cardiometabolic risk. Despite the biological
plausibility and clinical significance of these associations,
research on the effects of maternal DM on fEFT remains
limited. Some observational studies have reported increased
fEFT in fetuses of women with GDM or PDM compared to
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non-diabetic pregnancies [21-28]. However, findings across
studies have been inconsistent due to differences in study
design, measurement techniques, and sample characteristics.
Given the growing interest in fEFT as a potential early marker
of fetal cardiometabolic risk, understanding its association
with maternal diabetes is crucial. While individual studies
have explored this relationship, their findings vary. To address
this, we conducted a systematic review and meta-analysis to
quantitatively assess the impact of maternal diabetes (both
GDM and PDM) on ultrasound-measured fEFT. Additionally,
we examined potential sources of heterogeneity, including
gestational age (GA) at fEFT measurement, maternal BMI, and
the type of maternal DM, to provide a comprehensive synthesis
of the available evidence.

Materials and methods

This meta-analysis followed the guidelines of the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA 2020) [29,30] and the Cochrane Handbook for
Systematic Reviews of Interventions [31] in its design,
data collection, statistical analysis, and interpretation of
results. It was registered with PROSPERO under the iden-
tifier CRD42024618929. Originally, the protocol focused on
pregnancies complicated by GDM compared to controls.
However, before data extraction, it was amended to include
both GDM and PDM to provide a more comprehensive eval-
uation of maternal diabetes’ impact on fetal epicardial fat
thickness. This amendment was submitted to and approved
by PROSPERO in accordance with standard meta-analysis
procedures.

Literature search

To identify studies relevant to the meta-analysis, we conducted
a systematic search of PubMed, Embase, and Web of Science
using comprehensive search terms. These included (“epicardial
adipose tissue” OR “epicardial fat” OR “pericardial adipose tis-
sue” OR “pericardial fat” OR “cardiac adipose tissue” OR “car-
diac fat” OR “subepicardial adipose tissue” OR “subepicardial
fat” OR “heart fat” OR “heart adipose tissue”) AND (“gesta-
tional diabetes” OR “GDM” OR “pregestational diabetes” OR
“gestational” OR “pregnancy” OR “pregnant”) AND (“diabetes”
OR “diabetic” OR “hyperglycemia”). The search was limited to
studies involving humans and published as full-length arti-
cles in peer-reviewed English-language journals. Additionally,
we manually screened references from relevant original and
review articles to identify any additional eligible studies. The
literature search covered publications from the inception of
each database through November 12, 2024. Detailed search
terms and strategies for each database are provided in the
Supplemental Data.

Inclusion and exclusion criteria

The inclusion criteria for eligible studies were as follows:
(1) observational studies published as full-length articles;
(2) studies including pregnant women with DM—either GDM
or PDM—as well as healthy pregnant women without DM, all
with singleton pregnancies; (3) studies that assessed fEFT via

Anwaier et al.
Maternal diabetes and fetal epicardial fat thickness

1246

Biomolecules
& Biomedicine

ultrasound in women with and without DM; and (4) studies that
reported or allowed for the calculation of differences in fEFT
between women with and without DM during pregnancy. The
diagnostic criteria for GDM or PDM were based on those used
in the included studies. The exclusion criteria were as follows:
(1) studies that did not include pregnant women; (2) studies
that included pregnant women with other clinical conditions,
such as pregnancy-induced hypertension or preeclampsia;
(3) studies that did not measure fEFT; and (4) preclinical stud-
ies, reviews, or editorials. In cases of overlapping populations,
the study with the largest sample size was included in the meta-
analysis.

Study quality evaluation and data extraction

The literature search, study identification, quality assessment,
and data extraction were independently conducted by two
authors. Any disagreements were resolved through consulta-
tion with the corresponding author. Study quality was assessed
using the Newcastle-Ottawa Scale (NOS) [32], which evalu-
ates three domains: selection of cases and controls, compa-
rability between groups, and measurement of exposure. The
NOS assigns scores from 1 to 9, with higher scores indicat-
ing better quality. The following data were extracted from
each study for analysis: study details (author, year, coun-
try, and design), participant characteristics (sample size, age,
and BMI of pregnant women), median GA for fEFT measure-
ment, type of maternal DM (GDM or PDM), and variables
matched or adjusted when assessing the influence of maternal
DM on fEFT.

Statistical analysis

The mean difference (MD) with corresponding 95% confidence
intervals (CIs) was used to summarize the difference in fEFT
between pregnant women with and without diabetes [33]. Het-
erogeneity among studies was assessed using the Cochrane
Q test and the I? statistic [33,34] and categorized as mild
(I? < 25%), moderate (I 25%-75%), or substantial (I?> > 75%). A
random-effects model was applied to pool the results, account-
ing for potential between-study variability [31]. Sensitivity
analyses were conducted by omitting one dataset at a time to
evaluate the robustness of the findings [33]. Predefined uni-
variate meta-regression analyses were performed to assess the
modifying effects of study characteristics on the outcomes,
including sample size, mean maternal age, mean BMI, and NOS
scores. Additionally, predefined subgroup analyses explored
the influence of study characteristics, such as study design,
type of maternal diabetes, mean maternal age, BMI, timing of
fEFT measurement, and NOS scores, using medians of contin-
uous variables as cutoffs for subgroup definitions. Publication
bias was initially assessed through funnel plot construction and
visual examination of symmetry [35], complemented by Egger’s
regression test 35. Statistical analyses were performed using
RevMan (Version 5.1; Cochrane Collaboration, Oxford, UK) and
Stata software (Version 12.0; Stata Corporation, College Station,
TX, USA). A two-sided P value of <0.05 was considered statis-
tically significant.
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Figure 1.

Results

Study inclusion

The study inclusion process is illustrated in Figurel. A com-
prehensive search of three databases initially identified
168 potentially relevant records. After removing 25 dupli-
cates, 143 records remained. Title and abstract screening
excluded 123 studies, primarily due to misalignment with
the meta-analysis objectives. The full texts of the remaining
20 records were then independently assessed by two authors,
resulting in the exclusion of 10 studies for reasons detailed
in Figure 1. Ultimately, 10 observational studies were deemed
eligible for inclusion in the quantitative analysis [21-28, 36, 37].

Summary of study characteristics

Table 1 summarizes the characteristics of the included stud-
ies. In total, 10 observational studies were analyzed, con-
sisting of six case-control studies [23,24,26-28,36] and
four cross-sectional studies [21,22,25,37]. These studies,
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(n=0)

Reports excluded:

Not including pregnant women

(n=1)

® Diabetes in pregnancy not
considered as exposure (n = 4)

® fEFT not evaluated (n = 4)

®  Overlapped population (n = 1)

Flowchart illustrates the process of database search and study identification.

published between 2016 and 2023, were conducted in
Tiirkiye [22,24,27,28,36], the United States [21,23], and
India [25,26,37]. Two studies [27,28] provided separate
datasets for women with GDM and PDM, resulting in a total
of 12 datasets included in the meta-analysis. Across all studies,
1303 women with singleton pregnancies were analyzed, with
mean maternal ages ranging from 25.6 to 35.8 years and mean
BMIs from 27.9 to 313 kg/m2. The ultrasonic methods for
measuring fEFT varied, including left ventricular outflow tract,
four-chamber, and apical views, with different reference points
for defining fEFT thickness—details of which are provided
in Table 1. The median GA at ultrasound assessment of fEFT
ranged from 20.0 to 34.5 weeks. Among the studies, six
included women with GDM [22, 24-26, 36, 37], one focused on
women with PDM [21], and three included both GDM and PDM
populations [23, 27, 28]. In all studies, potential confounding
factors—such as GA at the time of fEFT measurement—were
matched between women with and without diabetes during
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pregnancy. The methodological quality of the included studies, =

assessed using the NOS, ranged from seven to nine stars, A N I R S N N R R
indicating an overall good quality of evidence (Table 2). ©

Results of overall meta-analysis and sensitivity analysis g

Moderate heterogeneity was observed among the included R R R R e R e e e S e
studies (I = 69%). Using a random-effects model, the pooled I

analysis showed that fEFT was significantly higher in women 2F

with DM during pregnancy compared to those without DM (MD:
0.37 mm, 95% CI: 0.26-0.49, P < 0.001; Figure 2A). Sensitivity
analyses, conducted by excluding one dataset at a time, con-
firmed the robustness of the results (MD range: 0.32-0.40, all
P < 0.05).

Results of the meta-regression analysis

Univariate meta-regression analysis revealed a positive cor-
relation between the median GA at fEFT measurement and
the fEFT difference between women with and without DM
during pregnancy (coefficient = 0.040, P = 0.005; Table 3,
Figure 2B), accounting for a substantial proportion of hetero-
geneity (Adjusted R? = 83.2%). Other variables, including sam-
ple size, mean maternal age, mean maternal BMI, and NOS
scores, did not show significant effects (all P > 0.05; Table 3).

Same method of
ascertainment of exposure
for cases and controls

Ascertainment

of the
exposure

Results of the subgroup analysis

Subgroup analyses revealed consistent effects of maternal DM
on fEFT across study designs (case-control and cross-sectional;
P for subgroup difference = 0.18; Figure 3A), maternal DM
types (GDM and PDM; P for subgroup difference = 0.55;
Figure 3B), maternal age categories (< 29 vs > 29 years;
P = 0.69; Figure 4A), and maternal BMI categories (< 30 vs
> 30 kg/m?; P = 0.59; Figure 4B). However, subgroup analysis
by GA for fEFT measurement showed a significantly greater
increase in fEFT in studies with GA > 26 weeks compared
to those with GA < 26 weeks (0.54 vs 0.23 mm; P for sub-
group difference = 0.002; Figure 5A). A similar trend was
observed in studies with varying NOS scores (P for subgroup
difference = 0.09; Figure 5B).

Controlled for

other

confoundings
1
1
1
1
1
1
1
0
0
1
1
1

Controlled
for GA

of controls

Publication bias

Figure 6 presents the funnel plots for the meta-analysis assess-
ing the difference in fEFT between women with and without DM
during pregnancy. The plots appear symmetrical upon visual
inspection, suggesting alow risk of publication bias. This obser-
vation is further supported by Egger’s regression test, which did
not indicate significant publication bias (P = 0.58).

controls

of the cases

Discussion

The results of this meta-analysis reveal a significant associa-
tion between maternal DM during pregnancy and increased
fEFT, with an MD of 0.37 mm compared to pregnancies
without DM. This finding remained consistent across sen-
sitivity analyses, with moderate heterogeneity observed.
Meta-regression analysis identified GA at the time of fEFT
measurement as a significant source of heterogeneity, sug-
gesting that the impact of maternal DM on fEFT becomes
more pronounced as pregnancy progresses. Subgroup analyses
further confirmed this association across various study designs,

definition of Representativeness Selection of Definition

Adequate
the cases

GDM: Gestational diabetes mellitus; PDM: Pregestational diabetes mellitus; GA: Gestational age.

Table 2. Study quality evaluation via the Newcastle-Ottawa Scale

Omeroglu, 2023 GDM
Omeroglu, 2023 PDM
Singh, 2023

Sever, 2023 GDM
Sever, 2023 PDM

Yavuz, 2016
Jackson, 2016
Akkurt, 2018
Aydin, 2020
Iskender, 2022
Baria, 2023
Ghuman, 2023
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A DM pregnancy Non-DM pregnancy Mean Difference Mean Difference
udy o uk e a D Tota an D ota ei Random, 95% ClI IV, Random, 95% CI

Yavuz 2016 1.34 0.25 40 || 143 | 0.18 40 12.2% 0.21[0.11, 0.31] il
Jackson 2016 143 0.37 28 116 0.3 28 10.1% 0.27 [0.09, 0.45] T
Akkurt 2018 145 0.98 106 15 0.72 106  8.6% 0.35[0.12, 0.58] LTI
Aydin 2020 1.05 0.77 60 09 058 60 8.3% 0.15[-0.09, 0.39] il T
Iskender 2022 1.9 0.53 40 14 065 40 7.9% 0.50 [0.24, 0.76] T
Baria 2023 1.8 0.59 35 1.1 1.18 35 45% 0.70[0.26, 1.14]
Ghuman 2023 154 0.33 3% 115 059 35 8.8% 0.39[0.17, 0.61] Wi
Omeroglu 2023 GDM 1.83 | 1.2 80 1.19 0.28 45  7.8% 0.64 [0.38, 0.90] =
Omeroglu 2023 PDM 2.04 0.86 45 119 0.28 45 7.8% 0.85[0.59, 1.11] i
Singh 2023 A7 || 6.1 30 1.5 055 30 4.4% 0.20 [-0.24, 0.64] S
Sever 2023 GDM 14 086 110 1.19 0.36 55 9.8% 0.21[0.02, 0.40] | T
Sever 2023 PDM 147 087 110 119 0.36 55  9.8% 0.28 [0.09, 0.47] TN
Total (95% Cl) 729 574 100.0% 0.37 [0.26, 0.49] <&

Heterogeneity: Tau? = 0.02; Chi? = 35.23, df = 11 (P = 0.0002); I* = 69%

Test for overall effect: Z = 6.46 (P < 0.00001) il Ry B i ;

Lower fEFT in DM Higher fEFT in DM

O
i O
O

MD of fEFT (mm)

20 25 30 35
Median GA of fEFT measuring (weeks)

Figure 2. Forest plots for the meta-analysis comparing fEFT between women with and without DM in pregnancy and plots of the meta-regression
analysis for the influence of GA of fEFT assessment. (A) Forest plots for the overall meta-analysis and (B) Meta-regression for the influence of GA of
fEFT assessment on the results. GDM: Gestational diabetes mellitus; PDM: Pregestational diabetes mellitus; GA: Gestational age; fEFT: Fetal epicardial fat
thickness; DM: Diabetes mellitus; Cl: Confidence interval; MD: Mean difference.

Table 3. Results of univariate meta-regression analysis

Variables MD of fEFT between women with and without DM in pregnancy

Coefficient 95% Cl Pvalues Adjusted R?
Sample size —0.00061 —0.00360 to 0.00237 0.65 —14.9%
Mean maternal age (years) 0.0035 —0.0614 t0 0.0684 0.91 —14.5%
Mean maternal BMI (kg/m?) 0.041 —0.111t0 0.194 0.56 —10.8%
Median GA at fEFT measuring (weeks) 0.040 0.015 to 0.066 0.005 83.2%
NOS -0.15 —0.32t00.03 0.09 28.7%

GA: Gestational age; fEFT: Fetal epicardial fat thickness; DM: Diabetes mellitus; Cl: Confidence interval; MD: Mean difference; NOS: Newcastle-Ottawa
Scale.

Anwaier et al.

Maternal diabetes and fetal epicardial fat thickness 1250 www.biomolbiomed.com


https://www.biomolbiomed.com
https://www.biomolbiomed.com

Biomolecules
& Biomedicine

A DM pregnancy Non-DM pregnancy Mean Difference Mean Difference
Study or Subgrou Mean SD_ Total Mean SD__Total Weight IV, Random, 95% CI IV, Random, 95% ClI
1.2.1 Case-control
Akkurt 2018 145 098 106 1.1 0.72 106 8.6% 0.35[0.12, 0.58]
Aydin 2020 1.05 0.77 60 0.9 0.58 60 8.3% 0.15[-0.09, 0.39] T
Iskender 2022 19 0.53 40 1.4 0.65 40 7.9% 0.50 [0.24, 0.76] -
Ghuman 2023 154 0.33 35 1.15 0.59 35 8.8% 0.39[0.17, 0.61] -

Omeroglu 2023 GDM 183 1.2 90 119 0.28 45
Omeroglu 2023 PDM 2.04 0.86 45 119  0.28 45

Sever 2023 GDM 14 086 110 119  0.36 55
Sever 2023 PDM 147 087 110 119  0.36 55
Subtotal (95% ClI) 596 441

Heterogeneity: Tau? = 0.03; Chi? = 24.53, df =7 (P = 0.0009); I = 71%
Test for overall effect: Z = 5.30 (P < 0.00001)

1.2.2 Cross-sectional

Yavuz 2016 1.34 0.25 40 113 0.19 40
Jackson 2016 143 0.37 28 1.16 0.3 28
Baria 2023 1.8 0.59 35 1.1 1.18 35
Singh 2023 1.7 11 30 1.5 0.55 30
Subtotal (95% CI) 133 133

Heterogeneity: Tau? = 0.01; Chi?=4.76, df =3 (P = 0.19); I? = 37%
Test for overall effect: Z = 3.88 (P = 0.0001)

Total (95% CI) 729 574
Heterogeneity: Tau? = 0.02; Chi? = 35.23, df = 11 (P = 0.0002); I> = 69%
Test for overall effect: Z = 6.46 (P < 0.00001)

Test for subaroup differences: Chi2 = 1.81. df =1 (P = 0.18). 12 = 44.9%
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B DM pregnancy Non-DM pregnancy Mean Difference Mean Difference

r r Mean D Total Mean D Total Weight V. Random, 95% Cl IV, Random, 95% ClI
1.3.1 GDM versus non-DM
Yavuz 2016 1.34 0.25 40 1.13 0.19 40 13.0% 0.21[0.11, 0.31] -
Aydin 2020 1.06 0.77 60 0.9 0.58 60 9.1% 0.15[-0.09, 0.39] T
Iskender 2022 1.9 0.53 40 1.4 0.65 40 8.7% 0.50 [0.24, 0.76] -
Baria 2023 1.8 0.59 35 1.1 1.18 35 5.1% 0.70[0.26, 1.14] -
Ghuman 2023 1.54 0.33 35 1.15 0.59 35 9.6% 0.39[0.17, 0.61] -
Omeroglu 2023 GDM 183 1.2 90 1.19 0.28 45 8.7% 0.64 [0.38, 0.90] -
Singh 2023 1.7 11 30 1.5 0.55 30 5.1% 0.20 [-0.24, 0.64] -1 -
Sever 2023 GDM 14 086 110 1.19 0.36 55 10.7% 0.21[0.02, 0.40] BN
Subtotal (95% ClI) 440 340 69.9% 0.35[0.21, 0.48] <&

Heterogeneity: Tau? = 0.02; Chi? = 18.26, df =7 (P = 0.01); I> = 62%
Test for overall effect: Z = 5.14 (P < 0.00001)

1.3.2 PDM versus non-DM

Jackson 2016 143 0.37 28 1.16 0.3 28
Omeroglu 2023 PDM 2.04 0.86 45 119  0.28 45
Sever 2023 PDM 1.47 087 110 119  0.36 55
Subtotal (95% ClI) 183 128

Heterogeneity: Tau? = 0.07; Chi? = 14.72, df = 2 (P = 0.0006); I> = 86%
Test for overall effect: Z = 2.75 (P = 0.006)

Total (95% ClI) 623 468
Heterogeneity: Tau? = 0.03; Chi? = 35.13, df = 10 (P = 0.0001); I? = 72%
Test for overall effect: Z = 5.99 (P < 0.00001)

Test for subaroup differences: Chi? = 0.36. df = 1 (P = 0.55). 12 = 0%
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Figure3. Forest plots for the subgroup analyses comparing fEFT between women with and without DM in pregnancy. (A) Subgroup analysis according
to study design and (B) Subgroup analysis according to the type of DM in pregnancy. GDM: Gestational diabetes mellitus; PDM: Pregestational diabetes
mellitus; GA: Gestational age; fEFT: Fetal epicardial fat thickness; DM: Diabetes mellitus; CI: Confidence interval; MD: Mean difference.

maternal demographic factors, and study quality, underscoring
the robustness of the findings. The influence of maternal
DM on fEFT can be attributed to several pathophysiological
mechanisms. Hyperglycemia-induced fetal hyperinsulinemia
plays a central role, as elevated insulin levels stimulate
adipocyte proliferation and hypertrophy, leading to increased
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fat deposition [38]. Insulin, a potent growth-promoting hor-
mone during fetal development, directly influences the differ-
entiation of preadipocytes into mature adipocytes, particularly
in metabolically active depots such as epicardial fat [39]. Due
to its proximity to the myocardium and coronary arteries,
epicardial fat exhibits high lipolytic activity and secretes
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A DM pregnancy Non-DM pregnancy
Study or Subgroup Mean SD Total Mean SD __ Total
1.4.1 Maternal age < 29 years

Yavuz 2016 1.34 0.25 40 113  0.19 40
Jackson 2016 143 0.37 28 1.16 0.3 28
Iskender 2022 1.9 0.53 40 1.4 065 40
Ghuman 2023 1.54 0.33 35 115 0.59 35
Omeroglu 2023 PDM 2.04 0.86 45 119 0.28 45
Singh 2023 1.7 11 30 1.5 055 30
Subtotal (95% ClI) 218 218

Heterogeneity: Tau? = 0.04; Chi? = 23.08, df = 5 (P = 0.0003); I> = 78%
Test for overall effect: Z = 4.24 (P < 0.0001)

1.4.2 Maternal age = 29 years

Akkurt 2018 145 0.98 106 1.1 0.72 106
Aydin 2020 1.05 0.77 60 09 058 60
Baria 2023 1.8 0.59 35 1.1 1.18 35
Omeroglu 2023 GDM 183 1.2 90 119 0.28 45
Sever 2023 GDM 14 08 110 119 0.36 55
Sever 2023 PDM 147 087 110 119 0.36 55
Subtotal (95% CI) 511 356

Heterogeneity: Tau? = 0.02; Chi? = 12.11, df =5 (P = 0.03); I = 59%
Test for overall effect: Z = 4.48 (P < 0.00001)

Total (95% ClI) 729 574
Heterogeneity: Tau? = 0.02; Chi? = 35.23, df = 11 (P = 0.0002); I> = 69%
Test for overall effect: Z = 6.46 (P < 0.00001)

Test for subaroup differences: Chi2 = 0.16. df = 1 (P = 0.69). 12 = 0%

Biomolecules
& Biomedicine

Mean Difference Mean Difference
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B DM pregnancy Non-DM pregnancy Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD _ Total Weight V. Random, 95% Cl 1V, Random. 95% CI
1.5.1 Maternal BMI < 30 kg/m2
Yavuz 2016 1.34 0.25 40 113 0.19 40 14.5% 0.21[0.11,0.31] -
Aydin 2020 1.05 0.77 60 09 058 60 10.1% 0.15[-0.09, 0.39] T
Iskender 2022 1.9 0.53 40 14 065 40  9.7% 0.50 [0.24, 0.76] -
Omeroglu 2023 PDM 2.04 0.86 45 119 0.28 45  9.5% 0.85[0.59, 1.11] -
Subtotal (95% CI) 185 185 43.9% 0.41[0.13, 0.70]

Heterogeneity: Tau? = 0.07; Chi? = 23.62, df = 3 (P < 0.0001); I> = 87%
Test for overall effect: Z = 2.83 (P = 0.005)

1.5.2 Maternal BMI = 30 kg/m2

Jackson 2016 143 0.37 28 1.16 0.3 28
Akkurt 2018 145 0.98 106 1.1 0.72 106
Omeroglu 2023 GDM 183 1.2 90 119  0.28 45
Sever 2023 GDM 1.4 086 110 119  0.36 55
Sever 2023 PDM 1.47 087 110 119  0.36 55
Subtotal (95% CI) 444 289

Heterogeneity: Tau? = 0.01; Chi?=7.64, df =4 (P = 0.11); I?=48%
Test for overall effect: Z = 5.09 (P < 0.00001)

Total (95% CI) 629 474
Heterogeneity: Tau? = 0.03; Chi? = 31.39, df = 8 (P = 0.0001); I> = 75%
Test for overall effect: Z = 5.51 (P < 0.00001)

Test for subaroup differences: Chi2 = 0.29. df = 1 (P = 0.59). I2 = 0%

12.2% 0.27 [0.09, 0.45]
10.5% 0.35[0.12, 0.58]

9.6% 0.64 [0.38, 0.90]
11.9% 0.21[0.02, 0.40]
11.9% 0.28 [0.09, 0.47]
56.1% 0.33 [0.20, 0.46]
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100.0% 0.36 [0.23, 0.49]

Il I

-1 -0.5 0 0.5 1
Lower fEFT in DM Higher fEFT in DM

Figure4. Forestplots forthe subgroup analyses comparing fEFT between women with and without DM in pregnancy. (A) Subgroup analysis according
to the mean maternal age and (B) Subgroup analysis according to the mean maternal BMI. GDM: Gestational diabetes mellitus; PDM: Pregestational diabetes
mellitus; GA: Gestational age; fEFT: Fetal epicardial fat thickness; DM: Diabetes mellitus; Cl: Confidence interval; MD: Mean difference.

pro-inflammatory cytokines and adipokines [40], making it
especially susceptible to metabolic alterations associated with
maternal DM. Additionally, maternal DM is linked to systemic
inflammation and oxidative stress, which may exacerbate
adipogenesis and disrupt normal fat distribution in the
fetus [41]. Hyperglycemia triggers excessive reactive oxygen
species (ROS) production [42] and activates pro-inflammatory
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pathways such as nuclear factor-kB (NF-kB) [43]. This leads to
the upregulation of inflammatory cytokines, including tumor
necrosis factor-a (TNF-o) and interleukin-6 (IL-6), which
further promote adipose tissue expansion and dysfunction [44].
In the fetal environment, these inflammatory signals may
enhance epicardial fat deposition by stimulating local adipocyte
proliferation and hypertrophy [45]. Maternal DM also affects
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A DM pregnancy Non-DM pregnancy
udy o ibgroup ean D ota a ota

1.6.1 Median GA < 26 weeks
Yavuz 2016 134 0.25 40 113 0.19 40 12.2%
Jackson 2016 143 0.37 28 1.16 0.3 28 10.1%
Aydin 2020 1.05 0.77 60 09 058 60 8.3%
Baria 2023 1.8 0.59 35 1.1 1.18 35 45%
Singh 2023 1.7 11 30 1.5 0.55 30 4.4%
Sever 2023 GDM 14 086 110 1.19  0.36 55 9.8%
Sever 2023 PDM 147 087 110 119  0.36 55 9.8%
Subtotal (95% Cl) 413 303 59.1%
Heterogeneity: Tau? = 0.00; Chi? = 5.53, df =6 (P = 0.48); I = 0%
Test for overall effect: Z = 6.84 (P < 0.00001)
1.6.2 Median GA > 26 weeks
Akkurt 2018 145 098 106 1.1 0.72 106  8.6%
Iskender 2022 19 0.53 40 14 065 40 7.9%
Ghuman 2023 1.54 0.33 35 1.15  0.59 35 8.8%
Omeroglu 2023 GDM 183 1.2 90 119  0.28 45 7.8%
Omeroglu 2023 PDM 2.04 0.86 45 119 0.28 45 7.8%
Subtotal (95% Cl) 316 271 40.9%

Heterogeneity: Tau? = 0.02; Chi? = 10.18, df =4 (P = 0.04); I?=61%
Test for overall effect: Z = 5.98 (P < 0.00001)

Total (95% Cl) 729 574 100.0%
Heterogeneity: Tau? = 0.02; Chi? = 35.23, df = 11 (P = 0.0002); I* = 69%

Test for overall effect: Z = 6.46 (P < 0.00001)

Test for subaroup differences: Chi? = 9.93. df = 1 (P = 0.002). 1> = 89.9%

B DM pregnancy Non-DM pregnancy

1.71NOS =7
Akkurt 2018 145 098 106 1.1 0.72 106  8.6%
Omeroglu 2023 GDM 1.83 1.2 90 1.19  0.28 45 7.8%
Omeroglu 2023 PDM 2.04 0.86 45 119 0.28 45 7.8%
Subtotal (95% Cl) 241 196  24.2%
Heterogeneity: Tau? = 0.05; Chi? = 7.99, df = 2 (P = 0.02); I> = 75%
Test for overall effect: Z=4.10 (P < 0.0001)
1.7.2NOS =8
Yavuz 2016 134 0.25 40 113 0.19 40 12.2%
Baria 2023 1.8 0.59 35 1.1 1.18 35  45%
Ghuman 2023 1.54 0.33 35 115 0.59 35 88%
Singh 2023 1.7 141 30 1.5 0.55 30 4.4%
Sever 2023 GDM 14 086 110 1.19  0.36 55 9.8%
Sever 2023 PDM 147 087 110 119  0.36 55 9.8%
Subtotal (95% Cl) 360 250 49.5%
Heterogeneity: Tau? = 0.00; Chi? = 6.54, df =5 (P = 0.26); 1> = 24%
Test for overall effect: Z = 5.62 (P < 0.00001)
1.7.3NOS =9
Jackson 2016 143 0.37 28 1.16 0.3 28 10.1%
Aydin 2020 1.05 0.77 60 09 058 60 83%
Iskender 2022 1.9 0.53 40 14 0.65 40  7.9%
Subtotal (95% Cl) 128 128 26.3%
Heterogeneity: Tau? = 0.01; Chi? = 3.82, df =2 (P = 0.15); 1> = 48%
Test for overall effect: Z = 3.27 (P = 0.001)
Total (95% Cl) 729 574 100.0%
Heterogeneity: Tau? = 0.02; Chi? = 35.23, df = 11 (P = 0.0002); I> = 69%
Test for overall effect: Z = 6.46 (P < 0.00001)
Test for subaroup differences: Chi? = 4.72. df = 2 (P = 0.09). I> = 57.6%
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Forest plots for the subgroup analyses comparing fEFT between women with and without DM in pregnancy. (A) Subgroup analysis according

to the median GA of fEFT measurement and (B) Subgroup analysis according to the NOS scores. GDM: Gestational diabetes mellitus; PDM: Pregesta-
tional diabetes mellitus; GA: Gestational age; fEFT: Fetal epicardial fat thickness; DM: Diabetes mellitus; Cl: Confidence interval; MD: Mean difference;

NOS: Newcastle-Ottawa Scale.
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Figure 6. Funnel plots for evaluating the possible publication bias of

the meta-analysis comparing fEFT between women with and without DM
in pregnancy. fEFT: Fetal epicardial fat thickness; DM: Diabetes mellitus;
MD: Mean difference.

placental function, further contributing to increased fEFT [46].
The placenta mediates nutrient transfer and endocrine signal-
ing between the mother and fetus [47]. In pregnancies com-
plicated by DM, placental abnormalities—including increased
vascular resistance and reduced mitochondrial function—have
been observed [47]. These changes can alter fetal glucose and
lipid supply, favoring excessive energy availability and fat
deposition [47]. Moreover, maternal hyperglycemia upregu-
lates placental glucose and fatty acid transporters, increasing
the flux of these substrates to the fetus and promoting adipo-
genesis in depots such as epicardial fat [48]. Finally, epigenetic
modifications may also play a role in the impact of maternal
DM on fEFT. Chronic hyperglycemia during pregnancy can
induce changes in DNA methylation, histone modification,
and non-coding RNA expression in the developing fetus [49].
These alterations can affect genes involved in adipogenesis and
metabolism, potentially predisposing the fetus to increased fat
deposition and cardiometabolic dysfunction later in life [50].
Studies have identified altered methylation patterns in genes
regulating insulin signaling and lipid metabolism in offspring
of diabetic pregnancies, which may contribute to increased
fEFT [51, 52].

The results of the meta-regression and subgroup analyses
provide key insights into the timing and magnitude of mater-
nal DM’s effects on fEFT. The positive correlation between GA
and fEFT differences suggests that later gestation may be a
critical period for maternal DM’s influence on fetal adipos-
ity. This finding has clinical implications, emphasizing the
importance of early and sustained glycemic control throughout
pregnancy to minimize its impact on fetal development [53].
The consistency of results across study designs, maternal age,
BMI, and study quality indicates that the observed associa-
tion is robust and unlikely to be confounded by these factors.
This reinforces the validity of fEFT as a marker for assessing
maternal DM’s effects on fetal development. Although our sub-
group analysis did not reveal a significant difference in the
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effects of GDM vs PDM on fEFT, we recognize that these con-
ditions have distinct metabolic characteristics and may influ-
ence fetal development differently [54]. However, their shared
pathophysiological pathways—such as hyperglycemia-induced
fetal hyperinsulinemia and inflammatory processes—likely
contribute to similar changes in fEFT [55]. Further research
is needed to explore potential variations in fEFT progression
between GDM and PDM pregnancies, particularly in relation to
glycemic control and disease severity. This meta-analysis has
several strengths. It provides a comprehensive and up-to-date
synthesis of the literature, incorporating data from multiple
observational studies that match or adjust for GA to ensure
comparability. Rigorous methodological approaches, includ-
ing sensitivity, subgroup, and meta-regression analyses, were
employed to explore heterogeneity and identify key modifiers of
the observed association [56]. These analyses enhance the relia-
bility of the findings and offer valuable insights into the factors
influencing fEFT in pregnancies complicated by DM. Moreover,
the inclusion of studies with high methodological quality,
as assessed by NOS scores, further strengthens the robust-
ness of the results. Despite these strengths, several limitations
must be acknowledged. First, the meta-analysis includes only
observational studies, which are inherently subject to resid-
ual confounding despite adjustments for key variables [57].
Second, unmeasured factors, such as maternal diet, physical
activity, and genetic predispositions may have influenced the
results [58]. Third, the study-level nature of the analysis lim-
its the ability to explore individual-level data and precludes
causal inferences. Additionally, while GA emerged as a signif-
icant modifier, the underlying mechanisms and precise role
of GA in the observed association require further investiga-
tion. Another limitation is the variation in diagnostic crite-
ria for GDM across the included studies. Most studies applied
the International Association of the Diabetes and Pregnancy
Study Groups (IADPSG) criteria [22-24,26-28, 36, 37], while
one study used the Diabetes in Pregnancy Study Group India
(DIPSI) criteria [25]. Differences in diagnostic thresholds may
introduce variability in GDM classification, potentially affect-
ing the pooled estimates [59]. However, due to the limited num-
ber of included studies, we were unable to assess the impact
of these variations. Future meta-analyses with a larger num-
ber of studies could allow for a more detailed evaluation of
how different GDM diagnostic criteria influence fEFT. Lastly,
the included studies used different ultrasound techniques for
fEFT measurement, contributing to heterogeneity in our meta-
analysis. The absence of a standardized protocol for fEFT
assessment underscores the need for future studies to estab-
lish uniform measurement criteria, improving comparability
across studies. The findings of this meta-analysis have impor-
tant clinical implications. Our results suggest that increased
fEFT may serve as an early indicator of fetal metabolic risk in
pregnancies complicated by diabetes. Given its non-invasive
nature, ultrasound-based fEFT assessment could be inte-
grated into prenatal screening protocols to identify fetuses
at risk of metabolic complications [60]. Moreover, optimizing
maternal glycemic control may help mitigate excessive fetal
fat accumulation, potentially improving offspring’s long-term
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cardiometabolic health [12]. Future studies should establish
standardized thresholds for fEFT measurement and assess its
predictive value in clinical practice. Routine fEFT assessment in
pregnancies complicated by DM could provide valuable infor-
mation for risk stratification and guide targeted interventions
to optimize fetal outcomes [61]. The identification of GA as a key
modifier highlights the need for close monitoring during later
gestation, particularly in women with poor glycemic control.
While increased fEFT has been suggested as a marker of fetal
metabolic compromise, including macrosomia [62], we were
unable to assess its direct relationship with these outcomes
due to limited available data. Future studies should investigate
whether fEFT can serve as an early predictor of fetal over-
growth and metabolic dysfunction, particularly in pregnan-
cies complicated by diabetes. Further research should focus on
elucidating the long-term implications of increased fEFT on
offspring health and exploring interventions to mitigate these
effects [63]. Longitudinal studies tracking fEFT from fetal to
postnatal life and its association with offspring cardiometabolic
outcomes would be particularly informative [63]. Additionally,
randomized controlled trials evaluating the effects of glycemic
control and other maternal interventions on fEFT and offspring
health could provide critical insights into causal pathways and
potential prevention strategies.

Conclusion

In conclusion, this meta-analysis demonstrates that maternal
DM during pregnancy is associated with increased fEFT, with
the effect becoming more pronounced in later gestation. These
findings underscore the importance of glycemic control and tar-
geted monitoring in diabetic pregnancies to mitigate long-term
cardiometabolic risks in offspring. Further research is needed
to elucidate the mechanisms underlying this association and to
assess the clinical utility of fEFT as a prognostic marker in this
high-risk population.
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