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R E S E A R C H A R T I C L E

DPP4 rs17574 polymorphism and elevated DPP4 levels
linked to fatty liver in subclinical atherosclerosis:
GEA study findings
Gilberto Vargas-Alarcón 1, Juan Reyes-Barrera 2, Guillermo Cardoso-Saldaña 2, Neftali Antonio-Villa 2,
Giovanny Fuentevilla-Álvarez 2, José Manuel Fragoso 3, and Rosalinda Posadas-Sánchez 2∗

Dipeptidyl peptidase-4 (DPP4) concentrations are known to correlate with nonalcoholic fatty liver (FL), which is also associated with
subclinical atherosclerosis (SA). This study aimed to determine whether DPP4 concentrations and the DPP4 rs17574 polymorphism are
associated with FL in individuals with SA. The study included 378 participants with SA, of whom 143 had FL and 235 did not.
DPP4 serum concentrations were measured using a Bioplex system, and DPP4 rs17574 genotypes were determined using TaqMan
assays. Logistic regression was used to assess the relationships between FL, DPP4 concentrations, and rs17574 genotypes. Overall,
DPP4 concentrations did not differ significantly between individuals with and without FL. No significant differences in DPP4 levels
were observed among DPP4 genotypes in the total sample. However, within the FL group, significant differences in DPP4 concentration
were observed across genotypes: AA genotype (134 [106–175] ng/mL), AG genotype (128 [114–149] ng/mL), and GG genotype
(80 [71–117] ng/mL); P = 0.019. The DPP4 rs17574 polymorphism was associated with FL under a recessive model (P = 0.037).
DPP4 concentration was also significantly associated with FL: the likelihood of presenting with FL increased by 6.2% for every
10 ng/mL increase in DPP4 levels (P = 0.009). These findings suggest that DPP4 concentration may serve as a biochemical risk marker
for FL in individuals with SA. Moreover, the rs17574 polymorphism may influence DPP4 protein levels, particularly in those with FL.
To our knowledge, this is the first study to describe an association between DPP4 concentration, the rs17574 polymorphism, and FL.
Assessing DPP4 levels may offer a novel and effective strategy for risk stratification of FL in SA populations.
Keywords: Dipeptidyl peptidase-4, DPP4, fatty liver, FL, genotypes, subclinical atherosclerosis, SA, polymorphisms.

Introduction
Nonalcoholic fatty liver disease (NAFLD) is a hepatic condition
characterized by the abnormal accumulation of fat in the liver
in the absence of significant alcohol consumption. Insulin
resistance and certain genetic variants—specifically in the
patatin-like phospholipase domain containing 3 (PNPLA3),
lipid transporter located on endoplasmic reticulum (TM6SF2),
and transmembrane 6 superfamily member 2 genes—have
been implicated in the pathogenesis of NAFLD [1–5]. Studies
estimate the global prevalence of NAFLD to range from 6%
to 35% [6–8]. This condition is associated with a higher
prevalence of coronary artery calcification (CAC) across
diverse populations [9–11]. A cross-sectional analysis of the
Multi-Ethnic Study of Atherosclerosis (MESA) cohort revealed
a correlation between NAFLD, subclinical atherosclerosis
(SA), and inflammation [12]. Multivariable-adjusted odds
ratios (OS) indicated a 1.6-fold increase in the odds of having
CAC > 0 among individuals with NAFLD. This association

remained significant in White and Hispanic participants.
NAFLD is linked to the development of cardiovascular disease
(CVD) and atherosclerosis [13]. Recent research has shown a
correlation between fatty liver (FL) and CVD, using carotid
intima-media thickness (CIMT) as a marker of arterial wall
thickening [14, 15], and brachial-ankle pulse wave velocity
(BAPWV) as an indicator of arterial stiffness [16–18]. In a
study by Keskin et al., patients diagnosed with ST-segment
elevation myocardial infarction were classified based on
NAFLD severity using ultrasonography. The presence of
NAFLD in these patients was associated with adverse clin-
ical outcomes [19]. Patients with FL exhibit endothelial
dysfunction [20], a high prevalence of vulnerable coronary
plaques [21, 22], and increased coronary artery and abdominal
aortic calcification [23]. Zheng et al. [24] identified a significant
association between FL and early markers of atherosclerosis,
assessed via CIMT and BAPWV. A cross-sectional study
demonstrated elevated BAPWV in patients with FL, even

mailto:rossy_posadas_s@yahoo.it
https://doi.org/10.17305/bb.2025.11950
https://creativecommons.org/licenses/by/4.0/
https://www.biomolbiomed.com
https://www.biomolbiomed.com
https://orcid.org/0000-0001-7916-5163
https://orcid.org/0000-0002-1804-8198
https://orcid.org/0000-0001-9525-1731
https://orcid.org/0000-0002-6879-1078
https://orcid.org/0000-0002-1819-8444
https://orcid.org/0000-0003-3137-7815
https://orcid.org/0000-0001-8467-3488


after adjusting for age, sex, body mass index (BMI), and
lifestyle factors. Furthermore, the study showed an indepen-
dent association between FL and increased CIMT, even after
accounting for conventional cardiovascular and metabolic risk
factors [24]. The membrane-bound exopeptidase dipeptidyl
peptidase-4 (DPP4), also known as CD26, is expressed in
various tissues [25]. Insulin resistance, FL, elevated blood
pressure, and oxidative stress have all been linked to DPP4,
an enzyme with diverse physiological functions [26–29].
DPP4 plays a role in regulating glucose metabolism, lipid
processing, and inflammation, thereby potentially contributing
to the progression of atherosclerosis [30, 31]. Elevated DPP4
activity and concentration have been implicated in several
metabolic disorders, including obesity, FL, type 2 diabetes
mellitus (T2DM), and coronary artery disease (CAD) [32–35].
DPP4 cleaves various substrates, including growth factors,
neuropeptides, and chemokines, a function that may enhance
its immunomodulatory capabilities. This immune-regulating
role is likely mediated through the spleen, the primary
organ of systemic immunity [36]. The spleen connects the
autonomic nervous system with the circulatory system, and
splenic immune cells are known to participate in inflammatory
processes associated with both atherosclerotic plaque develop-
ment and acute myocardial infarction (AMI) [37]. Thus, this
section highlights the connection between atherosclerosis and
the liver–spleen axis, emphasizing the significant molecular
alterations that occur in NAFLD [38]. The DPP4 gene is
located on chromosome 2q24.3 and exhibits considerable
polymorphism. Variants in this gene are associated with
altered DPP4 levels, apolipoprotein B concentrations [39, 40],
and increased risk of T2DM [24] and AMI in patients with
CAD [41]. Research by our group suggests that the DPP4 rs17574
G allele may serve as a genetic marker for premature CAD
(pCAD) in individuals with diabetes [42]. Given the established
associations between DPP4, FL, and CAD, the present study
aims to determine whether DPP4 concentration and the DPP4
rs17574 polymorphism are associated with the presence of FL in
individuals with SA.

Materials and methods
Subjects
The study included 1500 healthy, asymptomatic participants
without a family history of pCAD, selected from the Mexican
Genetics of Atherosclerotic Disease (GEA) cohort. All partici-
pants were unrelated individuals of Mexican mestizo descent,
defined as those born in Mexico with both parents and grand-
parents also born in the country. Exclusion criteria included
congenital heart failure, liver disease, renal disease, thyroid
disease, oncological conditions, and pCAD. Participants were
recruited from blood bank donors, and formal invitations were
disseminated through media outlets and social service cen-
ters. To verify participants’ health status, chest and abdominal
tomography was performed using a 64-channel multidetector
helical computed tomography (CT) system (Somatom Cardiac
Sensation 64, Forchheim, Germany). Liver and spleen attenu-
ation were assessed using a single 3-mm tomographic slice at

the T11–T12 or T12–L1 vertebral level [43]. Three 1-cm regions of
interest were placed on each hepatic lobe and within the spleen
parenchyma during image analysis. FL was defined as a liver-to-
spleen attenuation ratio (L/S AR) of 1.0 or lower [44]. All imag-
ing procedures were conducted by a single trained observer.
To assess consistency, 20 scans were randomly selected and
re-evaluated, yielding an intra-observer correlation coefficient
of 0.99 (P < 0.001). CAC was quantified using the Agatston
method [45]. Based on CAC scores, participants were classified
into two groups: those with CAC < 0 (individuals with SA)
and those with CAC = 0 (healthy individuals). Data were also
collected on total abdominal fat, subcutaneous abdominal fat,
and visceral abdominal fat. The present analysis focused on 378
individuals diagnosed with SA, of whom 143 had FL and 235 did
not. Clinical, demographic, biochemical, and anthropometric
parameters, along with cardiovascular risk factors, were eval-
uated as described previously [46–48].

Determination of DPP4 concentration and polymorphism
DPP4 concentration was measured using a Bio-Plex system,
following the manufacturer’s instructions (R&D Systems, Min-
neapolis, MN, USA). Serum DPP4 levels are expressed in ng/mL.
Genomic DNA was extracted from peripheral blood using the
QIAamp DNA Blood Mini Kit (QIAGEN, Hilden, Germany). DPP4
rs17574 genotypes were determined with TaqMan assays on
an ABI Prism 7900HT real-time PCR system, according to the
manufacturer’s instructions (Applied Biosystems, Foster City,
CA, USA).

Ethical statement
Participants provided written informed consent, and the study
complied with the Declaration of Helsinki. The project was
approved by the Research Committee of the National Institute
of Cardiology Ignacio Chávez (protocol number 18-1082).

Statistical analysis
We presented data as median (interquartile range), mean ±
standard deviation, or frequencies, as appropriate. Continuous
variables were compared using either the Mann–Whitney
U test or the Student’s t-test. Categorical variables and
Hardy–Weinberg equilibrium were assessed using the
chi-square test. Differences in DPP4 serum concentrations were
evaluated using the Kruskal–Wallis or Mann–Whitney U test.
To assess the independent association of DPP4 rs17574 geno-
types with the presence of FL and with DPP4 concentrations, we
performed multivariate logistic regression analysis, reporting
ORs and 95% confidence intervals (CIs). This association
was examined under multiple inheritance models: addi-
tive, dominant, heterozygous, recessive, codominant 1, and
codominant 2. The statistical power for detecting an association
between the DPP4 polymorphism and FL was 80%, and 87%
for the association between DPP4 concentrations and FL. All
statistical analyses were performed using SPSS version 15.0
(SPSS Inc., Chicago, IL, USA), with P values < 0.05 considered
statistically significant.
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Results
Characteristics of the study population
The current study included 378 control individuals from the
overall GEA project population, all exhibiting CAC levels greater
than zero. Among these, 143 presented with FL, while 235 did
not. The prevalence of FL among patients diagnosed with SA
was 37.8%.

Table 1 summarizes the demographic, lifestyle, clinical, and
biochemical characteristics, as well as the DPP4 (rs17574) and
PNPLA3 I148M (rs738409) genotypes, and DPP4 concentrations
in individuals with and without FL. Compared to those without
FL, patients with FL had significantly higher BMI, increased
waist circumference, and elevated levels of triglycerides and
CRP (P < 0.001), along with greater insulin resistance, as mea-
sured by the Homeostasis Model Assessment (P < 0.001).

DPP4 concentrations
Patients with FL had a slightly higher DPP4 concentration (128
[105–165] ng/mL) compared to those without FL (122 [98–152]
ng/mL), although the difference was marginal (P = 0.067).

Association of the DPP4 rs17574 polymorphism with FL
The observed and expected frequencies of the DPP4
rs17574 genotypes were in Hardy–Weinberg equilibrium. As
shown in Table 2, under both the recessive and codominant 2
inheritance models, the GG genotype of this polymorphism
was significantly associated with the presence of FL (recessive
model: OR = 4.186 [1.092–16.04], P = 0.037; codominant 2
model: OR = 4.346 [1.119–16.99], P = 0.034). All models were
adjusted for age, sex, BMI, triglyceride concentration, T2DM
status, total kilocalorie intake, alcohol consumption, and
physical activity.

Association of the DPP4 rs17574 polymorphism with DPP4
concentration
We examined the relationship between DPP4 concentration and
rs17574 genotypes by categorizing a sample of 378 individuals
into three groups based on genotype. This analysis revealed dif-
ferences in DPP4 concentrations across the genotypes (AA: 128
[101–159], AG: 123 [104–149], GG: 111 [80–129] ng/mL); how-
ever, these differences did not reach statistical significance
(P = 0.095) (Figure 1). When the same analysis was performed
separately in individuals with and without FL, statistically sig-
nificant differences in DPP4 concentration were observed in the
FL group (P = 0.019). In this group, DPP4 levels were as follows:
AA genotype, 134 (106–175) ng/mL; AG genotype, 129 (114–149)
ng/mL; and GG genotype, 80 (71–117) ng/mL (Figure 2).

The association between DPP4 concentration and FL was
further explored using logistic regression, adjusting for various
covariates. The analysis also included an adjustment for the
PNPLA3 polymorphism, which is associated with an increased
risk of developing FL in several populations, including the
Mexican population [47, 49–52]. Model 1: Adjusted for age and
sex (OR = 1.046 [1.003–1.090], P = 0.034). Model 2: Adjusted
for age, sex, BMI, and triglyceride concentration (OR = 1.054
[1.009–1.100], P = 0.017). Model 3: Included age, sex, BMI,
triglyceride concentration, total kilocalories, and alcohol con-
sumption (OR = 1.054 [1.009–1.101], P = 0.019). Model 4:

Figure 1. Association of the DPP4 rs17574 polymorphism with DPP4
concentration in the whole sample. People with the GG genotype had the
lowest levels of DPP4 (111 [80–129]) compared to those with the AA (128
[101–159]) and AG (123 [104–149]) genotypes. The variations did not reach
statistical significance (P = 0.095). Data shows median and interquartile
range. Kruskal–Wallis test. DPP4: Dipeptidyl peptidase-4.

Figure 2. Association of the DPP4 rs17574 polymorphism with DPP4
concentration in FL patients. Patients with the AG and AA genotypes
have higher levels of DPP4 [AG genotype (129 [114–149] ng/mL) and
AA genotype (134 [106–175] ng/mL)] than patients with the GG genotype
(80 [71–117] ng/mL) (P = 0.019). Data shows median and interquartile range.
Kruskal–Wallis test. DPP4: Dipeptidyl peptidase-4; FL: Fatty liver.

Added physical activity and T2DM to model 3 (OR = 1.054
[1.009–1.101], P = 0.019). Model 5: Fully adjusted for age, sex,
BMI, triglyceride concentration, total kilocalories, alcohol con-
sumption, physical activity, T2DM, and the DPP4 (rs17574) and
PNPLA3 I148M (rs738409) polymorphisms (OR = 1.062 [1.015–
1.111], P = 0.009). In the fully adjusted model (Model 5), a
10 ng/dL increase in DPP4 concentration was associated with a
6.2% increase in the likelihood of presenting with FL (P = 0.009)
(Figure 3).
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Table 1. Characteristics of the studied population

Without FL (n = 235) With FL (n = 143) P*

Age (years) 59 ± 9 58 ± 7 0.046

Sex (% men) 76 77 0.545

Body mass index (kg/m2) 27.8 ± 3.9 30 ± 3.5 <0.001

Waist circumference (cm) 95.2 ± 10.9 100.8 ± 9.3 <0.001

LDL-C (mg/dL) 124 [105–146] 123 [100–142] 0.193

HDL-C (mg/dL) 45 [38–53] 41 [35–45] <0.001

Triglycerides (mg/dL) 146 [113–194] 176 [137–218] <0.001

HOMA-IR 3.6 [2.5–5.5] 5.6 [4.2–8.6] <0.001

DPP4 (ng/mL) 122 [98–152] 128 [105–165] 0.067

High sensitivity CRP (mg/L) 1.3 [0.8–3.0] 2.2 [1.1–3.7] <0.001

Alanine amino transferase (IU/L) 21 [16–27] 30 [22–42] <0.001

Aspartate amino transferase (IU/L) 24 [20–28] 27 [23–34] <0.001

Gamma-glutamyl transpeptidase (IU/L) 26 [19–38] 33 [25–49] <0.001

Liver to spleen attenuation ratio 1.18 ± 0.12 0.78 ± 0.16 <0.001

Visceral adipose tissue (cm2) 157 [116–211] 200 [168–247] <0.001

CAC Score (Agatston units) 25.1 [5.0–90.8] 21.3 [3.6–81.0] 0.462

Total kilocalories 2154 [1843–2621] 2301 [1896–2814] 0.134

Alcohol consumption (g) 0.7 [0–18] 0.9 [0–2.2] 0.727

Increased VAF (%) 59.1 88.1 <0.001

Type 2 diabetes mellitus (%) 19.1 30.1 0.012

Insulin resistance (%) 53.2 84.6 <0.001

Increased CRP (>3mg/L) (%) 25.0 33.1 0.129

PNPLA3 I148M genotype (%)

AA 17.9 16.9

AG 50.6 50.7 0.965

GG 31.5 32.4

DPP4 rs17574 genotype (%)

AA 66.8 67.8

AG 30.6 27.3 0.412

GG 2.6 4.9

LDL-C: LDL cholesterol; HOMA-IR: Homeostasis model assessment of insulin resistance; HDL-C: HDL cholesterol; CRP: C reactive protein; CAC: Coronary
artery calcification; VAF: Visceral abdominal fat; DPP4: Dipeptidyl peptidase-4; FL: Fatty liver. The values are expressed as mean ± standard deviation,
median [interquartile range], o percentage. *Student t, Mann–Whitney U or chi-square test.

Discussion
This study is the first to evaluate the association and interac-
tion between DPP4 concentration and the DPP4 rs17574 poly-
morphism with the presence of FL in individuals with SA.
Although no overall differences in DPP4 concentration were
observed between patients with and without FL, stratification
by DPP4 genotypes revealed that patients with FL exhibited
different DPP4 concentrations depending on their genotype.
Specifically, individuals with the AA genotype had higher con-
centrations of the molecule. The DPP4 rs17574 polymorphism
was associated with the presence of FL, with the likelihood of
developing FL increasing by 6.2% for every 10 ng/dL rise in

DPP4 concentrations. These associations were independent of
cardiometabolic risk factors and the PNPLA3 I148M (rs738409)
polymorphism. The PNPLA3 I148M variant is the genetic marker
most commonly linked to the development of FL worldwide,
including among Hispanic populations [42, 49–52]. While FL
has been associated with various genetic polymorphisms, sev-
eral studies have highlighted the roles of PNPLA3, SAMM50,
NCAN, GCKR, and LEP in susceptibility to NAFLD [53–56]. In
our study, we adjusted for variation in the PNPLA3 gene—the
most prevalent genetic factor related to FL globally [47, 49–52].
The other genes were excluded from our analysis due to their
associations being limited to specific populations.
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Table 2. Association of DPP4 rs17574 polymorphism with fatty liver

Model OR [95% CI] P

Additive 1.410 [0.911–2.184] 0.124

Dominant 1.282 [0.771–2.131] 0.339

Recessive 4.186 [1.092–16.04] 0.037

Heterozygous 1.035 [0.613–1.748] 0.898

Codominant 1 1.117 [0.657–1.900] 0.683

Codominant 2 4.346 [1.119–16.99] 0.034

The models were adjusted by age, sex, body mass index, triglycerides con-
centration, type 2 diabetes mellitus, total kilocalories, alcohol consumption
and physical activity. OR: Odds ratio; CI: Confidence interval.

Figure 3. The association between DPP4 concentration and FL. The
models were adjusted based on different factors related to FL, such as the
PNPLA3 I148M genetic marker that is linked to the risk of developing FL.
Model 1: Adjusted by age and sex; Model 2: Adjusted by model 1, BMI and
triglycerides concentration; Model 3: Adjusted by model 2, kilocalorie con-
sumption and grams of alcohol; Model 4: Adjusted by model 3, physical activ-
ity and T2DM; Model 5: Adjusted by model 4, DPP4 (rs17574) and PNPLA3
I148M (rs738409) genotypes. When the more adjusted model (P = 0.009) is
looked at, a rise of ten ng/dL in DPP4 levels is linked to a 6.2% increase in
the chance of having FL. DPP4: Dipeptidyl peptidase-4; FL: Fatty liver.

FL is a chronic pathological condition characterized by
excessive triglyceride accumulation in hepatocytes and has
become one of the most prevalent liver diseases worldwide [57].
Its emergence is strongly associated with metabolic disorders,
and its incidence has risen markedly in recent decades, parallel-
ing the global increase in obesity and T2DM [58]. Additionally,
FL is independently associated with SA, a condition marked by
increased CIMT [24].

DPP4 plays a multifaceted role, influencing not only dia-
betes and glucose metabolism but also affecting cardiovascu-
lar health and potentially contributing to heart diseases such
as atherosclerosis [59–61]. The gene encoding this enzyme
is highly polymorphic, with certain variants linked to the
development of several diseases, including CVD [62]. Previ-
ous genetic studies have shown associations between DPP4
polymorphisms and serum lipid levels [63]. Specifically, the
rs3788979 variant in the DPP4 gene has been associated with an
increased risk of AMI in individuals with established CAD [63].
Our research group previously reported that, in the Mexican

population, patients with pCAD and T2DM exhibit the lowest
serum concentrations of DPP4. Among individuals with T2DM,
carriers of the rs17574 G allele demonstrated a 30% reduced risk
of developing pCAD, accompanied by lower DPP4 levels. In dia-
betic patients, this polymorphism may act as a genetic marker
offering protection against pCAD [42]. Additionally, this allele
has been associated with a reduced risk of hypoalphalipopro-
teinemia, insulin resistance, and hyperinsulinemia, along with
decreased serum DPP4 levels [64].

The DPP4 rs17574 polymorphism associated with FL in indi-
viduals with SA is located in exon 2 of the gene. Bioinformatic
analyses revealed that the G allele at this position creates a
novel binding site for the splicing regulatory proteins SF2/ASF1
and SF2/ASF2. These serine/arginine-rich splicing factors bind
to exonic splicing enhancers (ESEs) within exon 2, promoting
the recruitment of spliceosomal components necessary for exon
recognition and inclusion. The introduction of this ESE site
alters the local splicing landscape by enhancing SF2/ASF pro-
tein binding, thereby shifting the balance toward the produc-
tion of alternative DPP4 mRNA isoforms. These isoforms may
differ in their inclusion or exclusion of exonic regions critical
for post-translational modifications and proteolytic processing.
Structurally, the resulting DPP4 protein exhibits alterations
in its extracellular domain—particularly in the flexible stalk
region, which is responsible for protease cleavage and shed-
ding. Multiple DPP4 isoforms have previously been detected in
human plasma and placenta [65, 66], as well as in both nor-
mal and cancerous lung tissue [67, 68]. DPP4 is ubiquitously
expressed on the surface of many cell types and also exists in
a soluble form in the circulation [69], performing dual roles
as both membrane-bound and soluble isoforms [70, 71]. Sol-
uble DPP4 is generated via a non-classical secretory mecha-
nism involving proteolytic cleavage in the flexible stalk region,
producing a circulating form that retains enzymatic activ-
ity similar to its membrane-bound counterpart [71, 72–75].
Membrane-bound DPP4 interacts with key molecules such
as adenosine deaminase and contributes to T cell activation,
thereby amplifying pro-inflammatory signaling pathways [76].
Recent studies have reported an increased presence of CD8+
lymphocytes in visceral adipose tissue, where DPP4 (CD26)
is highly expressed on the cell surface [77]. This expression
facilitates macrophage recruitment and drives inflammation
within the tissue [78]. In hepatic tissue, this inflammatory
environment promotes insulin resistance and disrupts lipid
metabolism. Collectively, these molecular changes accelerate
the progression of hepatic steatosis, establishing a mechanis-
tic link between the rs17574 G allele, abnormal splicing, and a
heightened risk of FL and related metabolic diseases (Figure 4).

A key strength of this study is the inclusion of a cohort of
Mexican individuals with SA, encompassing both those with
and without FL. We performed a comprehensive evaluation
using imaging techniques, clinical assessments, and laboratory
analyses, all conducted in accordance with standardized pro-
tocols. This approach enabled effective control of confounding
factors that might influence the outcomes. To our knowledge,
this is the first cohort in Mexico to be studied for the coexis-
tence of these conditions. However, several limitations should
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Figure 4. Hypothesis of DPP4 participation in the development of fatty liver. When the G allele is present, it creates sites for the SF2ASF1 and
SF2ASF2 splicing regulatory proteins to bind to exonic splicing enhancers. The introduction of this ESE site alters the local splicing landscape by enhancing
the interaction efficiency of the regulatory proteins, which shifts the balance toward the production of alternative DPP4 mRNA isoforms. These isoforms
would have a normal expression on the cell surface but an aberrant shedding. As a result, the production of soluble forms would decrease, while the majority
of the molecule would stay anchored to the membrane. The membrane-anchored form can act as a costimulatory molecule for T-cell activation and promote
inflammation that would increase the risk of FL. DPP4: Dipeptidyl peptidase-4; FL: Fatty liver.

be considered. First, as the GEA study is observational, the
current findings do not establish a causal relationship between
DPP4 concentrations, the rs17574 genetic variant, and the pres-
ence of FL. A distinctive aspect of the GEA study design is
that the control group was selected exclusively from individ-
uals without a personal or family history of pCAD, which may
limit the generalizability of the results to the broader popula-
tion. Regarding FL diagnosis, multiple noninvasive techniques
are available. Magnetic resonance spectroscopy (MRS) is the
most sensitive method, capable of detecting liver fat accumu-
lation as low as 5%. However, MRS remains costly and is not
widely accessible. Ultrasonography offers a more affordable
and straightforward alternative but is operator-dependent and
provides only qualitative information. CT, while less sensitive
to mild steatosis—detecting FL in cases where fat accumula-
tion exceeds 30%—offers greater reproducibility and specificity
compared to ultrasound [43]. Due to ethical considerations,
liver biopsies were not performed to confirm FL diagnosis.
Nonetheless, previous studies have demonstrated a significant
correlation between CT-derived liver attenuation values and
the histological grading of steatosis [79].

Conclusion
This study demonstrates that each 10 ng/mL increase in DPP4
concentration is associated with a 6.2% increased probability

of developing FL in subjects with SA. The DPP4 rs17574 GG
genotype is linked to the onset of FL in these patients. Among
individuals with FL, those carrying the AG or AA genotypes
exhibit higher DPP4 concentrations compared to those with the
GG genotype. This is the first study to report on the interac-
tion between DPP4 concentration and the DPP4 rs17574 poly-
morphism, as well as its association with FL. The findings
suggest that DPP4 concentration may serve as a biochemi-
cal risk marker for the presence of FL in individuals with
SA, and its measurement could represent a novel and effec-
tive approach for risk stratification. However, further research
evaluating the sensitivity, specificity, and predictive value of
this marker is needed to validate these results. Understanding
the DPP4 rs17574 variation and its influence on DPP4 levels
may support the development of improved, more individualized
treatments—an important step toward advancing personalized
medicine.
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