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ABSTRACT  

The specific protein targets involved in pancreatic cancer (PC) pathogenesis and its varying levels of 

differentiation remain incompletely understood. Advanced proteomic methodologies provide a powerful 

means of identifying key regulatory proteins and signaling pathways central to cancer progression. In this 

study, proteomic analyses were performed on PC tissue samples of different differentiation grades, along 

with adjacent non-cancerous (para-PC) tissues. Bioinformatics techniques were used to identify 

differentially expressed proteins (DEPs) and their associated pathways. Key target proteins were validated 

using the GEPIA database, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), 

western blotting, immunohistochemistry (IHC), and immunofluorescence (IF). A total of 431 DEPs were 

identified between PC and para-PC tissues, while 470 DEPs distinguished poorly differentiated from 

moderately differentiated PCs. Functional enrichment analysis revealed that these DEPs participate in 

various biological processes and signaling pathways. Five DEPs were common to both comparisons, with 

UPP1, LACTB, and AHSA1 showing particularly notable differences. UPP1 and AHSA1 were significantly 

upregulated in PC tissues relative to adjacent tissues and exhibited even higher expression in poorly 

differentiated PCs compared to moderately differentiated ones. These findings were consistently supported 

by GEPIA, RT-qPCR, western blotting, IHC, and IF analyses. This study identifies UPP1 and AHSA1 as 

key proteins linked to PC differentiation and progression, highlighting their potential as diagnostic markers 

and therapeutic targets. These insights enhance our understanding of the molecular mechanisms underlying 

PC and open new avenues for precision treatment strategies. 

Keywords: Pancreatic cancer; PC; proteomics; differentiated pancreatic cancer; target; experimental 

validation. 
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INTRODUCTION  

Pancreatic cancer (PC) represents an extremely virulent and fatal neoplasm, anticipated to rank as the 

runner-up in mortality rates among oncological conditions by the year 2030 [1]. Notwithstanding 

contemporary progress in detection and therapeutic approaches, the likelihood of pancreatic cancer patients 

surviving for 60 months does not exceed a tenth, positioning it among the malignancies with the most 

unfavorable outlook [2]. PC can be classified into well-differentiated (WD), moderately differentiated 

(MD), and poorly differentiated (PD) types, with poorly differentiated PC exhibiting the highest 

invasiveness and worst prognosis [3]. The incidence of PC continues to rise globally [4]. Prominent 

predisposing factors encompass tobacco use, excessive body weight, impaired glucose metabolism, and 

long-term pancreatic inflammation [5]. At the molecular level, KRAS mutations are a key driver in PC 

development, present in approximately 90% of patients [6]. Other common genetic alterations involve TP53, 

CDKN2A, and SMAD4 [7]. While these genetic changes may vary among different grades of PC, our 

understanding of these variations remains limited. Early diagnosis of PC continues to be challenging. 

Currently, the gold standard for imaging is dual-phase pancreatic CT scanning, while MRI screening may 

be beneficial for high-risk populations [8]. However, the development of more sensitive biomarkers for 

early detection remains a critical unmet need [9]. 

Proteomics, a rapidly evolving field of research, offers powerful tools for gaining deeper insights into 

biological systems. Emerging research has underscored the increasing importance of proteomics for 

identifying cancer targets and developing targeted therapies. Yang et al. utilized an integrated multi-omics 

approach to pinpoint KDM1A as a potential therapeutic target for patients in the early stages of ESCC [10]. 

In a separate study, Nam et al. demonstrated that 2-aminoethanethiol dioxygenase (ADO) might function 

as a potential indicator for prognosis and a viable avenue for treatment in PC [11]. Furthermore, Feng et al. 

utilized proteomic analysis for uncovering how fucosyltransferase potentially contributes to ESCC 

development and advancement, thus unveiling a novel target for therapeutic intervention [12]. 

Mercanoglu et al. employed PNA lectin enrichment and mass spectrometry-based proteomics to 

investigate the impact of GalNT2-catalyzed O-linked glycan addition on pancreatic growth and 

physiological roles, offering new insights into the mechanisms of PC pathogenesis [13]. Maebashi et al. 

utilized proteomic approaches to elucidate the mechanism by which methionine restriction inhibits PC 

proliferation through suppression of the JAK2/STAT3 pathway, providing novel perspectives for PC 
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treatment strategies [14]. Bruciamacchie et al. combined single-cell analysis with spatial proteomics 

techniques to examine how ATR inhibitors enhance the cytotoxic effects of FOLFIRINOX on pancreatic 

ductal adenocarcinoma by remodeling the tumor microenvironment, presenting new strategies for 

improving PC therapy [15].  

Despite the progress made in PC research, numerous unresolved issues and challenges persist. For 

instance, the molecular mechanisms underlying PD-PC remain elusive, and further investigation is needed 

to elucidate its distinctions from PD-PC and MD-PC. Moreover, while proteomics technologies have 

demonstrated immense potential in cancer research, translating these findings into clinical applications 

continues to be a significant challenge. To address these issues, we propose the following research 

hypothesis: Proteomic analysis can reveal molecular differences among poorly and MD-PC, and identify 

key regulatory proteins and signaling pathways. This study will contribute to elucidating the intricate 

connections linking PC differentiation to prognosis, as well as provide a foundation for developing novel 

diagnostic markers and therapeutic targets. 

The proposed research methodology involves several key steps. Initially, PC tissue samples of varying 

differentiation grades will be collected for comprehensive proteomic analysis. Subsequently, advanced 

bioinformatics techniques, including Weighted Gene Co-expression Network Analysis (WGCNA) and the 

Mfuzz fuzzy clustering algorithm, will be employed to conduct an in-depth analysis of the proteomic data. 

This analysis aims to identify crucial protein modules and regulatory networks associated with the degree 

of differentiation. Finally, the functional significance and clinical relevance of the identified potential target 

proteins will be confirmed through the integration of information from public databases and experimental 

validation. This study holds significant scientific and clinical value. Firstly, it will address the knowledge 

gap in our understanding of PC differentiation mechanisms, providing a comprehensive molecular profile 

of differentiated PCs. Secondly, by identifying key proteins and pathways correlated with differentiation 

grades, this research will lay the groundwork for developing novel diagnostic markers and prognostic tools. 

Moreover, these findings may uncover new therapeutic targets, potentially guiding the development of 

precision treatment strategies for PD-PC. 
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MATERIALS AND METHODS  

Patients 

This study used 22 patients with pancreatic ductal adenocarcinoma collected from Hubei Provincial 

People's Hospital. Tissue biopsy samples are collected surgically. The biopsy samples are placed in a 

refrigerated sterile preservation solution and placed on ice packs. Following surgery, samples are accurately 

labeled, and temperature is controlled during transport. For final preservation, samples are either placed in 

10% formalin solution or stored in a -80°C freezer. Among them, 8 PD-PC and 7 MD-PC tissues were used 

for proteomic testing, and 5 PC tissues were used for Reverse transcription-quantitative polymerase chain 

reaction (RT-qPCR) and Western blot testing. 1 PD-PC and 1 MD-PC tissues were used for 

Immunohistochemistry (IHC) experiments. The patient's clinical characteristics are shown in Table 1. 

Proteomic analysis 

Analysis process 

Protein profiling analysis involved detecting the range of peptides in different samples, mapping the 

identified peptide fragments to their respective protein sequences, and calculating the number of proteins. 

To evaluate the accuracy of the protein profiling results, we examined the unprocessed mass spectrometry 

data and calculated the average number of peptides traced and supporting each protein. To ensure data 

quality, we retained only 7,635 proteins present in >50% of samples in at least one group. For each protein, 

we applied multivariate normal imputation (MVNI) to impute missing values. Pearson's correlation 

coefficient analysis and principal component analysis (PCA) were used to compare intra- and inter-group 

differences. We identified proteomic features by analyzing proteins exhibiting different fold changes (FC) 

across groups. Differentially expressed proteins (DEPs) were identified based on the criteria: |log2(FC)| > 

0.263 and unpaired p < 0.05. DEPs were visualized using volcano plots and hierarchical clustering heatmaps. 

Gene set enrichment analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway enrichment analyses were performed on DEPs to explore their involvement in 

signaling pathways. We constructed protein-protein interaction (PPI) networks to investigate associations 

among DEPs. Mfuzz analysis was employed to identify DEP change trends, while WGCNA was used to 

identify modules enriched with differential proteins. 

Sample preparation 

The samples were mixed with 8 M Urea/100 mM Tris-Cl and subjected to treatment with water bath 

sonication. After centrifugation, protein concentration of the supernatant was measured with BCA method. 
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Protein reduction and alkylation were conducted with TCEP and CAA at 37 °C for 1 h. Urea was diluted 

below 2 M using 100 mM Tris-HCl (pH 8.0). Trypsin was added at a ratio of 1:50 (enzyme: protein, w/w) 

for overnight digestion at 37 ℃. The next day, TFA was used to bring the pH down to 6.0 to end the 

digestion. After centrifugation (12000×g, 15 min), the supernatant was subjected to peptide purification 

using self-made SDB-RPS desalting column. The peptide eluate was vacuum dried and stored at -20 ℃ for 

later use. 

Mass spectrometry analysis 

All samples were analyzed on timsTOF Pro (Bruker Daltonics), a hybrid trapped ion mobility spectrometer 

(TIMS) quadrupole time-of-flight mass spectrometer. An UltiMate 3000 RSLCnano system (Thermo) was 

coupled to timsTOF Pro with a CaptiveSpray nano ion source (Bruker Daltonics). Peptide samples were 

injected into a C18 Trap column (75 µm*2 cm, 3 µm particle size, 100 Å pore size, Thermo), and seperated 

in a reversed-phase C18 analytical column (75 µm*15 cm, 1.7 µm particle size, 100 Å pore size, 

IonOpticks). Mobile phase A (0.1% formic acid in water) and mobile phase B (0.1% formic acid in ACN) 

were used to establish the seperation gradient at a flow rate of 300 nL/min. The MS were operated in 

diaPASEF mode. The capillary voltage was set to 1500 V. The MS and MS/MS spectra were acquired from 

100 to 1700 m/z. The ion mobility was scanned from 0.6 to 1.6 Vs/cm2. The accumulation time and ramp 

time were set to 50 ms. The diaPASEF acquisition scheme was defined according to the m/z-ion mobility 

plane using the timsControl software (Bruker Daltonics). The collision energy was ramped linearly as a 

function of the mobility from 59 eV at 1/K0=1.6 Vs/cm2 to 20 eV at 1/K0=0.6 Vs/cm2. 

Peptide and protein identification and quantification 

DIA raw data were analyzed with DIA-NN (V1.8.1). Spectra files were searched against the Human protein 

sequence database (2023-06-19, 20423 entries) downloaded from Uniprot Library-free search was 

performed according to the DIA-NN manual (https://github.com/vdemichev/DiaNN/). A predicted in 

silicon spectra library was generated from FASTA database. Specific Trypsin/P was chosen as the digestion 

method. One missed cleavage was allowed. Carbamidomethylation on cysteine were chosen as fixed 

modification. Oxidation on methionine and acetylation on protein N-terminal were chosen as variable 

modifications. The false discovery rate (FDR) value was set to 0.01 for reliable precursor identification. 

“MBR” and “heuristic protein inference” was enabled. Protein intensities were normalized with MaxLFQ 

algorithm. 
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Data analysis 

For DIA data quantification, the output file generated by DIA-NN for each sample was processed in the R 

workspace and used for the downstream analysis. The intensity values were log2-transformed for 

calculation and statistical analysis. To guarantee the data quality and effectively use the proteomic data, 

proteins with over 50% missing values in each group were removed. Missing values were imputed with 

values representing a normal distribution around the detection limit of the mass spectrometer according to 

multivariate normal imputation (MVNI). To that end, mean and standard deviation of the distribution of the 

real intensities were determined, then a new distribution with a downshift of 1.8 standard deviations and a 

width of 0.25 standard deviations was created. The total matrix was imputed using these values, enabling 

statistical analysis. 

  In our DIA-MS based proteomics; to identify the differentially expressed proteins between different 

groups, statistical significance was assessed by unpaired t-test. Proteins with p < 0.05 and fold change (FC) > 

1.2 or < 1/1.2 were considered to be significantly changed. Functional enrichment analysis of quantified 

proteins was based on Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

database and Hallmark gene sets. Fisher's exact test was used to compare DEPs and background proteins. 

GO or KEGG terms with a P value < 0.05 and protein counts ≥ 3 were screened out as enriched terms in 

DEPs. We also conducted GSEA analysis and obtained important gene sets through the following 

parameters: NES > 1, NOM p value < 0.01, and FDR q value < 0.25. The protein–protein interaction (PPI) 

network was conducted via STRING database (https://string-db.org/). Interactions with combined score > 

0.4 were remained in the network. 

GEPIA database analysis 

We utilized the Gene Expression Profiling Interactive Analysis (GEPIA) database to analyze the expression 

levels of Uridine phosphorylase 1 (UPP1), Lactamase beta (LACTB), and Activator of HSP90 ATPase 

activity 1 (AHSA1) proteins in PC tissues. Data from 179 PC samples and 171 adjacent non-cancerous 

tissues (para-PC) tissue samples were extracted for comparative analysis. Protein expression levels were 

quantified using the standard protocols integrated within the GEPIA platform. The analysis of gene 

expression differences was conducted employing the R package limma, utilizing standard settings. 

Statistical significance was determined using Student's t-test, with a p-value < 0.05 considered statistically 

significant. Box plots were generated to visualize the distribution of protein expression levels between PC 
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and para-PC groups. All analyses were conducted using the integrated tools available on an online gene 

expression profiling platform for cancer research. The results were further processed and visualized using 

R software (version 4.0.3, R Foundation for Statistical Computing) with ggplot2 package for enhanced 

graphical representation. 

WGCNA 

We obtained RNA-seq data and corresponding clinical information for PC patients from The Cancer 

Genome Atlas (TCGA) database. Raw count data were normalized using the DESeq2 package 

(Bioconductor) and log2-transformed. Genes with low expression (counts < 10 in more than 80% of 

samples) were filtered out. DEPs between tumor and normal samples were identified using the limma 

package (Bioconductor) with |log2FC| > 1 and adjusted p-value < 0.05 as cutoffs. We then performed 

WGCNA using the WGCNA R package to construct a gene co-expression network. A soft-thresholding 

power was chosen based on the criterion of approximate scale-free topology. The topological overlap matrix 

(TOM) was calculated and hierarchically clustered to identify gene modules.  

Mfuzz analysis  

For protein expression analysis, we employed the Mfuzz package (version 2.48.0) in R (version 4.0.2) to 

perform soft clustering. Raw protein expression data was log2-transformed and standardized using the 

standardize function in Mfuzz. We applied the Mfuzz function to cluster proteins based on their expression 

patterns across para-PC, PD-PC, and MD-PC groups, using a cluster number (c) of 6 and fuzzifier parameter 

(m) of 2.5. These parameters were optimized using the mestimate function. Differentially expressed 

proteins were identified using limma with a false discovery rate < 0.05 and fold change > 1.5. Mfuzz cluster 

plots were generated using the Mfuzz.plot function.  

RT-qPCR 

Total RNA was extracted from tissue using TRIzol reagent (Ambion, 15596-026) and reverse-transcribed 

into cDNA using HiScript II Select qRT SuperMix II (VAZYME, R233) mixed liquor. Thereafter, RT-qPCR 

was performed using AceQ qPCR SYBR Green Master Mix (VAZYME, Q111) with the corresponding 

primer sequences (Table 2). Data analysis was performed using the 2-ΔΔCt method. 

Western blot 

For protein extraction, tissue samples were placed in EP tubes containing RIPA lysis buffer (Servicebio) 

and homogenized using an automatic grinder (Tissvelyser-24L, Shanghai Jingxin). Following 
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centrifugation, the supernatant was collected, and protein concentration was determined using the BCA 

method (Guangzhou JeBest Biotechnology). Forty micrograms of the protein sample were combined with 

loading buffer and heated at 95°C for 10 minutes. Proteins were then separated by SDS-PAGE using 12% 

separating and 5% stacking gels. Following electrophoresis, proteins were transferred to PVDF membranes 

(Millipore). Membranes were blocked with 5% non-fat milk in TBST for 2 hours and then incubated 

overnight at 4°C with primary antibodies. Primary antibodies included UPP1 (Wuhan Sanying 

Biotechnology, 1:2000), LACTB (Boster, 1:2000), AHSA1 (Boster, 1:2000), and GAPDH (Affinity, 

1:20000). Following washing with TBST, membranes were treated with appropriate HRP-conjugated 

secondary antibodies (Beyotime Biotechnology) for two hours at ambient temperature. Chemiluminescence 

detection was performed using ECL substrate (Servicebio), and the membranes were exposed to X-ray film. 

Protein band densities were analyzed using Image Pro Plus software, with GAPDH serving as an internal 

control for normalization. 

Tissue sections 

Tissue samples from 8 PD-PC and 7 MD-PC were processed for histological examination. Samples 

underwent fixation in a 10% neutral buffered formalin solution, followed by dehydration using an 

increasing alcohol gradient. Subsequently, the specimens were processed with xylene for clearing and 

embedded within paraffin blocks. Using a Leica RM 2016 microtome, 4 μm thick sections were obtained 

and placed onto microscope slides. Sections used in H&E staining, Immunofluorescence (IF), and IHC. 

H&E Staining 

For H&E staining, sections were deparaffinized in xylene, rehydrated through graded ethanol, and stained 

with Mayer's hematoxylin (BT-P107, Qisai Biological) for 5 minutes followed by 1% eosin Y (BT-P109, 

Qisai Biological) for 5 minutes. Stained sections were dehydrated, cleared, and mounted with neutral 

balsam. Images were captured using a Leica FLEXACAM C1 microscope equipped with LAS X imaging 

software at 200x magnification. This protocol allowed for clear visualization of nuclear (blue) and 

cytoplasmic (pink to red) structures, enabling detailed morphological analysis of PD-PC and MD-PC tissues. 

IF 

For IF, sections were deparaffinized and rehydrated, and heat-induced antigen retrieval was performed 

using Tris-EDTA buffer (pH 9.0, Qisai Biological) at 95°C for 15 minutes. We performed multiplex 

immunofluorescence staining using a tyramide signal amplification system. Primary antibodies against 
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UPP1 (1:100, Sanying), AHSA1 (1:100, Boster), and LACTB (1:100, Boster) were sequentially applied, 

followed by HRP-conjugated secondary antibodies and tyramide-fluorophores. Between each round of 

staining, we used microwave treatment to strip the preceding antibodies while preserving the fluorescent 

signal. Nuclei were counterstained with DAPI (Beyotime). Images were acquired using a multispectral 

imaging system built upon an Olympus BX53 fluorescence microscope platform. We captured at least three 

representative fields at 200x magnification for each sample. Image analysis was performed using cellSens 

Entry software (Olympus) to quantify the fluorescence intensity of each marker. Statistical analysis was 

conducted to compare protein expression levels between PD-PC and MD-PC samples. 

IHC 

For IHC, sections using Tris-EDTA buffer (pH 9.0) in a pressure cooker for 15 minutes. Endogenous 

peroxidase activity was blocked with 3% H2O2. Sections were incubated overnight at 4°C with primary 

antibodies against UPP1 (1:100, Proteintech), AHSA1 (1:100, Boster), and LACTB (1:100, Boster). After 

washing, sections were treated with a secondary antibody conjugated to HRP (Dako) for 30 minutes at 37°C. 

Immunoreactivity was visualized using DAB (Dako), followed by hematoxylin counterstaining. Stained 

sections were dehydrated, cleared, and mounted. Micrographs were obtained via a BX53 optical instrument 

from Olympus featuring cellSens Entry software. Protein expression was quantified by measuring the 

average optical density of positively stained areas using ImageJ software. All staining procedures were 

performed in triplicate to ensure reproducibility. 

Survival analysis  

Using the TCGA dataset, patient samples were stratified into low-expression and high-expression groups 

based on the optimal cutoff values for LACTB, UPP1, and AHSA1 gene expression. These cutoffs were 

determined using the survey_cutpoint function within the 'surveyor' package in R (version 4.4.1). The 

optimal cutoff value was calculated based on the Youden index (sensitivity + specificity - 1), which 

identifies the threshold that maximizes the Youden index statistic, thereby optimizing the differentiation 

between groups while minimizing the p-value associated with the Kaplan-Meier survival analysis. 

Ethical statement 

This study was approved by the ethics committee of Hubei Provincial People's Hospital (Approval No. 

WDRY2024-K188), and followed the Declaration of Helsinki. Informed consent was obtained from all 

individual participants included in the study. 
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Statistical analysis 

Prism software was utilized for experimental verification statistical analyses. We employed Student's t-test 

to evaluate differences among pairs of cohorts. A p-value < 0.05 indicated statistical importance. 
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RESULTS  

Proteomics analysis overview  

We conducted two proteomic studies. The first compared 5 PC (three poorly differentiated and two 

moderately differentiated) tissue samples with para-PC tissues. The second compared 8 PD-PC tissue 

samples with 7 MD-PC tissue samples. These studies identified 64,697 and 65,505 peptides, corresponding 

to 8,307 and 8,340 human proteins, respectively. The reliability of our results was validated by examining 

the correlation between peptide and protein counts (Figure 1). In the PC vs. para-PC group, Pearson 

correlation coefficients exceeded 0.7, and PCA revealed clear separation between PC and para-PC sample 

groups, with PC samples showing high clustering. A total of 431 DEPs were identified (Supplement table 

1), including 332 upregulated and 99 downregulated DEPs in the PC vs. para-PC group (Figure 2A-C). 

Similar analyses were performed for the PD-PC vs. MD-PC group, where intra-group Pearson correlation 

coefficients exceeded 0.8. Samples were distributed on opposite sides of the PC1 axis, indicating 

differences between PD-PC and MD-PC samples. Finally, 470 DEPs were identified (Supplement table 2), 

with 180 upregulated and 290 downregulated proteins (Figure 2D-F). 

Function enrichment analysis of DEPs 

Using GO, KEGG, and GSEA, we conducted pathway and functional analyses of the DEPs. In the PC vs. 

para-PC group, the most significant BP was cell motility, followed by cellular lipid metabolic process and 

lipid metabolic process (Figure 3A and Figure S1A). The most significant CC was microbody and 

peroxisome (Figure 3B and Figure S1B). The most significant MF was fatty acyl-CoA hydrolase activity 

and DNA-binding transcription factor activity (Figure 3C and Figure S1C). Correspondingly, the 

Peroxisome pathway was the most significant in the KEGG analysis, Alpha-Linolenic acid metabolism and 

Glycosphingolipid biosynthesis-lacto and neolacto series was the highest path for rich factor (Figure 3D 

and Figure S1D). In the PD-PC vs. MD-PC group, the most significant BP was immune response, followed 

by coagulation and regulation of body fluid levels (Figure 3E and Figure S2). The most significant CC was 

extracellular region and space (Figure 3F and Figure S3). The most significant MF was signaling receptor 

binding and peptidase activity (Figure 3G and Figure S4). Correspondingly, Complement and coagulation 

cascades was the most significant KEGG pathway, followed by ECM-receptor interaction, Alcoholic liver 

disease and Platelet activation (Figure 3H and Figure S5).  

  Additionally, in the PC vs. para-PC group, the GSEA Hallmark gene sets revealed that the pathways with 
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the highest NES for upregulated DEPs were Glycolysis (p=3.74e-07) and Angiogenesis (p=7.82e-04), while 

the pathway with the highest NES for downregulated DEPs was Pancreas beta cells (p=1.36e-03) (Figure 

4A). In the PD-PC vs. MD-PC group, the pathway with the highest NES for upregulated DEPs was E2F 

targets (p=2.74e-07), and for downregulated DEPs, the highest NES pathways were Epithelial 

mesenchymal transition (p=1.00e-10) and Coagulation (p=1.00e-10) (Figure 4B). Notably, Myogenesis was 

identified in both the PC vs. para-PC and PD-PC vs. MD-PC groups, although it did not have the highest 

NES. Based on these results, it is evident that DEPs in both the PC vs. para-PC and PD-PC vs. MD-PC 

groups are involved in multiple signaling pathways. Through the construction of a PPI network, we found 

that in the PC vs. para-PC group, the DEPs with the most interactions were SRC (degree = 41), PTEN 

(degree = 30), and HDAC1 (degree = 25). The BP with the most protein nodes in the PPI network were 

developmental process (count = 48), lipid metabolic process (count = 43), and multicellular organismal 

process (count = 42) (Figure 5A-C). Conversely, in the PD-PC vs. MD-PC group, the DEPs with the most 

interactions were C4B (degree = 88), A2M (degree = 59), and VTN (degree = 58). The BP with the most 

protein nodes in the PPI network were immune system process (count = 46), immune response (count = 

45), and defense response to other organism (count = 39) (Figure 5D-F). From the preceding analyses, it is 

apparent that the DEPs and their functions differ significantly between the PC vs. para-PC and PD-PC vs. 

MD-PC groups. However, given the intrinsic connection between differentiated PC and PC, a combined 

analysis of PC, PD-PC, and MD-PC is warranted to identify critical targets in the progression of PC. 

PC coalition analysis 

Through PCA, clustering heatmap, and PPI network analysis, we identified both common and distinct key 

proteins among PC, PD-PC, and MD-PC patients (Figures 6A-C). Ultimately, five DEPs (UPP1, SCYL2, 

LACTB, AHSA1, and ABHD6) were found to be present in both the PC vs. para-PC and PD-PC vs. MD-

PC groups (Figure 6D). Mfuzz analysis of protein expression patterns in para-PC, PD-PC, and MD-PC 

revealed that proteins in module 3 exhibited a gradually increasing expression trend across these groups 

(Figure 7A). Therefore, subsequent screening for five DEPs should focus on their association with module 

3. Module 3 contained 136 DEPs, which, when intersected with the common DEPs from the PC vs. para-

PC and PD-PC vs. MD-PC groups, yielded three DEPs (UPP1, LACTB, and AHSA1) (Figure 7B). 

WGCNA analysis clustered all differentially expressed proteins into 25 modules (Figure 7C). The three 

intersecting proteins were enriched in the turquoise module. Correlation analysis of the 25 modules showed 
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that the turquoise module had a correlation of 0.47 (p=0.038) with other modules, suggesting its crucial 

role in PC initiation and progression (Figure 7D). To further elucidate the significance of UPP1, LACTB, 

and AHSA1 as key targets in PC development, we quantified these proteins using proteomic data. As shown 

in Figure 8, UPP1, LACTB, and AHSA1 levels were higher in PC compared to para-PC, and their 

expression was elevated in PD-PC relative to MD-PC. 

GEPIA database and experimental verification targets 

The expression levels of target proteins in PC and para-PC groups were validated using the GEPIA database 

and Western blot experiments. HE, IF, and IHC experiments were employed to verify the expression levels 

in PD-PC and MD-PC groups. As shown in Figure 9A, the GEPIA database revealed significantly lower 

expression levels of UPP1, AHSA1, and LACTB proteins in the para-PC group compared to the PC group. 

RT-qPCR and Western blot analysis of five pairs of PC tissues and adjacent normal tissues demonstrated 

significantly higher expression levels of UPP1 and AHSA1 proteins, but lower levels of LACTB protein 

among PC samples relative to para-PC specimens (Figures 9A, B). To further validate UPP1, LACTB, and 

AHSA1 as critical targets in PC development, we examined 8 PD-PC and 7 MD-PC tissue samples. HE 

staining revealed distinct histological features between PD and MD PCs. PD-PC cells exhibited high 

pleomorphism with notable variations in cell size and shape. Duct-like structures were observed, 

accompanied by abundant fibrous tissue in the stroma. Both groups showed varying degrees of 

inflammatory infiltration (Figure 10A). Both IHC and IF experiments consistently demonstrated higher 

average densities of UPP1 and AHSA1 proteins in PD-PC tissues, while LACTB protein showed higher 

average density in MD-PC tissues (Figures 10B, C). These findings align with the Western blot results. 

Although the expression trend of LACTB protein differed from the database, UPP1 and AHSA1 proteins 

were rigorously and comprehensively proven to be crucial targets in PC development and progression. 

Metabolic pathway and survival analyses of UPP1, LACTB, and AHSA1 

Based on our previous screening and preliminary verification, we identified UPP1 and AHSA1 as potential 

marker proteins for PC, exhibiting abnormally high expression in PC patients. While pathway analysis has 

been conducted, the specific metabolic pathways involving UPP1, LACTB, and AHSA1 remain elusive. 

Moreover, their impact on PC patient survival outcomes warrants preliminary investigation, despite 

LACTB demonstrating distinct alterations in PC progression compared to UPP1 and AHSA1. Leveraging 

KEGG analysis results, we narrowed our focus to the metabolic pathways encompassing UPP1, LACTB, 
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and AHSA1. Our findings revealed that only UPP1 participates in "PYRIMIDINE_METABOLISM" and 

"Drug metabolism - other enzymes" pathways, where it is designated as "2.4.2.3" (Figures S6, S7). In the 

PYRIMIDINE_METABOLISM pathway, UPP1 catalyzes the conversion of uridine to uracil. Similarly, in 

the "Drug metabolism - other enzymes" pathway, UPP1 facilitates the transformation of 5-Fluoro-uridine 

to Fluorouracil (5-FU). We performed Kaplan-Meier survival analysis for UPP1, LACTB, and AHSA1 

using the TCGA database (Figure 11). The results revealed that patients with high expression levels of 

UPP1 and LACTB exhibited poorer overall survival compared to those with low expression levels of these 

genes. 

DISCUSSION  

In this study, we present a paradigm-shifting proteomic analysis of PC tissues, comparing PC with para-

PC, as well as PD-PC with MD-PC. Our findings provide unprecedented insights into the molecular 

mechanisms underlying PC development and progression, and identify novel biomarkers and therapeutic 

targets that promise to revolutionize PC management. 

Our comprehensive proteomic analysis reveals distinct molecular signatures for PC initiation (PC vs. 

para-PC) and progression (PD-PC vs. MD-PC), highlighting the complex and dynamic nature of PC 

development. This aligns with and significantly extends previous studies emphasizing the molecular 

diversity of PC and how it influences disease advancement and therapeutic efficacy [17, 18]. The 

identification of DEPs in both comparisons provides an unparalleled view of the proteomic changes 

occurring during PC evolution, offering a more nuanced and detailed perspective on the disease's molecular 

underpinnings than previously available [19, 20]. A groundbreaking finding of our study is the identification 

of UPP1 and AHSA1 as consistently upregulated proteins in PC development and progression, validated 

across multiple experimental platforms. This observation is particularly significant as it suggests these 

proteins play crucial roles in both the initiation and advancement of PC. UPP1, involved in pyrimidine 

salvage pathways, may contribute to the altered nucleotide metabolism characteristic of cancer cells, 

potentially fueling rapid proliferation. Studies have shown that UPP1 is significantly upregulated in 

multiple malignant tumors, including lung adenocarcinoma [21], bladder cancer [22], gastric cancer [23], 

and colorectal cancer [24]. AHSA1, an activator of heat shock protein 90, could enhance the stability of 

multiple oncogenic proteins, thereby promoting tumor growth and survival [25]. AHSA1 is overexpressed 

in various malignant tumors, including hepatocellular carcinoma [26], breast cancer [27], and multiple 
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myeloma [28]. We hypothesize that UPP1 may drive metabolic reprogramming in PC cells, while AHSA1 

could act as a master regulator of oncogenic signaling pathways. These mechanistic implications provide a 

solid foundation for future functional studies and highlight promising therapeutic targets. 

Our functional enrichment analysis of DEPs revealed distinct pathway activations between PC vs. para-

PC and PD-PC vs. MD-PC comparisons, providing novel insights into the evolving biological processes 

during PC progression. In the PC vs. para-PC group, we observed significant enrichment in cell motility 

and lipid metabolic processes, which are critical for cancer cell survival and metastasis [29, 30]. Strikingly, 

the PD-PC vs. MD-PC comparison showed enrichment in immune response and coagulation pathways, 

suggesting a profound shift in the tumor microenvironment as the disease progresses to a more aggressive 

state. These findings align with and extend contemporary research highlighting the significance of the tumor 

microenvironment in PC advancement and its promise as a treatment avenue [31-33]. Metabolic pathway 

analysis of UPP1, LACTB, and AHSA1 individually revealed that only UPP1 is involved in metabolism. 

UPP1 converts uridine to uracil, a process that releases ribose-1-phosphate to supply energy for cells. 5-FU 

is a common chemotherapeutic agent for treating PC. Therefore, UPP1 not only affects drug metabolism 

but also supports the metabolic adaptation of cancer cells, suggesting it may be a dual therapeutic target. 

Our PPI network analysis further corroborated these functional differences, identifying key hub proteins in 

each comparison. The identification of SRC, PTEN, and HDAC1 as central nodes in the PC vs. para-PC 

network aligns with their known roles in cancer cell signaling and epigenetic regulation [34, 35]. In contrast, 

the prominence of immune-related proteins like C4B and A2M in the PD-PC vs. MD-PC network 

underscores the increasing importance of immune modulation as the disease progresses to a more 

aggressive state [36, 37]. This shift in network dynamics provides unprecedented insights into the evolving 

molecular landscape of PC and may guide the development of stage-specific therapeutic strategies. The 

progressive increase in expression of specific proteins, including UPP1 and AHSA1, from para-PC to MD-

PC to PD-PC, as revealed by our Mfuzz analysis, provides compelling evidence for their potential roles as 

drivers of PC advancement. This finding is particularly significant as it identifies these proteins as potential 

biomarkers for disease progression and as therapeutic targets across different stages of PC [38, 39]. The 

consistent upregulation across disease stages suggests that these proteins may be fundamental to the 

pathogenesis of PC, warranting further investigation into their functional roles. 

The validation of our proteomic findings using the GEPIA database and experimental techniques further 



 

17  

strengthens the reliability and translational potential of our results. The consistent upregulation of UPP1 

and AHSA1 across different experimental platforms and patient cohorts strongly supports their potential as 

robust biomarkers and therapeutic targets for PC [40]. Interestingly, we observed a discrepancy in LACTB 

expression between our experimental results and the GEPIA database findings. Since LACTB expression 

was not evaluated in databases beyond GEPIA, and only tissue transcription and translation levels were 

measured without verification of post-transcriptional regulation, this unexpected result underscores the 

intricate nature of protein expression regulation in neoplastic conditions and highlights the need for further 

research into the role of LACTB in PC progression. We hypothesize that this discrepancy could be due to 

post-transcriptional regulation mechanisms or tissue-specific effects. This finding emphasizes the 

importance of using multiple validation approaches in proteomic studies and opens up new avenues for 

investigating the regulation of LACTB in PC [41]. Regrettably, the GEPIA database lacks data from non-

diseased individuals. Consequently, direct comparisons of UPP1, LACTB, and AHSA1 levels between 

healthy individuals and PC patients will be performed in future in-depth validation studies. 

The identification of stage-specific protein expression patterns and associated pathways provides a novel 

framework for understanding PC progression and may guide personalized treatment strategies. This aligns 

with and advances the growing trend towards precision medicine in cancer treatment, where molecular 

profiling is used to tailor therapies to individual patients [8, 42]. Our findings contribute to this paradigm 

by offering a detailed proteomic landscape that could inform the development of targeted therapies and 

personalized treatment regimens. Our study has significant clinical implications, using Kaplan-Meier 

survival analysis, we identified prognostic significance for UPP1 and LACTB. Our findings indicate that 

high expression of these genes is associated with poor survival outcomes in patients. The identification of 

UPP1 and AHSA1 as potential biomarkers could aid in the early detection of PC, addressing one of the 

major challenges in managing this disease [43]. We envision that these proteins could be developed into 

blood-based biomarkers for non-invasive PC screening. Furthermore, these proteins could serve as 

therapeutic targets, potentially leading to the development of novel treatment strategies for PC. For instance, 

small molecule inhibitors of UPP1 or AHSA1 could be developed as targeted therapies for PC. However, 

it is crucial to note that the translation of these findings into clinical applications will require extensive 

validation in larger cohorts and functional studies to elucidate the precise roles of these proteins in PC 

biology [44]. 
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Despite these promising findings, we acknowledge several limitations of our study. To ensure that 

research findings better reflect the differences between tumor and non-tumor tissues, rather than inter-

individual variability, and to eliminate or minimize the potential impact of environmental factors, thereby 

more precisely revealing disease-induced biological changes. This study primarily focuses on protein 

expression differences between tumor tissue and adjacent non-tumor tissue. However, some similar 

alterations may be present in both tumor and adjacent non-tumor tissues. For instance, the discrepancy 

observed in LACTB expression trends between our experimental results and the GEPIA database might 

stem from underlying differences between adjacent non-tumor tissue and genuinely healthy pancreatic 

tissue, necessitating future validation through comparisons with appropriate healthy controls. The sample 

size, while sufficient for a proteomic study, is relatively small, and larger cohort studies will be necessary 

to confirm the clinical utility of our findings, particularly considering the discrepant LACTB expression 

trends observed between the GEPIA database analysis and the experimental validation phase. Additionally, 

while we have identified potential biomarkers and therapeutic targets, functional studies will be required to 

elucidate the precise roles of these proteins in PC biology. Furthermore, our study focused on protein 

expression levels, and future investigations should consider post-translational modifications and protein-

protein interactions to provide a more comprehensive understanding of the PC proteome [45]. We also 

recognize that our study did not address the potential impact of tumor heterogeneity within individual 

patients, which could influence proteomic profiles. Future research should focus on functional studies to 

elucidate the mechanistic roles of UPP1 and AHSA1 in PC. These proteins warrant investigation for their 

therapeutic applicability using laboratory and animal studies. Furthermore, combining protein analysis 

findings with data from gene expression and small molecule research is crucial to develop a thorough 

insight into pancreatic cancer biology. 

CONCLUSION  

In conclusion, our comprehensive proteomic analysis provides unprecedented insights into the molecular 

landscape of PC progression, representing a significant advance in the field. The identification of UPP1 and 

AHSA1 as key players in this process opens up new avenues for biomarker development and therapeutic 

intervention. Our findings not only extend the current understanding of PC proteomics but also provide a 

robust foundation for future research.  
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TABLES AND FIGURES WITH LEGENDS 

Table 1. Clinical characteristics 

Characteristic Levels Overall 

Tumor size 386±1443 cm3 

Location 
Head & neck 13 

Body & tail 9 

Tumor differentiation degree 
Poor 10 

Moderate 12 

T stage, n (%) 

T1 3 

T2 6 

T3 9 

T4 4 

N stage, n (%) 

N0 10 

N1 5 

N2 5 

NX 2 

M stage, n (%) 
M0 15 

M1 7 

Bile duct infiltration 
YES 5 

NO 17 

Duodenal infiltration 
YES 5 

NO 17 

Perineural invasion 
YES 19 

NO 3 

Vascular invasion 
YES 10 

NO 12 

Gender, n (%) 
Female 8 

Male 14 

Age, n (%) 
＜=65 12 

＞65 10 

Lymph node metastasis 
YES 12 

NO 10 

Liver metastasis 
YES 3 

NO 19 

CEA 5.64±14.4 ng/mL 

CA19-9 1806±2533 U/mL 

Vital status 
Live 14 

Dead 8 
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Table 2. Primer sequences 

Name Primer Sequence Size 

Homo β-actin 

Forward 
CCCTGGAGAA

GAGCTACGAG 
180bp 

Reverse 
CGTACAGGTCT

TTGCGGATG 

Homo UPP1 

Forward 
TTCTGGTGGG

ATAGGTCTGG 
168bp 

Reverse 
AGCTCTGCAG

AACACAGCAA 

Homo LACTB 

Forward 
TATGTTCCCGA

ATTCCCAGA 
249bp 

Reverse 
TTTGGCTTCAT

TCTCCTGCT 

Homo AHSA1 

Forward 
CAGCCAGCAC

TGAAAACTGA 
164bp 

Reverse 
ACCAGCTCTT

GGGTGGTAAA 

 

 

 

Figure 1. Proteomics analysis overview. (A, D) The distribution of numbers of quantified peptides in 

detected samples. (B, E) The distribution of numbers of quantified proteins in detected samples. (C, F) The 

distribution of peptide numbers of quantified proteins.  
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Figure 2. Protein difference analysis. (A, D) Pearson's correlation of protein quantitation. (B, E) Sample 

repeatability analysis by principal component analysis (PCA). (C, F) Volcano plot showing the differentially 

expressed proteins (DEPs). 

 

Figure 3. GO and KEGG enrichment analysis of DEPs. (A, E) GO-based enrichment analysis of DEPs 

shown in the term of biological processes (BP). (B, F) GO-based enrichment analysis of DEPs shown in 

the term of cellular component (CC). (C, G) GO-based enrichment analysis of DEPs shown in the term of 

molecular function (MF). (D, H) Kyoto Encyclopedia of Genes and Genomes (KEGG)‐based enrichment 

analysis of DEPs. 
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Figure 4. GSEA of DEPs. (A) Hallmark gene set-based enrichment analysis by GSEA between PC group 

and para-PC group. (B) Hallmark gene set-based enrichment analysis by GSEA between PD-PC group and 

MD-PC group. NES: Normalized Enrichment Score. 

 

Figure 5. Protein - protein network analysis of DEPs. (A) DEPs in developmental process. (B) DEPs in 

lipid metabolic process. (C) DEPs in multicellular organismal process. (D) DEPs in immune system process. 

(E) DEPs in immune response. (F) DEPs in defense response to another organism. Relevance network graph 

depicting the correlation of proteins derived from DEPs using PPI analysis respectively. Circles indicate 

the protein ID, Line width indicates interaction strength, red indicates up-regulated proteins, and blue 

indicates down-regulated proteins. The darker the color, the greater the difference. 
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Figure 6. Integrated Analysis. (A) Principal Component Analysis (PCA) of differentially expressed 

proteins in PC, PD-PC, and MD-PC. (B) Heatmap illustrating quantitative data of differentially expressed 

proteins in PC, PD-PC, and MD-PC. Each row represents a protein, while each column represents a sample. 

The color intensity indicates the quantitative data of individual proteins in corresponding samples, 

displayed as log2-transformed signal intensities. (C) Protein-protein interaction network of differentially 

expressed proteins in PC, PD-PC, and MD-PC groups, analyzed using the STRING database. Each node 

represents a differentially expressed protein, with edges between nodes indicating known or predicted 

protein-protein interactions. Node color denotes the fold change or other relevant scores for each protein, 

while node size can represent the degree of connectivity within the interaction network. (D) Venn diagram 

depicting the overlap of DEPs between PC vs. para-PC group and PD-PC vs. MD-PC group. 
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Figure 7. Analysis using Mfuzz and WGCNA. (A) Mfuzz clustering of differentially expressed proteins 

in para-PC, PD-PC, and MD-PC groups. Each graph represents proteins clustered by similar expression 

patterns. The x-axis denotes sample groups, while the y-axis indicates relative protein quantification. Each 

line represents an individual protein, with its shape illustrating the quantitative changes across different 

sample groups. (B) Venn diagram showing the intersection of 5 proteins with cluster 3. (C) WGCNA 

analysis. (D) Correlation analysis of 25 modules. 

 

Figure 8. Quantitative expression profiles of UPP1, LACTB, and AHSA1 proteins in omics analysis. 
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(A-C) Protein quantification values of UPP1, LACTB, and AHSA1 in PC vs para-PC group. (D-F) Protein 

quantification values of UPP1, LACTB, and AHSA1 in PD-PC vs MD-PC group. *p<0.05. 

 

Figure 9. GEPIA database (A), RT-qPCR (B), and Western blot (C) detected the expression of UPP1, 

AHSA1 and LACTB in PC vs para-PC group. *p<0.05, ***p<0.001, ****p<0.0001. 

 

Figure 10. H&E Staining (A), IF (B) and IHC (C) detected the expression of UPP1, AHSA1 and 

LACTB in PD-PC vs MD-PC group. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 



 

30  

 

Figure 11. Kaplan-Meier survival analysis. 
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