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R E S E A R C H A R T I C L E

UPP1 and AHSA1 as emerging biomarkers and targets in
pancreatic cancer: A proteomic approach
Kongfan Zhu 1#, Hua Hu 2#, Yuanfa Tao 1, Zhijian Yang 1, and Hanjun Li 1∗

The specific protein targets involved in pancreatic cancer (PC) pathogenesis and its varying levels of differentiation remain
incompletely understood. Advanced proteomic methodologies provide a powerful means of identifying key regulatory proteins and
signaling pathways central to cancer progression. In this study, proteomic analyses were performed on PC tissue samples of different
differentiation grades, along with adjacent non-cancerous (para-PC) tissues. Bioinformatics techniques were used to identify
differentially expressed proteins (DEPs) and their associated pathways. Key target proteins were validated using the Gene Expression
Profiling Interactive Analysis (GEPIA) database, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western
blotting, immunohistochemistry (IHC), and immunofluorescence (IF). A total of 431 DEPs were identified between PC and para-PC
tissues, while 470 DEPs distinguished poorly differentiated (PD) from moderately differentiated (MD) PCs. Functional enrichment
analysis revealed that these DEPs participate in various biological processes and signaling pathways. Five DEPs were common to both
comparisons, with Uridine Phosphorylase 1 (UPP1), Lactamase Beta, and Activator of HSP90 ATPase Activity 1 (AHSA1) showing
particularly notable differences. UPP1 and AHSA1 were significantly upregulated in PC tissues relative to adjacent tissues and exhibited
even higher expression in PD-PCs compared to MD ones. These findings were consistently supported by GEPIA, RT-qPCR, Western
blotting, IHC, and IF analyses. This study identifies UPP1 and AHSA1 as key proteins linked to PC differentiation and progression,
highlighting their potential as diagnostic markers and therapeutic targets. These insights enhance our understanding of the molecular
mechanisms underlying PC and open new avenues for precision treatment strategies.
Keywords: Pancreatic cancer, PC, proteomics, differentiated pancreatic cancer, target, experimental validation.

Introduction
Pancreatic cancer (PC) is an aggressive and deadly malignancy,
projected to become the second leading cause of cancer-related
deaths by 2030 [1]. Despite advances in detection and treat-
ment, the five-year survival rate remains below 10%, placing
PC among the cancers with the poorest prognosis [2]. PC is
histologically classified as well-differentiated (WD), moderately
differentiated (MD), or poorly differentiated (PD), with PD-PC
exhibiting the greatest invasiveness and worst outcomes [3].
Globally, the incidence of PC continues to rise [4]. Major
risk factors include tobacco use, obesity, impaired glucose
metabolism, and chronic pancreatitis [5]. At the molecular
level, KRAS mutations—present in about 90% of patients—are
a key driver of PC [6], along with common alterations in TP53,
CDKN2A, and SMAD4 [7]. Although these mutations may differ
by tumor grade, the relationship between genetic alterations
and PC differentiation remains poorly understood. Early detec-
tion of PC remains a major challenge. Currently, dual-phase
contrast-enhanced CT is the gold standard for imaging, while
MRI may be beneficial for high-risk populations [8]. However,
the development of more sensitive and specific biomarkers for

early diagnosis remains an urgent unmet need [9]. Proteomics,
a rapidly advancing field, provides powerful tools for exploring
cancer biology and identifying novel therapeutic targets. Recent
studies underscore the potential of proteomics in oncology.
For instance, Yang et al. [10] identified KDM1A as a therapeu-
tic target in early-stage esophageal squamous cell carcinoma
(ESCC) using a multi-omics approach. Nam et al. [11] found
that 2-aminoethanethiol dioxygenase (ADO) may serve as a
prognostic marker and therapeutic target in PC. Similarly, Feng
et al. [12] used proteomics to uncover a role for fucosyltrans-
ferase in ESCC progression, highlighting a new therapeutic
avenue. In PC-specific research, Mercanoglu et al. [13] utilized
PNA lectin enrichment and mass spectrometry to study the
role of GalNT2-catalyzed O-linked glycosylation in pancreatic
tissue development, offering new insights into PC pathogen-
esis. Maebashi et al. [14] employed proteomic techniques to
show that methionine restriction inhibits PC proliferation via
suppression of the JAK2/STAT3 pathway, revealing potential
therapeutic implications. Bruciamacchie et al. [15] combined
single-cell and spatial proteomics to demonstrate how ATR
inhibitors enhance the efficacy of FOLFIRINOX by remodeling

mailto:lihanjun@whu.edu.cn
https://doi.org/10.17305/bb.2025.11958
https://creativecommons.org/licenses/by/4.0/
https://www.biomolbiomed.com
https://www.biomolbiomed.com
https://orcid.org/0009-0000-3461-8405
https://orcid.org/0009-0009-3265-4088
https://orcid.org/0000-0002-9429-9642
https://orcid.org/0009-0008-3388-0688
https://orcid.org/0000-0002-1936-9591


the tumor microenvironment, suggesting new strategies to
improve PC treatment. Despite these advancements, several
challenges remain. The molecular mechanisms distinguishing
PD-PC from MD- and WD-PC are not well understood. Fur-
thermore, while proteomics has shown great promise in cancer
research, its clinical translation remains limited. To address
these gaps, we propose the following hypothesis: proteomic
analysis can uncover molecular differences between PD-PC
and MD-PC, identifying key regulatory proteins and signal-
ing pathways involved in tumor differentiation. This research
aims to clarify the molecular basis of PC differentiation and
its link to prognosis, ultimately facilitating the discovery of
novel diagnostic markers and therapeutic targets. Our pro-
posed methodology includes several key steps. First, PC tis-
sue samples representing different differentiation grades will
be collected for proteomic profiling. Advanced bioinformatics
tools—including Weighted Gene Co-expression Network Anal-
ysis (WGCNA) and the Mfuzz clustering algorithm—will be
applied to identify critical protein modules and regulatory net-
works associated with tumor grade. The clinical relevance of
these proteins will then be assessed through integration with
public datasets and experimental validation. This study holds
significant scientific and clinical value. It will address criti-
cal gaps in our understanding of PC differentiation, provide
a detailed molecular profile of tumors across differentiation
grades, and identify novel biomarkers and therapeutic targets.
Ultimately, these insights may support the development of pre-
cision medicine strategies for PD-PC.

Materials and methods
Patients
This study involved 22 patients with PDAC recruited from
Hubei Provincial People’s Hospital. Tissue biopsy samples were
collected surgically and immediately placed in a refrigerated
sterile preservation solution on ice packs. After surgery, the
samples were accurately labeled and maintained at a controlled
temperature during transport. For long-term preservation,
samples were either fixed in 10% formalin solution or stored in
a −80 °C freezer. Of the collected tissues, eight PD-PC and seven
MD-PC samples were used for proteomic analysis, while five
PC samples were used for reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) and Western blot assays.
Additionally, one PD-PC and one MD-PC sample were used for
immunohistochemistry (IHC) experiments. The clinical charac-
teristics of the patients are summarized in Table 1.

Proteomic analysis
Analysis process

Protein profiling analysis involved detecting the range of pep-
tides in different samples, mapping the identified peptide
fragments to their corresponding protein sequences, and quan-
tifying the number of proteins. To assess the accuracy of the
profiling results, we examined the raw mass spectrometry data
and calculated the average number of peptides traced to each
protein. To ensure data quality, we retained only the 7635
proteins present in more than 50% of samples in at least one

Table 1. Clinical characteristics

Characteristic Levels Overall

Tumor size 386 ± 1443 cm3

Location Head and neck 13
Body and tail 9

Tumor differentiation degree Poor 10
Moderate 12

T stage, n (%) T1 3
T2 6
T3 9
T4 4

N stage, n (%) N0 10
N1 5
N2 5
NX 2

M stage, n (%) M0 15
M1 7

Bile duct infiltration YES 5
NO 17

Duodenal infiltration YES 5
NO 17

Perineural invasion YES 19
NO 3

Vascular invasion YES 10
NO 12

Gender, n (%) Female 8
Male 14

Age, n (%) <=65 12
>65 10

Lymph node metastasis YES 12
NO 10

Liver metastasis YES 3
NO 19

CEA 5.64 ± 14.4 ng/mL

CA19-9 1806 ± 2533 U/mL

Vital status Live 14
Dead 8

group. Missing values for each protein were imputed using
multivariate normal imputation (MVNI). Pearson’s correlation
coefficient and principal component analysis (PCA) were used
to evaluate intra- and inter-group differences. Proteomic fea-
tures were identified by analyzing proteins with varying fold
changes (FC) across groups. Differentially expressed proteins
(DEPs) were defined using the criteria |log2(FC)| > 0.263 and
unpaired P < 0.05, and were visualized using volcano plots
and hierarchical clustering heatmaps. Gene set enrichment
analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analyses were per-
formed to explore the signaling pathways associated with DEPs.
Protein–protein interaction (PPI) networks were constructed to
investigate relationships among DEPs. Mfuzz analysis was used
to identify trends in DEP expression, and WGCNA was applied
to identify modules enriched with differential proteins.
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Sample preparation

The samples were mixed with 8 M urea and 100 mM Tris-Cl,
then subjected to water bath sonication. After centrifugation,
the protein concentration of the supernatant was measured
using the BCA method. Protein reduction and alkylation were
performed with TCEP and CAA at 37 °C for 1 h. Urea was then
diluted to below 2 M using 100 mM Tris-HCl (pH 8.0). Trypsin
was added at an enzyme-to-protein ratio of 1:50 (w/w) for
overnight digestion at 37 °C. The following day, TFA was added
to adjust the pH to 6.0 to terminate the digestion. After cen-
trifugation (12,000 × g, 15 min), the supernatant was subjected
to peptide purification using a self-made SDB-RPS desalting
column. The peptide eluate was vacuum-dried and stored at
−20 °C for later use.

Mass spectrometry analysis

All samples were analyzed using a timsTOF Pro (Bruker Dal-
tonics), a hybrid trapped ion mobility spectrometry (TIMS)
quadrupole time-of-flight mass spectrometer. An UltiMate
3000 RSLCnano system (Thermo) was coupled to the timsTOF
Pro via a CaptiveSpray nano ion source (Bruker Daltonics).
Peptide samples were injected into a C18 trap column (75 μm
× 2 cm, 3 μm particle size, 100 Å pore size, Thermo) and sep-
arated on a reversed-phase C18 analytical column (75 μm ×
15 cm, 1.7 μm particle size, 100 Å pore size, IonOpticks). Mobile
phase A (0.1% formic acid in water) and mobile phase B (0.1%
formic acid in acetonitrile) were used to generate a separation
gradient at a flow rate of 300 nL/min. The mass spectrome-
ter was operated in diaPASEF mode. The capillary voltage was
set to 1500 V. MS and MS/MS spectra were acquired over a
range of 100–1700 m/z. Ion mobility was scanned from 0.6 to
−1.6 Vs/cm2. Accumulation and ramp times were both set to
50 ms. The diaPASEF acquisition scheme was defined in the
m/z–ion mobility plane using tims Control software (Bruker
Daltonics). Collision energy was ramped linearly as a func-
tion of mobility, from 59 eV at 1/K0 = 1.6 Vs/cm2 to 20 eV at
1/K0 = 0.6 Vs/cm2.

Peptide and protein identification and quantification

DIA raw data were analyzed using DIA-NN (v1.8.1). Spectra files
were searched against the human protein sequence database
(June 19, 2023; 20,423 entries) downloaded from UniProt. A
library-free search was performed according to the DIA-NN
manual (https://github.com/vdemichev/DiaNN/). A predicted
in silico spectral library was generated from the FASTA
database. Specific Trypsin/P was selected as the digestion
method, allowing one missed cleavage. Carbamidomethylation
on cysteine residues was set as a fixed modification, while oxi-
dation of methionine and acetylation of protein N-termini were
set as variable modifications. The false discovery rate (FDR)
was set to 0.01 for reliable precursor identification. “MBR”
and “heuristic protein inference” options were enabled. Protein
intensities were normalized using the MaxLFQ algorithm.

Data analysis

For DIA data quantification, the output files generated by
DIA-NN for each sample were processed in the R workspace

and used for downstream analysis. Intensity values were
log2-transformed prior to statistical evaluation. To ensure data
quality and maximize the utility of the proteomic data, pro-
teins with more than 50% missing values within each group
were excluded. Missing values were imputed using a MVNI
approach, simulating values from a normal distribution around
the mass spectrometer’s detection limit. Specifically, the mean
and standard deviation of the observed intensity distribution
were first calculated, and a new distribution was generated by
applying a downshift of 1.8 standard deviations and a width
of 0.25 standard deviations. This distribution was then used
to impute missing values across the entire matrix, enabling
further statistical analysis. To identify DEPs between groups
in our DIA-MS-based proteomics study, unpaired t-tests were
performed. Proteins with P < 0.05 and an FC >1.2 or <1/1.2
were considered significantly different. Functional enrichment
analysis of quantified proteins was conducted using GO, the
KEGG, and Hallmark gene sets. Fisher’s exact test was used
to compare DEPs against background proteins. GO or KEGG
terms with P ≥ 0.05 and at least three proteins were considered
significantly enriched among DEPs. GSEA was also performed,
and significant gene sets were identified using the follow-
ing criteria: normalized enrichment score (NES) > 1, nominal
P value < 0.01, and FDR q value < 0.25. Finally, PPI networks
were generated using the STRING database (https://string-db.
org/), retaining only interactions with a combined score> 0.4.

Gene Expression Profiling Interactive Analysis (GEPIA) database
analysis
We used the GEPIA database to examine the expression levels of
Uridine Phosphorylase 1 (UPP1), Lactamase Beta (LACTB), and
Activator of HSP90 ATPase Activity 1 (AHSA1) in PC tissues.
Expression data were extracted from 179 PC samples and 171
adjacent non-cancerous (para-PC) tissue samples for compar-
ative analysis. Protein expression levels were quantified using
the standard protocols integrated into the GEPIA platform. Dif-
ferential gene expression analysis was performed using the
limma package in R with default settings. Statistical significance
was assessed using Student’s t-test, with 0.05 considered signif-
icant. Box plots were generated to visualize protein expression
differences between PC and para-PC groups. All analyses were
conducted using GEPIA’s integrated tools, and results were fur-
ther processed and visualized in R (version 4.0.3, R Founda-
tion for Statistical Computing) using the ggplot2 package for
improved graphical presentation.

WGCNA
We obtained RNA-seq data and corresponding clinical infor-
mation for PC patients from The Cancer Genome Atlas (TCGA)
database. Raw count data were normalized using the DESeq2
package (Bioconductor) and log2-transformed. Genes with low
expression (counts <10 in more than 80% of samples) were fil-
tered out. DEGs between tumor and normal samples were iden-
tified using the limma package (Bioconductor), with |log2FC| > 1
and an adjusted P value <0.05 as the cutoff criteria. We
then constructed a gene co-expression network using the
WGCNA package in R. A soft-thresholding power was selected
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Table 2. Primer sequences

Name Primer Sequence Size

Homo β-actin Forward CCCTGGAGAAGAGCTACGAG 180 bp
Reverse CGTACAGGTCTTTGCGGATG

Homo UPP1 Forward TTCTGGTGGGATAGGTCTGG 168 bp
Reverse AGCTCTGCAGAACACAGCAA

Homo LACTB Forward TATGTTCCCGAATTCCCAGA 249 bp
Reverse TTTGGCTTCATTCTCCTGCT

Homo AHSA1 Forward CAGCCAGCACTGAAAACTGA 164 bp
Reverse ACCAGCTCTTGGGTGGTAAA

UPP1: Uridine Phosphorylase 1; LACTB: Lactamase Beta; AHSA1: Activator of
HSP90 ATPase Activity 1.

to approximate scale-free topology. The topological overlap
matrix (TOM) was calculated and used for hierarchical cluster-
ing to identify gene modules.

Mfuzz analysis
For protein expression analysis, we used the Mfuzz package
(version 2.48.0) in R (version 4.0.2) to perform soft cluster-
ing. Raw protein expression data were log2-transformed and
standardized using the standardize function in Mfuzz. Proteins
were clustered based on their expression patterns across the
para-PC, PD-PC, and MD-PC groups using the mfuzz function,
with the number of clusters (c) set to six and the fuzzifier
parameter (m) set to 2.5. These parameters were optimized
using the mestimate function. DEPs were identified using the
limma package, applying an FDR < 0.05 and an FC > 1.5. Mfuzz
cluster plots were generated using the mfuzz.plot function.

RT-qPCR
Total RNA was extracted from tissue using TRIzol reagent
(Ambion, 15596-026) and reverse-transcribed into cDNA with
HiScript II Select qRT SuperMix II (VAZYME, R233). RT-qPCR
was then performed using AceQ qPCR SYBR Green Master
Mix (VAZYME, Q111) and the corresponding primer sequences
(Table 2). Data were analyzed using the 2−ΔΔCt method.

Western blot
For protein extraction, tissue samples were placed in EP
tubes containing RIPA lysis buffer (Servicebio) and homoge-
nized using an automatic grinder (Tissvelyser-24L, Shanghai
Jingxin). After centrifugation, the supernatant was collected,
and protein concentrations were determined using the BCA
method (Guangzhou JeBest Biotechnology). Forty micrograms
of each protein sample were mixed with loading buffer and
heated at 95 °C for 10 min. Proteins were then separated by
SDS-PAGE using 12% separating and 5% stacking gels. Fol-
lowing electrophoresis, proteins were transferred to PVDF
membranes (Millipore). Membranes were blocked with 5%
non-fat milk in TBST for 2 h, then incubated overnight at
4 °C with primary antibodies. The primary antibodies used
were UPP1 (Wuhan Sanying Biotechnology, 1:2000), LACTB
(Boster, 1:2000), AHSA1 (Boster, 1:2000), and GAPDH (Affinity,
1:20,000). After washing with TBST, membranes were incu-
bated with appropriate HRP-conjugated secondary antibodies

(Beyotime Biotechnology) for 2 h at room temperature. Chemi-
luminescent detection was performed using ECL substrate (Ser-
vicebio), and membranes were exposed to X-ray film. Protein
band intensities were analyzed using Image-Pro Plus software,
with GAPDH serving as the internal control for normalization.

Tissue sections
Tissue samples from eight PD-PC and seven MD-PC cases were
processed for histological examination. Samples were fixed
in 10% neutral buffered formalin, followed by dehydration
through a graded alcohol series. Specimens were then cleared
with xylene and embedded in paraffin blocks. Using a Leica
RM2016 microtome, 4 μm-thick sections were cut and mounted
onto microscope slides. These sections were used for hema-
toxylin and eosin (H&E) staining, immunofluorescence (IF),
and IHC.

H&E staining
For H&E staining, tissue sections were deparaffinized in xylene,
rehydrated through a graded ethanol series, and stained with
Mayer’s hematoxylin (BT-P107, Qisai Biological) for 5 min, fol-
lowed by 1% eosin Y (BT-P109, Qisai Biological) for 5 min. After
staining, sections were dehydrated, cleared, and mounted with
neutral balsam. Images were acquired using a Leica FLEXA-
CAM C1 microscope equipped with LAS X imaging software at
200× magnification. This protocol enabled clear visualization
of nuclear (blue) and cytoplasmic (pink to red) structures, facil-
itating detailed morphological analysis of PD-PC and MD-PC
tissues.

IF
For IF, tissue sections were deparaffinized, rehydrated, and
subjected to heat-induced antigen retrieval using Tris-EDTA
buffer (pH 9.0, Qisai Biological) at 95 °C for 15 min. Multiplex
IF staining was performed using a tyramide signal amplifica-
tion system. Primary antibodies against UPP1 (1:100, Sanying),
AHSA1 (1:100, Boster), and LACTB (1:100, Boster) were applied
sequentially, followed by HRP-conjugated secondary antibod-
ies and tyramide-fluorophore labeling. Between each staining
round, microwave treatment was used to strip the previous
antibodies while preserving the fluorescent signal. Nuclei were
counterstained with DAPI (Beyotime). Images were captured
using a multispectral imaging system built on an Olympus BX53
fluorescence microscope platform, with at least three represen-
tative fields acquired per sample at 200× magnification. Image
analysis was conducted using cellSens Entry software (Olym-
pus) to quantify the fluorescence intensity of each marker. Sta-
tistical analysis was performed to compare protein expression
levels between PD-PC and MD-PC samples.

IHC
For IHC, tissue sections were subjected to antigen retrieval
using Tris-EDTA buffer (pH 9.0) in a pressure cooker for 15 min.
Endogenous peroxidase activity was blocked with 3% hydro-
gen peroxide (H2O2). Sections were incubated overnight at
4 °C with primary antibodies against UPP1 (1:100, Proteintech),
AHSA1 (1:100, Boster), and LACTB (1:100, Boster). After wash-
ing, sections were treated with an HRP-conjugated secondary
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Figure 1. Proteomics analysis overview. (A and D) The distribution of numbers of quantified peptides in detected samples; (B and E) The distribution
of numbers of quantified proteins in detected samples; (C and F) The distribution of peptide numbers of quantified proteins. PD: Poorly differentiated; PC:
Pancreatic cancer; MD: Moderately differentiated.

antibody (Dako) for 30 min at 37 °C. Immunoreactivity was
visualized using DAB (Dako), followed by hematoxylin counter-
staining. The stained sections were then dehydrated, cleared,
and mounted. Micrographs were acquired using a BX53 optical
microscope (Olympus) equipped with cellSens Entry software.
Protein expression was quantified by measuring the average
optical density of positively stained areas using ImageJ soft-
ware. All staining procedures were performed in triplicate to
ensure reproducibility.

Survival analysis
Using the TCGA dataset, patient samples were stratified into
low- and high-expression groups for the genes LACTB, UPP1,
and AHSA1, based on optimal cutoff values determined by
the survey_cutpoint function from the surveyor package in R
(version 4.4.1). These cutoff values were calculated using the
Youden index (sensitivity + specificity – 1), which identifies
the threshold that best separates the groups by maximizing
the index. This approach enhances group differentiation while
minimizing the P value in Kaplan–Meier survival analysis [16].

Ethical statement
This study was approved by the Ethics Committee of Hubei
Provincial People’s Hospital (Approval No. WDRY2024-K188)
and conducted in accordance with the Declaration of Helsinki.
Informed consent was obtained from all individual participants.

Statistical analysis
Prism software was used to perform statistical analyses for
experimental verification. We employed Student’s t-test to
evaluate differences between pairs of cohorts. A P value of
<0.05 was considered statistically significant.

Results
Proteomics analysis overview
We conducted two proteomic studies. The first compared five
PC tissue samples—three PD and two MD—with adjacent
non-cancerous (para-PC) tissues. The second study compared
eight PD-PC tissue samples with seven MD-PC tissue samples.
These analyses identified 64,697 and 65,505 peptides, corre-
sponding to 8307 and 8340 human proteins, respectively. The
reliability of our results was confirmed by examining the corre-
lation between peptide and protein counts (Figure 1). In the PC
vs para-PC group, Pearson correlation coefficients exceeded 0.7,
and PCA revealed clear separation between the PC and para-PC
samples, with PC samples forming a tight cluster. A total of 431
DEPs were identified (Table 1), including 332 upregulated and
99 downregulated DEPs (Figure 2A–2C). Similarly, in the PD-PC
vs MD-PC group, intra-group Pearson correlation coefficients
exceeded 0.8. PCA showed distinct separation between PD-PC
and MD-PC samples along the PC1 axis, indicating substantial
differences in protein expression. In this comparison, 470 DEPs
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Figure 2. Protein difference analysis. (A and D) Pearson’s correlation of protein quantitation; (B and E) Sample repeatability analysis by principal
component analysis; (C and F) Volcano plot showing the differentially expressed proteins. GO: Gene Ontology; BP: Biological processes.

were identified (Table 2), with 180 proteins upregulated and
290 downregulated (Figure 2D–2F).

Function enrichment analysis of DEPs
Using GO, KEGG, and GSEA, we conducted pathway and func-
tional analyses of the DEPs. In the PC vs para-PC group, the
most significantly enriched biological process (BP) was cell
motility, followed by cellular lipid metabolic process and lipid
metabolic process (Figures 3A and S1A). The top cellular com-
ponents (CCs) were microbody and peroxisome (Figures 3B
and S1B), while the most significantly enriched molecular
functions (MFs) were fatty acyl-CoA hydrolase activity and
DNA-binding transcription factor activity (Figures 3C and S1C).
Correspondingly, the KEGG analysis identified the peroxi-
some pathway as the most significant, while Alpha-linolenic
acid metabolism and glycosphingolipid biosynthesis (lacto and
neolacto series) had the highest rich factors (Figures 3D and
S1D). In the PD-PC vs MD-PC group, the most enriched BP
was immune response, followed by coagulation and regu-
lation of body fluid levels (Figures 3E and S2). The most
enriched CC terms were extracellular region and extracellu-
lar space (Figures 3F and S3), while the top MFs were sig-
naling receptor binding and peptidase activity (Figures 3G
and S4). In KEGG analysis, the complement and coagula-
tion cascades pathway was the most significantly enriched,

followed by ECM-receptor interaction, alcoholic liver disease,
and platelet activation (Figures 3H and S5). GSEA Hallmark
gene set analysis further revealed that in the PC vs para-PC
group, the pathways with the highest normalized enrichment
scores (NES) for upregulated DEPs were Glycolysis (P = 3.74e-
07) and Angiogenesis (P = 7.82e-04), while Pancreas Beta
Cells was the most significantly downregulated pathway (NES;
P = 1.36e-03) (Figure 4A). In the PD-PC vs MD-PC group, E2F
Targets was the most enriched pathway among upregulated
DEPs (P = 2.74e-07), while epithelial–mesenchymal transition
and Coagulation were the most enriched among downregu-
lated DEPs (both P = 1.00e-10) (Figure 4B). Notably, the Myo-
genesis pathway appeared in both comparisons, although it
did not have the highest NES in either. PPI network con-
struction revealed that in the PC vs para-PC group, the DEPs
with the most interactions were SRC (degree = 41), PTEN
(degree = 30), and HDAC1 (degree = 25). The BPs with the
highest number of protein nodes in the PPI network were
developmental process (count = 48), lipid metabolic process
(count = 43), and multicellular organismal process (count = 42)
(Figure 5A–5C). In contrast, in the PD-PC vs MD-PC group, the
top hub proteins were C4B (degree = 88), A2M (degree = 59),
and VTN (degree = 58). The most enriched BPs in the net-
work were immune system process (count = 46), immune
response (count = 45), and defense response to other organisms
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Figure 3. GO and KEGG enrichment analysis of DEPs. (A and E) GO-based enrichment analysis of DEPs shown in the term of BP; (B) and (F) GO-based
enrichment analysis of DEPs shown in the term of CC; (C and G) GO-based enrichment analysis of DEPs shown in the term of MF; (D and H) KEGG-based
enrichment analysis of DEPs. PD: Poorly differentiated; PC: Pancreatic cancer; MD: Moderately differentiated; KEGG: Kyoto Encyclopedia of Genes and
Genomes; GO: Gene Ontology; DEP: Differentially expressed protein; BP: Biological processes; CC: Cellular component; MF: Molecular function.

(count = 39) (Figure 5D–5F). These results clearly demonstrate
that the DEPs and their associated functions differ substantially
between the PC vs para-PC and PD-PC vs MD-PC comparisons.
However, given the intrinsic connection between differenti-
ated PC and PC, an integrated analysis of PC, PD-PC, and
MD-PC is warranted to identify key targets involved in PC
progression.

PC coalition analysis
Using PCA, clustering heatmap, and PPI network analyses,
we identified both common and distinct key proteins among
PC, PD-PC, and MD-PC patients (Figure 6A–6C). Ultimately,
five DEPs—UPP1, SCYL2, LACTB, AHSA1, and ABHD6—were
found to be shared between the PC vs para-PC and PD-PC
vs MD-PC comparisons (Figure 6D). Mfuzz analysis of protein

Figure 4. Continued on next page
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Figure 4. (Continued) GSEA of DEPs. (A) Hallmark gene set-based enrichment analysis by GSEA between PC group and para-PC group; (B) Hallmark
gene set-based enrichment analysis by GSEA between PD-PC group and MD-PC group. NES: Normalized enrichment score; PD: Poorly differentiated;
PC: Pancreatic cancer; MD: Moderately differentiated; GSEA: Gene set enrichment analysis; NES: Normalized enrichment score.

Figure 5. Protein–protein network analysis of DEPs. (A) DEPs in developmental process; (B) DEPs in lipid metabolic process; (C) DEPs in multicellular
organismal process; (D) DEPs in immune system process; (E) DEPs in immune response; (F) DEPs in defense response to another organism. Relevance
network graph depicting the correlation of proteins derived from DEPs using PPI analysis respectively. Circles indicate the protein ID, Line width indicates
interaction strength, red indicates up-regulated proteins, and blue indicates down-regulated proteins. The darker the color, the greater the difference.
DEP: Differentially expressed protein; PPI: Protein–protein interaction; PD: Poorly differentiated; PC: Pancreatic cancer; MD: Moderately differentiated.

expression patterns across para-PC, PD-PC, and MD-PC groups
revealed that proteins in Module 3 exhibited a progressively
increasing expression trend (Figure 7A). Therefore, subsequent
screening of the five DEPs focused on their association with

Module 3. This module contained 136 DEPs, and its intersec-
tion with the common DEPs from the two group comparisons
yielded three overlapping proteins: UPP1, LACTB, and AHSA1
(Figure 7B). WGCNA analysis further clustered all DEPs into
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Figure 6. Integrated Analysis. (A) Principal Component Analysis (PCA) of DEPs in PC, PD-PC, and MD-PC. (B) Heatmap illustrating quantitative data
of DEPs in PC, PD-PC, and MD-PC. Each row represents a protein, while each column represents a sample. The color intensity indicates the quantitative
data of individual proteins in corresponding samples, displayed as log2-transformed signal intensities. (C) PPI network of DEPs in PC, PD-PC, and MD-PC
groups, analyzed using the STRING database. Each node represents a DEP, with edges between nodes indicating known or predicted PPIs. Node color
denotes the fold change or other relevant scores for each protein, while node size can represent the degree of connectivity within the interaction network.
(D) Venn diagram depicting the overlap of DEPs between PC vs para-PC group and PD-PC vs MD-PC group. PD: Poorly differentiated; PC: Pancreatic cancer;
MD: Moderately differentiated; DEP: Differentially expressed protein; PPI: Protein–protein interaction.

25 modules (Figure 7C), with the three intersecting proteins
enriched in the turquoise module. Correlation analysis showed
that the turquoise module had a correlation coefficient of 0.47
(P = 0.038) with other modules, suggesting a potentially critical
role in PC initiation and progression (Figure 7D). To further
elucidate the significance of UPP1, LACTB, and AHSA1 in PC
development, we quantified their expression using proteomic
data. As shown in Figure 8, the levels of these proteins were
higher in PC compared to para-PC and elevated in PD-PC rela-
tive to MD-PC.

GEPIA database and experimental verification targets
The expression levels of target proteins in PC and para-PC
groups were validated using the GEPIA database and West-
ern blot experiments. HE, IF, and IHC staining were used to
assess expression levels in PD-PC and MD-PC groups. As shown
in Figure 9A, the GEPIA database indicated significantly lower
expression levels of UPP1, AHSA1, and LACTB in the para-PC

group compared to the PC group. RT-qPCR and Western blot
analyses of five paired PC and adjacent normal tissues further
revealed significantly elevated levels of UPP1 and AHSA1, and
reduced levels of LACTB in PC samples (Figure 9A and 9B). To
further validate UPP1, LACTB, and AHSA1 as key targets in
PC development, we analyzed tissue samples from eight PD-PC
and seven MD-PC cases. HE staining showed distinct histo-
logical features between PD and MD PCs: PD-PC cells exhib-
ited high pleomorphism, with considerable variation in cell
size and shape, the presence of duct-like structures, and abun-
dant stromal fibrosis. Both groups displayed varying degrees
of inflammatory infiltration (Figure 10A). IHC and IF exper-
iments consistently showed higher average expression levels
of UPP1 and AHSA1 in PD-PC tissues, while LACTB expres-
sion was higher in MD-PC tissues (Figure 10B and 10C), consis-
tent with Western blot results. Although the LACTB expression
trend differed from the database prediction, UPP1 and AHSA1
were rigorously validated as key targets in PC development and
progression.
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Figure 7. Analysis using Mfuzz and WGCNA. (A) Mfuzz clustering of differentially expressed proteins in para-PC, PD-PC, and MD-PC groups. Each graph
represents proteins clustered by similar expression patterns. The x-axis denotes sample groups, while the y-axis indicates relative protein quantification.
Each line represents an individual protein, with its shape illustrating the quantitative changes across different sample groups. (B) Venn diagram showing the
intersection of five proteins with cluster 3. (C) WGCNA analysis. (D) Correlation analysis of 25 modules. PD: Poorly differentiated; PC: Pancreatic cancer;
MD: Moderately differentiated; WGCNA: Weighted Gene Co-expression Network Analysis.

Metabolic pathway and survival analyses of UPP1, LACTB, and
AHSA1
Based on our previous screening and preliminary verifica-
tion, we identified UPP1 and AHSA1 as potential marker
proteins for PC, exhibiting abnormally high expression in
PC patients. Although pathway analysis has been conducted,
the specific metabolic roles of UPP1, LACTB, and AHSA1
remain unclear. Moreover, their impact on PC patient sur-
vival outcomes warrants further investigation, particularly
given that LACTB shows distinct alterations during PC pro-
gression compared to UPP1 and AHSA1. Leveraging KEGG anal-
ysis results, we focused on the metabolic pathways involv-
ing UPP1, LACTB, and AHSA1. Our findings revealed that only
UPP1 is associated with the “Pyrimidine metabolism” and “Drug
metabolism-other enzymes” pathways, where it is annotated
as “2.4.2.3” (Figures S6 and S7). In the pyrimidine metabolism
pathway, UPP1 catalyzes the conversion of uridine to uracil.
Similarly, in the drug metabolism pathway, UPP1 facilitates the
transformation of 5-fluoro-uridine into fluorouracil (5-FU). We
conducted Kaplan–Meier survival analysis for UPP1, LACTB,

and AHSA1 using the TCGA database (Figure 11). The results
showed that patients with high expression levels of UPP1 and
LACTB had significantly poorer overall survival compared to
those with low expression levels.

Discussion
In this study, we present a paradigm-shifting proteomic analy-
sis of PC tissues, comparing PC with para-PC, as well as PD-PC
with MD-PC. Our findings provide unprecedented insights into
the molecular mechanisms underlying PC development and
progression, and identify novel biomarkers and therapeutic tar-
gets with the potential to revolutionize PC management. Our
comprehensive proteomic profiling reveals distinct molecular
signatures associated with PC initiation (PC vs para-PC) and
progression (PD-PC vs MD-PC), underscoring the complex and
dynamic nature of PC evolution. These findings align with and
significantly extend previous studies emphasizing the molec-
ular heterogeneity of PC and its impact on disease advance-
ment and treatment response [17, 18]. The identification of
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Figure 8. Quantitative expression profiles of UPP1, LACTB, and AHSA1 proteins in omics analysis. (A–C) Protein quantification values of UPP1, LACTB,
and AHSA1 in PC vs para-PC group; (D–F) Protein quantification values of UPP1, LACTB, and AHSA1 in PD-PC vs MD-PC group. *P < 0.05. PD: Poorly
differentiated; PC: Pancreatic cancer; MD: Moderately differentiated; UPP1: Uridine Phosphorylase 1; LACTB: Lactamase Beta; AHSA1: Activator of HSP90
ATPase Activity 1.

DEPs in both comparisons offers a more detailed and nuanced
understanding of the proteomic changes driving PC, surpass-
ing the scope of earlier reports [19, 20]. A key discovery of
our study is the consistent upregulation of UPP1 and AHSA1
during both PC development and progression, validated across
multiple experimental platforms. This finding suggests these
proteins play pivotal roles in the disease process. UPP1, a key
enzyme in the pyrimidine salvage pathway, may contribute
to the altered nucleotide metabolism characteristic of cancer,
thereby supporting rapid cellular proliferation. UPP1 is also
known to be upregulated in several malignancies, including
lung adenocarcinoma [21], bladder [22], gastric [23], and col-
orectal cancers [24]. AHSA1, an activator of heat shock protein
90 (HSP90), likely enhances the stability of multiple onco-
genic proteins, promoting tumor growth and survival [25]. It
is similarly overexpressed in hepatocellular carcinoma [26],
breast cancer [27], and multiple myeloma [28]. We hypothe-
size that UPP1 facilitates metabolic reprogramming in PC cells,
while AHSA1 may act as a master regulator of oncogenic sig-
naling. These mechanistic roles establish a solid foundation
for further functional studies and highlight both proteins as
promising therapeutic targets. Functional enrichment anal-
ysis of DEPs revealed distinct pathway activations between
the PC vs para-PC and PD-PC vs MD-PC comparisons, offer-
ing novel insights into the shifting biological landscape of
PC. In the PC vs para-PC group, we observed significant

enrichment in cell motility and lipid metabolism—processes
critical for cancer cell survival and metastasis [29, 30]. In
contrast, the PD-PC vs MD-PC comparison showed enrich-
ment in immune response and coagulation pathways, reflect-
ing a substantial shift in the tumor microenvironment as PC
advances to a more aggressive phenotype. These findings sup-
port and expand on current research emphasizing the tumor
microenvironment’s role in PC progression and its potential as
a therapeutic target [31–33]. Further metabolic pathway anal-
ysis of UPP1, LACTB, and AHSA1 revealed that only UPP1 is
directly involved in metabolism. UPP1 catalyzes the conver-
sion of uridine to uracil, releasing ribose-1-phosphate, which
can supply energy to proliferating cells. Given that 5-FU, a
commonly used chemotherapeutic agent in PC, targets pyrim-
idine metabolism, UPP1 not only influences drug response
but also supports the metabolic adaptation of cancer cells—
positioning it as a dual therapeutic target. Our PPI network
analysis further highlights functional differences across disease
stages. In the PC vs para-PC network, key hub proteins, such as
SRC, PTEN, and HDAC1—known regulators of cancer signaling
and epigenetic control—were prominent [34, 35]. Meanwhile,
immune-related proteins like C4B and A2M dominated the
PD-PC vs MD-PC network, underscoring the growing role of
immune modulation in advanced disease [36, 37]. This shift in
network topology reflects the evolving molecular architecture
of PC and could inform the design of stage-specific therapeutic
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Figure 9. GEPIA database (A), RT-qPCR (B), and Western blot (C) detected the expression of UPP1, AHSA1 and LACTB in PC vs para-PC group.
*P < 0.05, ***P < 0.001, ****P < 0.0001. PC: Pancreatic cancer; UPP1: Uridine Phosphorylase 1; LACTB: Lactamase Beta; AHSA1: Activator of HSP90
ATPase Activity 1; RT-qPCR: Reverse transcription-quantitative polymerase chain reaction; GEPIA: Gene Expression Profiling Interactive Analysis.

strategies. Finally, Mfuzz clustering analysis revealed a pro-
gressive increase in the expression of proteins, including UPP1
and AHSA1 from para-PC to MD-PC to PD-PC. This trend pro-
vides compelling evidence of their involvement in PC progres-
sion and further supports their potential as biomarkers and
therapeutic targets across disease stages [38, 39]. Their consis-
tent upregulation suggests a fundamental role in PC pathogen-
esis, warranting deeper functional investigation.

The validation of our proteomic findings using the GEPIA
database and experimental techniques strengthens the

reliability and translational potential of our results. The
consistent upregulation of UPP1 and AHSA1 across various
experimental platforms and patient cohorts strongly supports
their potential as robust biomarkers and therapeutic targets
for PC [40]. Interestingly, we observed a discrepancy in
LACTB expression between our experimental results and the
GEPIA database. Since LACTB expression was not evaluated
in databases beyond GEPIA, and our study only measured
tissue transcription and translation levels without investi-
gating post-transcriptional regulation, this unexpected result
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Figure 10. H&E Staining (A), IF (B) and IHC (C) detected the expression of UPP1, AHSA1 and LACTB in PD-PC vs MD-PC group. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001. UPP1: Uridine Phosphorylase 1; LACTB: Lactamase Beta; AHSA1: Activator of HSP90 ATPase Activity 1; H&E: Hematoxylin
and eosin; IF: Immunofluorescence; IHC: Immunohistochemistry; PD: Poorly differentiated; PC: Pancreatic cancer; MD: Moderately differentiated.

Figure 11. Kaplan–Meier survival analysis. UPP1: Uridine Phosphorylase 1; LACTB: Lactamase Beta; AHSA1: Activator of HSP90 ATPase Activity 1.

highlights the complex nature of protein expression regulation
in neoplastic conditions and underscores the need for further
research into LACTB’s role in PC progression. We hypothesize
that this discrepancy could result from post-transcriptional
regulatory mechanisms or tissue-specific effects. This finding
underscores the importance of employing multiple validation
approaches in proteomic studies and opens new avenues
for investigating LACTB regulation in PC [41]. Regrettably,
the GEPIA database lacks data from healthy individuals.
Consequently, direct comparisons of UPP1, LACTB, and AHSA1

expression between healthy individuals and PC patients will
be addressed in future validation studies. The identification
of stage-specific protein expression patterns and associated
pathways offers a novel framework for understanding PC
progression and may inform personalized treatment strategies.
This aligns with the growing emphasis on precision medicine
in cancer treatment, where molecular profiling is used to tailor
therapies to individual patients [8, 42]. Our findings contribute
to this paradigm by providing a detailed proteomic landscape
that could guide the development of targeted therapies and
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personalized regimens. Our study has significant clinical
implications. Using Kaplan–Meier survival analysis, we found
that high expression of UPP1 and LACTB is associated with poor
survival outcomes. The identification of UPP1 and AHSA1 as
potential biomarkers may facilitate early detection of PC—
addressing a major challenge in managing the disease [43].
These proteins could potentially be developed into blood-based
biomarkers for non-invasive PC screening. Moreover, they
may serve as therapeutic targets, enabling the development of
novel treatment strategies for PC. For example, small molecule
inhibitors targeting UPP1 or AHSA1 could be explored as poten-
tial therapies. However, translating these findings into clinical
applications will require extensive validation in larger cohorts,
along with functional studies to clarify the biological roles of
these proteins in PC [44]. Despite these promising findings,
we acknowledge several limitations of our study. To ensure
that research findings reflect disease-specific differences rather
than inter-individual variability or environmental factors, we
primarily focused on protein expression differences between
tumor tissue and adjacent non-tumor tissue. However, some
molecular alterations may be shared by both tissue types.
For instance, the discrepancy in LACTB expression trends
between our experimental data and the GEPIA database may
stem from differences between adjacent non-tumor tissue
and truly healthy pancreatic tissue, highlighting the need for
future validation using appropriate healthy controls. While our
sample size is adequate for an initial proteomic investigation,
larger cohort studies will be necessary to confirm the clinical
relevance of our findings—particularly the inconsistent LACTB
expression patterns observed between datasets. Additionally,
although we identified candidate biomarkers and therapeutic
targets, functional studies are required to elucidate their
precise roles in PC biology. Our study focused primarily on
protein expression levels, and future research should incor-
porate analyses of post-translational modifications and PPIs to
provide a more comprehensive view of the PC proteome [45].
We also recognize that intratumoral heterogeneity was not
addressed in our analysis, which could affect proteomic
profiles. Future studies should explore the mechanistic roles
of UPP1 and AHSA1 in PC using laboratory and animal models.
Furthermore, integrating proteomic data with gene expression
and small molecule research will be essential to gaining a deeper
understanding of pancreatic cancer biology.

Conclusion
In conclusion, our comprehensive proteomic analysis offers
novel insights into the molecular landscape of PC progression,
marking a significant advancement in the field. The identifi-
cation of UPP1 and AHSA1 as key contributors highlights new
opportunities for biomarker discovery and therapeutic devel-
opment. These findings not only deepen the current under-
standing of PC proteomics but also lay a strong foundation for
future research.
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