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ABSTRACT 

Prostate cancer (PCa) remains a significant global health challenge, representing the 

most common solid tumor in men and the fifth leading cause of cancer-related death. 

Despite therapeutic advances, achieving a definitive cure remains difficult. Early 

diagnosis and personalized treatment strategies are crucial for improving patient 

outcomes. Programmed cell death—particularly PANoptosis, an inflammatory pathway 

that integrates pyroptosis, apoptosis, and necroptosis—has emerged as a promising 

therapeutic target in oncology.In this study, individuals with PCa were categorized into 

PANoptosis-high and PANoptosis-low subgroups based on the expression levels of 45 

PANoptosis-related genes. Differential gene expression analysis and subsequent 

enrichment analyses were conducted to explore the biological pathways associated with 

each subgroup. A four-gene risk signature (CASP7, ADAR, DNM1L, and NAIP) was 

identified, showing strong predictive value for overall survival (OS) in both training 

and validation cohorts. This signature was independently associated with OS and 

showed meaningful correlations with the tumor microenvironment, particularly 

immune cell infiltration and immunotherapy responsiveness. These findings suggest 

that the PANoptosis-related gene signature may serve as a valuable prognostic 

biomarker and inform immunotherapeutic strategies in PCa management. 

Keywords: Gene risk signature; Prostate cancer; PCa; Programmed cell death. 
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INTRODUCTION 

Prostate cancer (PCa) is recognized as the most prevalent solid tumor among men and 

stands as the fifth leading contributor to cancer-related mortality on a global scale, 

representing a major public health concern. Genetic predisposition and environmental 

exposures influence the likelihood of developing PCa, with factors such as advanced 

age and familial history serving pivotal functions [1-3]. Patients frequently exhibit 

nonspecific clinical manifestations, including reduced urine flow, urgency, increased 

nocturia, and a sensation of incomplete bladder emptying, which often result in delayed 

diagnosis and elevated mortality rates [4, 5]. Although substantial progress has been 

made in radiotherapy, targeted therapies, and immunotherapy, attaining a definitive cure 

continues to present significant challenges. The early identification of individuals at an 

elevated risk of recurrence, coupled with prompt therapeutic intervention, can extend 

survival and enhance quality of life. Thus, developing reliable prognostic biomarkers 

to facilitate precision medicine, particularly in guiding personalized chemotherapy and 

immunotherapeutic strategies, remains imperative. 

Programmed cell death, encompassing pyroptosis, apoptosis, and necroptosis, is 

fundamental in preserving homeostasis and influencing disease progression. The 

emergence of PANoptosis, an inflammatory programmed cell death pathway 

orchestrated by the PANoptosome complex, is distinguished by its integration of 

pyroptotic, apoptotic, and/or necroptotic features [6-10]. This phenomenon has been 

associated with a spectrum of pathological conditions and has garnered substantial 

attention in cancer research. Evidence indicates that PANoptosis serves a function in 

multiple cancer-related biological processes, including tumorigenesis and resistance to 

chemotherapy in colorectal cancer, as well as modulating the response to 

immunotherapy in gastric cancer [11-16]. Prior studies have demonstrated that the 

combination of TNF-α and IFN-γ exhibits efficacy in targeting various tumor cell types, 

underscoring its potential clinical applications. The cooperative interaction between 

TNF-α and IFN-γ has been shown to activate multiple signal transduction pathways, 

including GSDMD, GSDME, caspase-8, and MLKL. The activation of PANoptosis in 

tumor cells via this mechanism has been recognized as a pivotal process in suppressing 
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tumor initiation and restricting tumor progression, presenting opportunities for targeted 

therapeutic interventions [17-19]. Nevertheless, PANoptosis does not exclusively exert 

anti-tumor effects; in certain contexts, it may contribute to tumor progression. For 

instance, elevated caspase-8 levels within the nuclei of tumor cells have been reported 

to inhibit intrinsic apoptotic pathways while simultaneously promoting mitotic activity, 

thereby facilitating tumor development. Conversely, caspase-8 has also been identified 

as a downstream effector of granzyme, particularly facilitating GSDME cleavage and 

triggering pyroptosis, which enhances anti-tumor immune responses and impedes 

tumor proliferation [20]. Thus, further investigation into the function of PANoptosis in 

tumor biology holds substantial promise for clinical advancements. 

This study is designed to elucidate the fundamental molecular mechanisms underlying 

PANoptosis-related genes (PRGs) in PCa. A systematic analysis of their expression 

patterns will be executed utilizing data from The Cancer Genome Atlas (TCGA) and 

Gene Expression Omnibus (GEO) datasets to identify PRGs that correlate with PCa 

prognosis. Through the development of prognostic models, insights into the tumor 

microenvironment (TME) status will be explored, along with predictions regarding 

patient responsiveness to immunotherapy. The findings are expected to assist in 

discovering novel prognostic biomarkers and treatment targets for PCa. 

METHODS AND MATERIALS 

Data sources 

The datasets and samples related to PCa utilized in this study were acquired from 

multiple publicly available repositories. For the training cohort, RNA-seq data from 

544 PCa patients were retrieved from the TCGA database (accessible at 

https://portal.gdc.cancer.gov/). The raw read counts underwent conversion into 

transcripts per kilobase million values. Furthermore, DNA methylation profiles and 

genetic mutation data were obtained from the cBioPortal. Information on 

clinicopathological characteristics and overall survival (OS) was accessed via the 

UCSC Xena browser (https://xenabrowser.net/datapages/). 

An external validation set was constructed utilizing the gene expression profiling 
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dataset GSE70770, which comprises 203 PCa samples along with their corresponding 

clinical data. This dataset was acquired from the GEO database (accession number: 

GSE70770; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70770) [21, 22]. 

The microarray data obtained from GSE70770 underwent log2 normalization. 

Collection of PANoptosis-related genes and development of protein-protein 

interaction (PPI) network 

The profiles of PRGs (Table S1) were obtained from previously published studies [23, 

24]. To investigate the interactions among PANoptosis-related genes, the STRING 

database (https://cn.string-db.org/) was employed for PPI network analysis [25]. 

Consensus clustering 

To classify molecular subtypes associated with PANoptosis-related genes, unsupervised 

consensus clustering was conducted using the “ConsensusClusterPlus” package in R 

[26]. This analysis was performed utilizing the expression profiles of these genes in 

PCa specimens. To identify the most suitable number of clusters, various cluster sizes 

ranging from k = 2 to k = 10 were assessed, with the consensus clustering procedure 

repeated 1,000 times to enhance result stability and accuracy. The optimal clustering 

parameter was systematically evaluated using the cumulative distribution function 

(CDF) curve, the consensus matrix, and a consistency score exceeding 0.9. Additionally, 

the “pheatmap” function in R was applied to depict the clustering outcomes in a 

heatmap format. 

Identification of differentially expressed genes (DEGs) 

To identify DEGs in the TCGA cohort, patients were split into two cohorts based on 

PRG expression levels: PANoptosis-high and PANoptosis-low. Differential gene 

expression analysis between these cohorts was executed utilizing the “DESeq2” 

package in R software (version 4.0.2) [27]. Genes exhibiting an adjusted P-value of < 

0.05 and an absolute log2 fold change exceeding 1 were regarded as markedly 

differentially expressed. To minimize false-positive results, adjusted P-values were 

applied, ensuring a more reliable selection of DEGs. 

Enrichment analysis 

To explore the biological functions of DEGs identified between the PRGs-high and 

PRGs-low cohorts, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
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Genomes (KEGG) enrichment analyses were executed [28, 29]. The “clusterProfiler” 

package in R assessed GO terms and KEGG pathways [30]. GO annotations 

encompassed molecular functions, biological processes, and cellular components, 

while KEGG enrichment analysis aimed to elucidate higher-level insights into gene 

function and signaling pathways. The GO and KEGG pathway examinations were 

executed utilizing corrected P-values < 0.05 as the cutoff for statistical significance. 

Additionally, Gene Set Enrichment Analysis (GSEA) was executed employing GSEA 

software (http://www.broadinstitute.org/gsea/index.jsp), with a focus on the Molecular 

Signatures Database collection, specifically c5.go.bp.v2023.2.Hs.symbols.gmt [31]. 

Tumor immune analysis 

The CIBERSORT algorithm (https://cibersort.stanford.edu/) was employed to evaluate 

the composition of the tumor immune microenvironment. Expression data from PCa 

samples were input into CIBERSORT, and the algorithm was executed with 1,000 

permutations to compute the comparative distributions of 22 distinct immune cell types 

[32]. The distributions of these immune cell populations in the PRGs-high and PRGs-

low subgroups were determined and represented as a landscape map. Subsequently, the 

ESTIMATE algorithm was applied to further characterize the TME by calculating 

tumor purity and the immune score, facilitating a systematic pan-cancer assessment of 

tumor purity [33]. Furthermore, the Tumor Immune Dysfunction and Exclusion (TIDE) 

algorithm was applied to generate TIDE scores and predict responses to immunotherapy 

[34]. 

Somatic mutation analysis 

To investigate somatic mutations in PCa samples, mutation data in “maf” format were 

acquired from the TCGA Genomic Data Commons Data Portal. The “maftools” 

package in R software generated waterfall plots, comprehensively depicting the 

mutation landscape [35]. 

Survival analysis 

Kaplan-Meier (KM) survival curves were constructed utilizing the survival and 

survminer packages in R to visually compare survival distributions among different 

patient cohorts. Log-rank tests were applied to evaluate variations in survival 
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distributions between these cohorts. A p-value below 0.05 was regarded as statistically 

significant. Univariate Cox proportional hazards regression analysis was conducted to 

examine the relationship between risk scores and OS status, with variables displaying 

a p-value under 0.05 deemed significant and selected for multivariate analysis. To 

determine whether the variables identified in the univariate analysis remained 

significant after adjusting for possible confounders, a subsequent multivariate Cox 

proportional hazards regression model was conducted. 

Screening of prognosis-related signatures 

Prognosis-related PRGs were ascertained through univariate Cox regression analysis. 

Statistically significant genes were selected as candidate inputs for further modeling. 

Subsequently, Lasso Cox regression analysis was executed utilizing the ‘glmnet’ 

package in R to compute precise coefficient values. Based on these selected genes, a 

multivariate Cox model was developed [36]. 

Cell culture and transient transfection 

The cell lines RWPE-1, PC-3M, 22RV1, C4-2, DU145, and PC-3 were procured from 

Beijing Bena Biotechnology Co. (Beijing, China). These cells were kept in a DMEM/F-

12 medium comprising 10% FBS (Gibco). Transfection of the negative control (NC) 

and ADAR-targeting siRNA (Sagon, China) was performed using Lipofectamine 2000 

(Invitrogen, Thermo Fisher, USA). 

Quantitative real-time polymerase chain reaction (qRT-PCR) 

Total RNA isolation was executed utilizing TRIzol reagent (Thermo Fisher, USA). 

Real-time PCR analysis was executed employing FastStart Universal SYBR Green 

Master on RNA specimens (2 μg) via the LightCycler 480 PCR System (Roche, USA). 

The amplification mixture (20 μl) contained cDNA as a template, comprising 2 μl of 

cDNA sample, 10 μl of PCR solution, 0.5 μl of both forward and reverse primers, plus 

the required amount of water. The thermal cycling protocol involved initial denaturation 

at 95 °C for 30 s, succeeded by 45 rounds of 94 °C for 15 s, 56 °C for 30 s, and 72 °C 

for 20 s. Triple independent replicates were executed for each specimen. The threshold 

cycle (CT) values were determined and standardized to GAPDH expression per sample, 

applying the 2-ΔΔCT methodology. The relative mRNA levels were subsequently 
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evaluated against normal tissue controls. The primer sequences employed for target 

genes are listed below: 

Determination of 5-ethynyl-2′-deoxyuridine (EdU) 

The EdU assay employed the BeyoClick™ EdU Cell Proliferation Kit with Alexa Fluor 

594 (Biotek, Shanghai, China). Following PBS rinsing, cells underwent EdU solution 

treatment for 2 h, after which nuclear staining was performed using DAPI solution. 

Subsequently, after additional washing steps, the specimens were examined under an 

inverted microscope (Olympus). 

Drug treatment 

Docetaxel was procured from MedChemExpress (MCE, HY-B0011), dissolved in 

DMSO, and subsequently introduced into the medium at the specified concentration. 

Cell viability 

Cell viability was assessed utilizing the Cell Counting Kit-8 assay (Beyotime, China) 

per the supplier’s protocols. Cells subjected to various treatments were placed into 96-

well plates at 1×10³ cells per well. The CCK-8 solution was introduced at the designated 

time points. After a 2-hour incubation at 37 °C, the optical density at 450 nm for each 

well was ascertained utilizing a microplate reader (BioTeK, USA). 

Immunofluorescence 

The medium was procured from PC-3M and 22RV1 cell lines originating from both the 

si-NC and si-ADAR cohorts. Following high-speed centrifugation, the supernatants 

were collected to prepare the conditioned medium. Subsequently, the conditioned 

medium was co-cultured with THP-1 (Bena Biotechnology, China)-induced 

macrophages to investigate the regulatory influence of PC-3M and 22RV1 on 

macrophage polarization before and after ADAR knockdown. 

Following a 12-hour co-culture of macrophages with the conditioned medium, fixation 

was performed using paraformaldehyde for 10 min, succeeded by antigenic blocking 

with QuickBlock™ solution (Beyotime, P0220). Subsequently, incubation was 

conducted overnight at 4 °C with the designated primary antibodies: CD86 Polyclonal 

antibody (Proteintech, 13395-1-AP) and CD206 Monoclonal antibody (Proteintech, 

60143-1-Ig). After incubation of the primary antibody for 2 h at room temperature with 

the corresponding fluorescent secondary antibody, immunofluorescence images were 
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captured using a Leica DM2500 microscope. 

Statistical analysis 

All statistical analyses were performed utilizing R software (version 4.3.3) and 

GraphPad Prism 8. For comparisons between two cohorts with a normally distributed 

variable, an unpaired Student’s t-test was applied to ascertain statistical differences. 

When the variable did not conform to a normal distribution, the Mann-Whitney U test 

was applied to assess statistical significance between the two cohorts. In multi-group 

comparisons, parametric methods (e.g., one-way ANOVA) or non-parametric 

approaches (e.g., Kruskal-Wallis test) were utilized for analysis. Additionally, KM 

survival analysis was carried out to investigate the OS variations between high-risk and 

low-risk cohorts, utilizing log-rank tests for survival distribution assessment. 

Additionally, the ROC curve was constructed, and the AUC metric was calculated to 

evaluate the risk score’s predictive performance. Statistical significance was established 

at p < 0.05. 

RESULTS 

PANoptosis-related subtypes clustering 

A total of 45 PRGs were identified based on previous studies. A PPI network analysis 

was conducted utilizing the STRING database to uncover the interconnections among 

these genes (Figure 1A). Additionally, the distribution profiles of these genes were 

examined in both normal and PCa tissues. The findings indicated that most PRGs, 

including BAX, NFS1, GSDMA, CDK1, GSDMB, DIABLO, and CASP8, exhibited 

significant upregulation in PCa samples (Figure 1B). Furthermore, PANoptosis-

associated clusters in PCa were identified through consensus clustering. By 

implementing k-means clustering on the TCGA cohort, two clusters with distinct PRG 

expression patterns were distinguished (Figures 1D, E). Notably, cluster C2 

demonstrated elevated PRG expression levels, classifying it as the PANoptosis-high 

subtype, whereas cluster C1 was characterized by lower expression levels, defining it 

as the PANoptosis-low subtype (Figure 1F). Survival analysis revealed notable 

differences in clinical outcomes between these subtypes, with the PANoptosis-low 
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subtype being linked to an unfavorable prognosis, whereas the PANoptosis-high 

subtype exhibited better clinical results (Figure 1G). 

DEGs and enriched pathways in PANoptosis subtypes 

Considering that the PANoptosis-high subtype was linked to favorable clinical 

outcomes, whereas the PANoptosis-low subtype was associated with a unfavorable 

prognosis, an investigation was conducted to identify key DEGs and signaling 

pathways in each subtype to elucidate the molecular mechanisms influencing prognosis. 

The analysis identified 746 DEGs (Figures 2A, B), encompassing 617 upregulated and 

129 downregulated genes. 

GO enrichment analysis demonstrated that elevated genes within the PANoptosis-high 

subtype were predominantly involved in immune-related biological processes, 

encompassing cytokine production enhancement, lymphocyte differentiation, 

leukocyte-mediated immunity, and immune response-regulating signaling pathways. 

Similarly, KEGG pathway enrichment examination suggested that these elevated genes 

were markedly associated with immune activity pathways, encompassing cytokine-

cytokine receptor interaction, viral protein interaction with cytokine and cytokine 

receptors, and chemokine signaling (Figure 2C). Collectively, these findings suggest 

that the PANoptosis-high subtype is defined by an immune-active microenvironment, 

which may contribute to its more favorable clinical outcomes. To examine the activated 

signaling cascades within the PANoptosis-high subgroup, GSEA was conducted to 

compare the PANoptosis-high and PANoptosis-low cohorts. This analysis identified 

differential enrichment of gene sets linked to immune pathways, including granulocyte 

chemotaxis and the adaptive immune response (Figure 2D). 

Somatic mutations and TME in PANoptosis subtypes 

Distinct somatic mutation profiles were identified across the subtypes (Figures 3A, B). 

Although TP53, TTN, SPOP, MUC16, and SYNE1 emerged as the genes with the 

highest mutation rates, their mutation frequencies differed between subtypes. Notably, 

the PANoptosis-high subtype demonstrated a higher prevalence of TP53 and TTN 

mutations, comprising 14% and 11% of total mutations, respectively, in contrast to 9% 
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and 10% observed in the PANoptosis-low subtype. Growing research indicates that 

PANoptosis is vital in eliciting anti-tumor immune responses. This investigation 

analyzed the TME configuration concerning PANoptosis-high and PANoptosis-low 

classifications. The analysis revealed that immune scores exhibited markedly elevated 

levels, while tumor purity showed notably reduced levels in the PANoptosis-high 

category relative to the PANoptosis-low cohort (Figure 4A). The investigation further 

explored variations in immune cell infiltration across 22 immune cell populations 

between these classifications utilizing the CIBERSORT methodology combined with 

the LM22 signature matrix. The outcomes procured from examining 544 PCa cases 

within the TCGA database are depicted in Figure 4B. Notably, patients classified under 

the PANoptosis-high subtype demonstrated a substantially increased presence of 

memory B cells, resting dendritic cells, M1 macrophages, activated mast cells, 

neutrophils, activated memory CD4+ T cells, resting memory CD4+ T cells, CD8+ T 

cells, and γδ T cells (Figure 4C). Furthermore, all immune checkpoints exhibited 

upregulation in the PANoptosis-high subtype, whereas a contrasting trend was detected 

in the PANoptosis-low subtype (Figure 4D). This finding suggests that the PANoptosis-

high subtype is linked to an immune-hot phenotype, while the PANoptosis-low subtype 

corresponds to an immune-cold phenotype. 

Development and verification of the PANoptosis risk signature 

A prognostic model was developed based on PRGs. In the Cox univariate analysis, four 

PRGs were identified as being markedly linked to the OS of patients (Figure 5A). 

Moreover, these four PRGs were selected and validated for inclusion in the prediction 

model using LASSO regression analysis (Figure 5B). The risk score model was 

formulated using the following equation: Risk score = (0.9075)*CASP7 + 

(0.0645)*ADAR + (0.6644)*DNM1L + (1.1522)*NAIP. Additionally, the correlation 

between survival status and risk score was investigated. These observations indicated 

that the proportion of surviving patients in the low-risk cohort was markedly elevated 

versus the high-risk cohort (Figure 5C). The prognostic relevance of this risk profile in 

PCa was further assessed through KM analysis (Figure 5D). Within the TCGA cohort, 
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a high-risk score was linked to poorer OS, with these outcomes being validated in the 

GEO dataset (Figure 5E). 

Connection between PANoptosis risk signature and TME 

The TIDE tool was employed to assess the predictive potential of the PANoptosis risk 

signature in determining the clinical efficacy of immunotherapy. The findings indicated 

that patients classified in the immunotherapy non-response cohort exhibited higher 

PANoptosis risk scores, suggesting that those with lower risk scores might derive 

greater benefit from immunotherapy (Figure 6A). Considering PANoptosis’s crucial 

immunological function in anti-tumor immune responses, an in-depth analysis was 

executed to investigate the association between the PANoptosis risk score and the TME. 

The outcomes demonstrated that an elevated risk score was negatively associated with 

resting dendritic cells (Figure 6B). Additionally, in the GEO cohort, a negative 

correlation was observed between an increased risk score and both Macrophages M1 

and Macrophages M2 (Figure 6C). Univariate and multivariate Cox analyses were 

executed to assess the independent prognostic significance of the PANoptosis risk 

signature. The univariate Cox analysis identified a high PANoptosis risk score as 

markedly linked to diminished OS (Figure 6D). Moreover, multivariate Cox analysis 

confirmed the PANoptosis risk score’s capability to function as an independent 

prognostic factor for individuals with PCa (Figure 6E). 

ADAR promotes PCa progression in vitro 

To validate the bioinformatics model, CASP7, ADAR, DNM1L, and NAIP transcript 

levels were analyzed in PCa cell lines. Compared to RWPE-1, transcripts of CASP7, 

ADAR, DNM1L, and NAIP exhibited upregulation in PC-3M and 22RV1, with ADAR 

demonstrating the most pronounced increase (Figure 7A-D). Furthermore, ADAR 

transcript levels in RWPE-1 were evaluated against those in C4-2, DU145, and PC-3. 

ADAR was markedly upregulated in PCa cell lines C4-2, DU145, and PC-3, indicating 

that ADAR transcript upregulation is a widespread phenomenon in PCa cell lines 

(Figure 7E). 
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For this reason, ADAR was selected for further investigation. The inhibitory efficiency 

of small interfering RNAs targeting ADAR was validated in PC-3M and 22RV1. Both 

si-ADAR-1 and si-ADAR-2 suppressed ADAR transcription in these cell lines, with si-

ADAR-2 exhibiting the most pronounced inhibitory effect. Consequently, si-ADAR-2 

(si-ADAR) was chosen for subsequent experiments (Figure 7F-G). A substantial 

reduction in cell viability was observed after ADAR suppression in PC-3M and 22RV1 

cell lines. Additionally, the IC50 values of PC-3M and 22RV1 treated with Docetaxel 

in vitro were markedly decreased (Figure 7H-K). 

 

The proliferative capacity of PC-3M and 22RV1 cell lines was markedly reduced 

following ADAR knockdown, as indicated by a decline in the percentage of EdU-

positive cells and a reduction in clone formation (Figure 8A-D). Given that EMT serves 

a pivotal function in cancer metastasis, the transcription of EMT-related markers in PC-

3M and 22RV1 was examined before and after ADAR knockdown. The results 

demonstrated that CDH1 expression was upregulated, whereas CDH2 and VIM were 

downregulated following ADAR silencing (Figure 8E-F), suggesting that ADAR 

promotes EMT in PCa cell lines. Additionally, the impact of ADAR on cellular 

apoptosis and pyroptosis was assessed, revealing that the transcriptional upregulation 

of BAX, CASP1, and GSDMD following ADAR knockdown reflects its inhibitory 

effect on programmed cell death (Figure 8G-H). 

Finally, the regulatory influence of ADAR on the immune microenvironment was 

examined through its impact on macrophages, which tended to polarize toward the M1 

phenotype following ADAR knockdown. This observation suggests that ADAR 

contributes to establishing an inflammation-suppressive TME (Figure 9A-D). 

DISCUSSION 

Despite notable advancements in diagnostic and therapeutic methodologies, PCa 

continues to be a predominant contributor to cancer-related mortality in men, with 

recurrence occurring in up to 40% of individuals diagnosed with localized PCa within 

a decade [37-39]. Androgen deprivation therapy has long been recognized as a 

conventional approach for PCa treatment. However, a considerable proportion of 
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patients with advanced-stage disease inevitably progress to castration-resistant PCa 

[40]. In recent years, innovative treatment approaches, including immunotherapy, have 

been investigated to potentiate the immune system’s capacity to eradicate malignant 

cells [41-44]. Nevertheless, the effectiveness of immunotherapy in managing PCa, as 

well as its implications for patient prognosis, remains a topic of ongoing debate. Certain 

studies indicate that the intricate TME intrinsic to PCa fosters an inherent resistance to 

immunotherapeutic interventions, thereby complicating the identification of efficacious 

treatment strategies [45-47]. Consequently, delineating subpopulations that benefit 

from PCa immunotherapy and establishing biomarkers predictive of patient prognosis 

are imperative steps toward optimizing therapeutic outcomes in PCa management. 

 

Recent investigations have highlighted the essential role of PRGs in PCa [48-50]. These 

genes govern the assembly of the PANoptosome complex, which integrates the 

molecular mechanisms underlying pyroptosis, necroptosis, and apoptosis [7]. This 

unified pathway, termed PANoptosis, is pivotal in modulating tumor cell death and 

immune responses in PCa. Aberrant expression and notable mutations in PRGs have 

been identified across multiple cancer types, with numerous PRGs functioning as tumor 

risk determinants in diverse malignancies. These observations indicate that PANoptosis 

serves a crucial function in cancer development, and its induction could potentially 

suppress both tumor initiation and progression.[17] For instance, research performed 

by Jianzhong et al. demonstrates that modifications in PRG expression can substantially 

alter the immune microenvironment and therapeutic responsiveness in PCa [51]. 

Similarly, research led by Yanmei Wang and her team identified a notable connection 

between PANoptosis and clear cell renal cell carcinoma, further establishing a 

prognostic model utilizing three specific miRNAs to predict survival outcomes in 

cancer patients.[52] Within the scope of PRAD research, the intricate interactions and 

regulatory networks linked to PANoptosis have been explored, encompassing gene 

mutations, transcriptional alterations, methylation modifications, and their correlations 

with clinical characteristics.[17] Hence, this investigation sought to understand 

PANoptosis functionality in PCa and construct a prognostic signature founded on PRGs. 
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In this study, a total of 45 PRGs were compiled from previously conducted relevant 

research. Based on the expression profiles of these PRGs, PCa patients were 

categorized into two distinct PANoptosis subgroups through consensus clustering. 

Subsequently, differential gene expression analysis and functional enrichment analysis 

were executed, revealing that these genes participate in immune-associated pathways, 

encompassing the PI3K-Akt and TNF signaling pathways. To further delineate immune 

disparities between the PANoptosis-high and PANoptosis-low subgroups and to deepen 

the understanding of the TME’s role in disease advancement and treatment outcomes, 

immune infiltration and TIDE analyses were conducted. The findings indicate a 

substantial divergence in immune phenotypes: the PANoptosis-high subgroup exhibits 

an immune-hot phenotype, whereas the PANoptosis-low subgroup presents an 

immune-cold phenotype. In individuals classified within the PANoptosis-high 

subgroup, an increased proportion of resting dendritic cells, M1 macrophages, and other 

immune cells was observed. The TME has been shown to have a significant impact on 

tumors.[53-56] Tumor-associated macrophages (TAMs) constitute a major immune cell 

population within the inflammatory TME. As heterogeneous macrophages, TAMs 

exhibit both pro-inflammatory (M1) and immunosuppressive (M2) functionalities [57]. 

M1 macrophages are pivotal in the PCa TME, characterized by their ability to secrete 

abundant pro-inflammatory cytokines and chemokines. These cells demonstrate an 

enhanced capacity for antigen presentation and complement-mediated phagocytosis, 

primarily functioning to eliminate pathogens and initiate Th1 immune responses while 

also exerting direct cytotoxic effects on both microorganisms and tumor cells. 

Conversely, M2 macrophages are commonly implicated in tumor immune evasion, 

angiogenesis, tumor proliferation, and metastasis [58]. The polarization of 

macrophages is a highly intricate biological process meticulously regulated by multiple 

factors, with its polarization state exerting a profound influence on inflammatory 

responses and tumor development [58]. Within the complex TME of PCa, various 

chemokines modulate macrophage polarization. For instance, CCL2 has been shown to 

enhance LPS-induced IL-10 production, while CCL2 inhibition stimulates the 
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manifestation of genes and cytokines associated with M1 polarization while 

concurrently suppressing M2 markers [59]. Additionally, research by Cristina I. Caescu 

and colleagues ascertained miR-21 as a molecule activated by the Y721 site (pTyr-721) 

of colony-stimulating factor-1 (CSF-1), which facilitates the suppression of the M1 

phenotype while promoting the M2 phenotype [60]. Another critical regulatory factor, 

miRNA-155, exhibits significant elevation during M1 macrophage polarization and a 

notable reduction in M2 polarization. Enhanced expression of miRNA-155 promotes 

the polarization of M2 macrophages through the miR-155/SHIP1 pathway, 

consequently expediting tumor cell invasion, proliferation, and migration [61, 62]. 

Based on these findings, it is postulated that M1 macrophage infiltration may provide 

survival advantages for patients exhibiting high PANoptosis subtypes. Further 

investigation into the regulatory mechanisms governing macrophage polarization in 

PCa could yield novel insights and therapeutic strategies. Subsequent survival analysis 

identified four PRGs—CASP7, ADAR, DNM1L, and NAIP—as being markedly 

associated with PCa prognosis. Cysteine aspartate-specific protease (Caspase) serves a 

crucial function in apoptosis and inflammatory regulation, with CASP7 (Caspase-7) 

being a key protease modulating these processes [63, 64]. Research by So Hee Kim et 

al. demonstrated that OTUD6A functions as a deubiquitinase by eliminating the K48-

linked polyubiquitin chain from nucleolin and the K63-linked polyubiquitin chain from 

Caspase-7. Both nucleolin and Caspase-7, identified as OTUD6A substrates, have been 

proposed as potential therapeutic targets in cancer treatment [65]. ADAR is a core 

enzyme involved in RNA editing [66], with previous research indicating a strong 

correlation between ADAR dysregulation and tumor onset and progression. Julia 

Ramírez-Moya et al. found that ADAR promotes thyroid cancer development through 

RNA editing of CDK13 [67]. Similarly, Hao Yu et al. reported that ADAR is markedly 

upregulated in bladder cancer tissues and shows a strong correlation with unfavorable 

patient outcomes. Furthermore, ADAR has been shown to markedly enhance the 

proliferation, migration, and invasion of bladder cancer cells [68]. DNM1L, a 

mitochondrial fission-associated protein, has emerged as a promising therapeutic 

candidate across various malignancies [69]. Research by Akane Inoue Yamauchi et al. 
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revealed that the absence of DNM1L increases apoptosis in colon cancer cells [70]. 

Additionally, Qi Xie and colleagues discovered that DNM1L depletion induces 

apoptosis in malignant brain tumor-initiating cells and markedly inhibits tumor growth 

[71]. NAIP, which belongs to the IAP family, is expressed in mammalian cells and can 

inhibit apoptosis triggered by diverse signals [72]. Moreover, previous studies have 

suggested that NAIP mediates innate immune inflammatory responses by activating 

caspase-1, 4, and 5 [73]. The study conducted by Yuk Kwan Chen et al. demonstrated 

that NAIP alleles undergo methylation in normal oral mucosal tissue, potentially 

representing an early oncogenic event [74]. Additionally, Jaewon Choi and his research 

team observed that NAIP expression is absent in normal breast tissue but is markedly 

elevated in breast cancer [75]. Although these genes have been extensively associated 

with the pathogenesis and advancement of various malignancies, their specific 

mechanistic roles in PCa remain to be fully elucidated. Ultimately, prognosis-associated 

signatures derived from PRGs exhibited strong predictive performance in OS across 

training, internal validation, and external validation cohorts. 

 

Despite the promising outcomes observed, certain limitations inherent to this research 

must be acknowledged. Firstly, while PRG-based prognostic features have 

demonstrated strong predictive efficacy across both internal and external cohorts, the 

study predominantly relies on retrospective data, which may introduce potential biases. 

To confirm the clinical applicability and robustness of the proposed risk model, 

prospective clinical trials remain essential. Secondly, although functional enrichment 

analysis and immune infiltration assessments offer valuable insights into the TME and 

the immune disparities between PANoptosis-high and PANoptosis-low subgroups, the 

precise molecular mechanisms underlying these differences have yet to be fully 

elucidated. Addressing these limitations in future investigations will further reinforce 

the clinical significance of PRG and its potential role in informing PCa treatment 

strategies. 

CONCLUSION 

In conclusion, a practical PANoptosis-risk algorithm based on four PRGs was 
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developed and validated, with the proposed signature serving as a potential prognostic 

model for PCa. Furthermore, this study unveiled novel perspectives regarding the 

connection between the PRG score and the immune microenvironment, offering 

essential perspectives for the application of immunotherapy in PCa patients. 
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TABLES AND FIGURES WITH LEGENDS 

Table 1.  

 

Gene Target sequences (5’-3’) 

si-ADAR-1 CAGTAGTTTCCTGCTTAAGCAAA 

si-ADAR-2 CTGCGACTATCTCTTCAATGTGT 

 

Table 2. 

 

Gene Forward primer sequence (5’-3’) Reverse primer sequence (5’-3’) 
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CASP7 CGGAACAGACAAAGATGCCG

AG 

AGGCGGCATTTGTATGGTCCT

C 

ADAR TCCGTCTCCTGTCCAAAGAAG

G 

TTCTTGCTGGGAGCACTCACA

C 

DNM1

L 

GATGCCATAGTTGAAGTGGTG

AC 

CCACAAGCATCAGCAAAGTC

TGG 

NAIP CCGAACAGGAACTGCTTCTCA

C 

CCACAGACAGTTCTTTCAGGC

AC 

CDH1 GCCTCCTGAAAAGAGAGTGG

AAG 

TGGCAGTGTCTCTCCAAATCC

G 

CDH2 CCTCCAGAGTTTACTGCCATG

AC 

GTAGGATCTCCGCCACTGATT

C 

VIM AGGCAAAGCAGGAGTCCACT

GA 

ATCTGGCGTTCCAGGGACTCA

T 

BAX TCAGGATGCGTCCACCAAGAA

G 

TGTGTCCACGGCGGCAATCAT

C 

CASP1 GCTGAGGTTGACATCACAGGC

A 

TGCTGTCAGAGGTCTTGTGCT

C 

GSDM

D 

ATGAGGTGCCTCCACAACTTC

C 

CCAGTTCCTTGGAGATGGTCT

C 

GAPD

H 

GTCTCCTCTGACTTCAACAGC

G 

ACCACCCTGTTGCTGTAGCCA

A 
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Figure 1. ldentification of PANoptosis-associated subtypes. (A) The interactions 
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between proteins encoded by PANoptosis-associated genes; (B) The heatmap illustrates 

consensus clustering, presenting the expression profiles of 45 PANoptosis-associated 

genes in normal and PCa samples within the TCGA database; (C) Consensus clustering 

results (k = 2) displayed as a heatmap for 45 genes in PCa specimens; (E) Delta area 

plot for consensus clustering showing area changes under the CDF curve from k = 2 

through 6; (F) Expression distribution of 45 PRGs across diverse subtypes depicted in 

a heatmap, where red denotes elevated expression and blue indicates reduced 

expression; (G) OS analysis using KM curves comparing PANoptosis-high versus 

PANoptosis-low groups. *P < 0.05, **P < 0.01, ***P < 0.001, &****P < 0.0001. 
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Figure 2. ldentification of DEGs and associated signaling cascades across 

subgroups. (A) A volcano plot demonstrates DEG distribution, obtained through 

comparison between PANoptosis-high versus PANoptosis-low subtypes, utilizing 

thresholds of |log₂ Fold change| > 1 and p.adjust-value < 0.05 within the TCGA cohort; 
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(B) Expression patterns of DEGs among various subtypes are illustrated through a 

heatmap; (C) Pathway enrichment examination of KEGG and GO signals is shown via 

dot plot, where dot dimensions reflect gene quantities and color intensity indicates 

p.adjust-value; (D) Pathway distinction between PANoptosis-high and PANoptosis-low 

subtypes is revealed through GSEA evaluation. 
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Figure 3. Analysis of somatic alterations across distinct PANoptosis subtypes. (A, 

B) Graphical representation displaying the top ten genes with the highest mutation 

frequencies in PANoptosis-high (A) and PANoptosis-low (B) subtypes. 



 

30 
 

 

Figure 4. Immune landscape of PANoptosis-high and PANoptosis-low subtypes. (A) 

Violin plots depict the median and quartile estimations for each immune score, along 

with the tumor purity score; (B) Relative proportions of immune infiltration across 

subtypes; (C) Violin plots illustrate notable variations in immune cell composition 
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between subtypes; (D) Box plots display the differential expression of multiple immune 

checkpoints in PANoptosis-high and PANoptosis-low subtypes. *P < 0.05, **P < 0.01, 

***P < 0.001, &****P < 0.0001. 

 

Figure 5. Construction and validation of the PANoptosis risk signature. (A) The 
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prognostic value of PANoptosis-related genes concerning OS is assessed through 

univariate Cox analysis; (B) Lasso-Cox regression identifies four genes most closely 

linked to OS in the TCGA dataset; (C) The distribution of risk scores, patient survival 

status, and heatmaps representing the prognostic four-gene signature within the TCGA 

database; (D, E) KM analyses illustrate the prognostic relevance of the risk model in 

the TCGA and GSE70770 cohorts. 
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Figure 6. Association between the PANoptosis risk signature and the TME. (A, B) 

Scatter plots illustrate the correlation between the risk score and immune cell 

infiltration within the TCGA cohort (A), further validated in the GSE70770 cohort (B); 

(C) The box plot depicts the link between the PANoptosis risk score and 
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immunotherapy response; (D, E) Univariate and multivariate Cox analyses assess the 

independent prognostic significance of the PANoptosis risk signature in individuals 

with PCa. 

 

 

 

Figure 7. ADAR is upregulated in PCa cell lines. (A-D) The transcript levels of 

CASP7, ADAR, DNM1L, and NAIP were analyzed through qRT-PCR in RWPE-1, PC-

3M, and 22RV1 cell lines; (E) qRT-PCR was conducted to assess ADAR transcript 

levels in RWPE-1, C4-2, DU145, and PC-3 cell lines; (F-G) The knockdown efficiency 

of small interfering RNAs targeting ADAR in PC-3M and 22RV1 was evaluated by 

qRT-PCR; (H-I) Changes in PC-3M and 22RV1 cell viability before and after ADAR 

silencing were observed; (J-K) IC50 variations in PC-3M and 22RV1 following 

treatment with Docetaxel before and after ADAR knockdown. n=3/per cohort. 
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Figure 8. ADAR promotes PCa progression in vitro. (A-B) Variations in the 

proportion of EdU-positive cells in PC-3M and 22RV1 before and after ADAR 

knockdown; (C-D) Changes in clone formation numbers in PC-3M and 22RV1 before 

and after ADAR knockdown; (E-F) Expression alterations of CDH1, CDH2, and VIM 

in PC-3M and 22RV1 before and after ADAR knockdown; (G-H) Modifications in the 

expression of BAX, CASP1, and GSDMD in PC-3M and 22RV1 following ADAR 

knockdown. n=3/per cohort. 
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Figure 9. ADAR modulates macrophage polarization. (A-D) Changes in the surface 

expression levels of CD86 and CD206 in macrophages before and after ADAR 

knockdown. n=3/per cohort. 

 

Table S1. List of PANoptosis-related genes. 

 

 


