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R E S E A R C H A R T I C L E

Integrative PANoptosis gene profiling reveals prognostic
and therapeutic insights in prostate cancer
Yi Wang1,2#, Yiheng Du2#, Xizhi Wang2, Jiang Yu2, Qing Gu2, Guangquan Yuan2, Yifei Zhu2, Liyang Gu 2, and Jun Ouyang1∗

Prostate cancer (PCa) remains a significant global health challenge, representing the most common solid tumor in men and the fifth
leading cause of cancer-related death. Despite therapeutic advances, achieving a definitive cure remains difficult. Early diagnosis and
personalized treatment strategies are crucial for improving patient outcomes. Programmed cell death—particularly PANoptosis, an
inflammatory pathway that integrates pyroptosis, apoptosis, and necroptosis—has emerged as a promising therapeutic target in
oncology.In this study, individuals with PCa were categorized into PANoptosis-high and PANoptosis-low subgroups based on the
expression levels of 45 PANoptosis-related genes (PRGs). Differential gene expression analysis and subsequent enrichment analyses
were conducted to explore the biological pathways associated with each subgroup. A four-gene risk signature (CASP7, ADAR, DNM1L,
and NAIP) was identified, showing strong predictive value for overall survival (OS) in both training and validation cohorts. This
signature was independently associated with OS and showed meaningful correlations with the tumor microenvironment, particularly
immune cell infiltration and immunotherapy responsiveness. These findings suggest that the PRG signature may serve as a valuable
prognostic biomarker and inform immunotherapeutic strategies in PCa management.
Keywords: Gene risk signature, prostate cancer, PCa, programmed cell death.

Introduction
Prostate cancer (PCa) is recognized as the most prevalent solid
tumor among men and stands as the fifth leading contributor
to cancer-related mortality on a global scale, representing a
major public health concern. Genetic predisposition and envi-
ronmental exposures influence the likelihood of developing
PCa, with factors such as advanced age and familial history serv-
ing pivotal roles [1–3]. Patients frequently exhibit nonspecific
clinical manifestations, including reduced urine flow, urgency,
increased nocturia, and a sensation of incomplete bladder emp-
tying, which often result in delayed diagnosis and elevated
mortality rates [4, 5]. Although substantial progress has been
made in radiotherapy, targeted therapies, and immunother-
apy, attaining a definitive cure continues to present significant
challenges. The early identification of individuals at elevated
risk of recurrence, coupled with prompt therapeutic interven-
tion, can extend survival and enhance quality of life. Thus,
developing reliable prognostic biomarkers to facilitate preci-
sion medicine, particularly in guiding personalized chemother-
apy and immunotherapeutic strategies, remains imperative.

Programmed cell death, encompassing pyroptosis, apopto-
sis, and necroptosis, is fundamental to preserving homeosta-
sis and influencing disease progression. The emergence of
PANoptosis, an inflammatory programmed cell death pathway

orchestrated by the PANoptosome complex, is distinguished
by its integration of pyroptotic, apoptotic, and/or necrop-
totic features [6–10]. This phenomenon has been associated
with a spectrum of pathological conditions and has garnered
substantial attention in cancer research. Evidence indicates
that PANoptosis plays a role in multiple cancer-related bio-
logical processes, including tumorigenesis and resistance to
chemotherapy in colorectal cancer, as well as modulating the
response to immunotherapy in gastric cancer [11–16]. Prior
studies have demonstrated that the combination of TNF-α and
IFN-γ exhibits efficacy in targeting various tumor cell types,
underscoring its potential clinical applications. The cooperative
interaction between TNF-α and IFN-γ has been shown to acti-
vate multiple signal transduction pathways, including GSDMD,
GSDME, caspase-8, and MLKL. The activation of PANoptosis
in tumor cells via this mechanism has been recognized as a
pivotal process in suppressing tumor initiation and restricting
tumor progression, presenting opportunities for targeted ther-
apeutic interventions [17–19]. Nevertheless, PANoptosis does
not exclusively exert anti-tumor effects; in certain contexts,
it may contribute to tumor progression. For instance, ele-
vated caspase-8 levels within the nuclei of tumor cells have
been reported to inhibit intrinsic apoptotic pathways while
simultaneously promoting mitotic activity, thereby facilitating
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tumor development. Conversely, caspase-8 has also been iden-
tified as a downstream effector of granzyme, particularly
facilitating GSDME cleavage and triggering pyroptosis, which
enhances anti-tumor immune responses and impedes tumor
proliferation [20]. Thus, further investigation into the function
of PANoptosis in tumor biology holds substantial promise for
clinical advancements.

This study is designed to elucidate the fundamental molec-
ular mechanisms underlying PANoptosis-related genes (PRGs)
in PCa. A systematic analysis of their expression patterns will
be conducted using data from The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) datasets to identify PRGs
that correlate with PCa prognosis. Through the development of
prognostic models, insights into the tumor microenvironment
(TME) status will be explored, along with predictions regard-
ing patient responsiveness to immunotherapy. The findings are
expected to assist in discovering novel prognostic biomarkers
and treatment targets for PCa.

Methods and materials
Data sources
The datasets and samples related to PCa utilized in this study
were acquired from multiple publicly available repositories.
For the training cohort, RNA-seq data from 544 PCa patients
were retrieved from the TCGA database (accessible at https://
portal.gdc.cancer.gov/). The raw read counts were converted
into transcripts per kilobase million (TPM) values. Further-
more, DNA methylation profiles and genetic mutation data were
obtained from cBioPortal. Information on clinicopathological
characteristics and overall survival (OS) was accessed via the
UCSC Xena browser (https://xenabrowser.net/datapages/).

An external validation set was constructed using the gene
expression profiling dataset GSE70770, which comprises 203
PCa samples along with their corresponding clinical data. This
dataset was acquired from the GEO database (accession num-
ber: GSE70770; https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE70770) [21, 22]. The microarray data obtained from
GSE70770 were log2-normalized.

Collection of PRGs and development of protein–protein
interaction (PPI) network
The profiles of PRGs (Table S1) were obtained from previ-
ously published studies [23, 24]. To investigate the interactions
among PRGs, the STRING database (https://cn.string-db.org/)
was employed for PPI network analysis [25].

Consensus clustering
To classify molecular subtypes associated with PRGs, unsuper-
vised consensus clustering was conducted using the “Consen-
susClusterPlus” package in R [26]. This analysis was based on
the expression profiles of these genes in PCa specimens. To
determine the most appropriate number of clusters, various
cluster sizes ranging from k = 2 to k = 10 were evaluated,
with the consensus clustering procedure repeated 1000 times
to enhance result stability and accuracy. The optimal clustering
parameter was identified through systematic evaluation of the
cumulative distribution function (CDF) curve, the consensus

matrix, and a consistency score exceeding 0.9. Additionally, the
“pheatmap” function in R was used to visualize the clustering
results in heatmap format.

Identification of differentially expressed genes (DEGs)
To identify DEGs in the TCGA cohort, patients were divided into
two groups based on PRG expression levels: PANoptosis-high
and PANoptosis-low. Differential gene expression analysis
between these groups was performed using the “DESeq2” pack-
age in R (version 4.0.2) [27]. Genes with an adjusted P value
of < 0.05 and an absolute log2 fold change greater than 1 were
considered significantly differentially expressed. To reduce
false positives, adjusted P values were used to ensure more
reliable DEG selection.

Enrichment analysis
To explore the biological functions of DEGs identified between
the PRGs-high and PRGs-low cohorts, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analyses were performed [28, 29]. GO terms and KEGG
pathways were assessed using the “clusterProfiler” package
in R [30]. GO annotations encompassed molecular functions,
biological processes, and cellular components, while KEGG
enrichment analysis provided higher-level insights into gene
function and signaling pathways. GO and KEGG analyses were
conducted using corrected P values < 0.05 as the threshold
for statistical significance. Additionally, gene set enrichment
analysis (GSEA) was performed using the GSEA software
(http://www.broadinstitute.org/gsea/index.jsp), focusing on
the Molecular Signatures Database (MsigDB) collection, specif-
ically c5.go.bp.v2023.2.Hs.symbols.gmt [31].

Tumor immune analysis
The CIBERSORT algorithm (https://cibersort.stanford.edu/)
was employed to evaluate the composition of the tumor immune
microenvironment. Expression data from PCa samples were
input into CIBERSORT, and the algorithm was executed with
1000 permutations to estimate the relative proportions of
22 distinct immune cell types [32]. The distributions of these
immune cell populations in the PRGs-high and PRGs-low sub-
groups were determined and visualized as a landscape map.
Subsequently, the ESTIMATE algorithm was applied to further
characterize the TME by calculating tumor purity and immune
scores, enabling a systematic pan-cancer assessment of tumor
purity [33]. Furthermore, the tumor immune dysfunction and
exclusion (TIDE) algorithm was used to generate TIDE scores
and predict responses to immunotherapy [34].

Somatic mutation analysis
To investigate somatic mutations in PCa samples, mutation data
in “.maf” format were obtained from the TCGA Genomic Data
Commons Data Portal. The “maftools” package in R was used to
generate waterfall plots, providing a comprehensive depiction
of the mutation landscape [35].

Survival analysis
Kaplan–Meier (KM) survival curves were constructed using
the survival and survminer packages in R to visually compare

Wang et al.
PANoptosis genes predict PCa outcomes 2 www.biomolbiomed.com

https://www.biomolbiomed.com
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70770
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70770
https://cn.string-db.org/
http://www.broadinstitute.org/gsea/index.jsp
https://cibersort.stanford.edu/
https://www.biomolbiomed.com


Table 1. Gene-specific forward and reverse primer sequences (5′–3′)

Gene Forward primer sequence (5′-3′) Reverse primer sequence (5′-3′)

CASP7 CGGAACAGACAAAGATGCCGAG AGGCGGCATTTGTATGGTCCTC

ADAR TCCGTCTCCTGTCCAAAGAAGG TTCTTGCTGGGAGCACTCACAC

DNM1L GATGCCATAGTTGAAGTGGTGAC CCACAAGCATCAGCAAAGTCTGG

NAIP CCGAACAGGAACTGCTTCTCAC CCACAGACAGTTCTTTCAGGCAC

CDH1 GCCTCCTGAAAAGAGAGTGGAAG TGGCAGTGTCTCTCCAAATCCG

CDH2 CCTCCAGAGTTTACTGCCATGAC GTAGGATCTCCGCCACTGATTC

VIM AGGCAAAGCAGGAGTCCACTGA ATCTGGCGTTCCAGGGACTCAT

BAX TCAGGATGCGTCCACCAAGAAG TGTGTCCACGGCGGCAATCATC

CASP1 GCTGAGGTTGACATCACAGGCA TGCTGTCAGAGGTCTTGTGCTC

GSDMD ATGAGGTGCCTCCACAACTTCC CCAGTTCCTTGGAGATGGTCTC

GAPDH GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA

Abbreviations: CASP7: Caspase 7; ADAR: Adenosine deaminase acting on RNA; DNM1L: Dynamin 1 like; CDH1:
Cadherin 1; CDH2: Cadherin 2; VIM: Vimentin; BAX: Bcl-2 associated X protein; CASP1: Caspase 1; GSDMD:
Gasdermin D; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.

survival distributions among different patient cohorts.
Log-rank tests were applied to evaluate differences in survival
between these cohorts. A P value below 0.05 was considered
statistically significant. Univariate Cox proportional hazards
regression analysis was conducted to examine the relationship
between risk scores and OS. Variables with a P value < 0.05
were deemed significant and selected for multivariate analysis.
To determine whether these variables remained significant
after adjusting for potential confounders, a multivariate Cox
proportional hazards regression model was subsequently
performed.

Screening of prognosis-related signatures
Prognosis-related PRGs were identified through univariate Cox
regression analysis. Statistically significant genes were selected
as candidate inputs for further modeling. Subsequently, Lasso
Cox regression analysis was performed using the glmnet pack-
age in R to calculate precise coefficient values. Based on the
selected genes, a multivariate Cox model was developed [36].

Cell culture and transient transfection
The cell lines RWPE-1, PC-3M, 22RV1, C4-2, DU145, and PC-3
were obtained from Beijing Bena Biotechnology Co. (Beijing,
China). Cells were maintained in DMEM/F-12 medium sup-
plemented with 10% fetal bovine serum (FBS) (Gibco). Trans-
fection with either negative control (NC) or ADAR-targeting
siRNA (Sagon, China) was performed using Lipofectamine
2000 (Invitrogen, Thermo Fisher, USA) according to the manu-
facturer’s protocol.

Quantitative real-time polymerase chain reaction (qRT-PCR)
Total RNA was extracted using TRIzol reagent (Thermo Fisher,
USA). Real-time PCR analysis was conducted using the Fast-
Start Universal SYBR Green Master on 2 μg of RNA with the
LightCycler 480 PCR System (Roche, USA). Each 20 μL ampli-
fication reaction included 2 μL of cDNA template, 10 μL of PCR

master mix, 0.5 μL each of forward and reverse primers, and
nuclease-free water to volume. The thermal cycling conditions
were as follows: initial denaturation at 95 °C for 30 s, followed
by 45 cycles of 94 °C for 15 s, 56 °C for 30 s, and 72 °C for 20 s. Each
sample was tested in triplicate in three independent experi-
ments. Threshold cycle (CT) values were normalized to GAPDH
expression using the 2ΔΔCT method. Relative mRNA expression
levels were calculated in comparison to normal tissue controls.

The primer sequences used for target genes are listed
in Table 1.

Determination of 5-ethynyl-2′-deoxyuridine (EdU)
The EdU assay was conducted using the BeyoClick™ EdU
Cell Proliferation Kit with Alexa Fluor 594 (Biotek, Shanghai,
China). After PBS rinsing, cells were treated with EdU solution
for 2 h, followed by nuclear staining with DAPI. After additional
washing steps, specimens were examined under an inverted
microscope (Olympus).

Drug treatment
Docetaxel was obtained from MedChemExpress (MCE, HY-
B0011), dissolved in DMSO, and added to the culture medium
at the indicated concentration.

Cell viability
Cell viability was assessed using the Cell Counting Kit-8 (CCK-8;
Beyotime, China) according to the manufacturer’s protocol.
Treated cells were seeded into 96-well plates at a density of
1 × 103 cells per well. CCK-8 solution was added at the desig-
nated time points. After incubation for 2 h at 37 °C, the optical
density at 450 nm was measured using a microplate reader
(BioTek, USA).

Immunofluorescence
Conditioned medium was collected from PC-3M and 22RV1 cell
lines in both the si-NC and si-ADAR groups. After high-speed
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centrifugation, the supernatants were collected and co-cultured
with THP-1-derived macrophages (Bena Biotechnology, China)
to investigate the regulatory effects of ADAR knockdown on
macrophage polarization.

After a 12-h co-culture, macrophages were fixed with
paraformaldehyde for 10 min, followed by antigen blocking
using QuickBlock™ solution (Beyotime, P0220). Cells were
incubated overnight at 4 °C with primary antibodies: CD86
polyclonal antibody (Proteintech, 13395-1-AP) and CD206 mon-
oclonal antibody (Proteintech, 60143-1-Ig). The next day, after a
2-h incubation at room temperature with fluorescent secondary
antibodies, immunofluorescence images were captured using a
Leica DM2500 microscope.

Statistical analysis
All statistical analyses were conducted using R software
(version 4.3.3) and GraphPad Prism 8. For comparisons between
two cohorts with normally distributed variables, unpaired
Student’s t-tests were used. If the data did not follow a
normal distribution, the Mann–Whitney U test was applied.
For multi-group comparisons, either parametric methods
(e.g., one-way ANOVA) or non-parametric methods (e.g.,
Kruskal–Wallis test) were employed. KM survival analysis was
performed to examine OS differences between high-risk and
low-risk cohorts, with log-rank tests used to assess survival dis-
tribution. Receiver operating characteristic (ROC) curves were
generated, and area under the curve (AUC) values were calcu-
lated to evaluate the predictive performance of the risk score.

Results
PANoptosis-related subtypes clustering
A total of 45 PRGs were identified based on previous stud-
ies. A PPI network analysis was conducted utilizing the
STRING database to uncover the interconnections among these
genes (Figure 1A). Additionally, the distribution profiles of
these genes were examined in both normal and PCa tissues.
The findings indicated that most PRGs, including BAX, NFS1,
GSDMA, CDK1, GSDMB, DIABLO, and CASP8, exhibited signif-
icant upregulation in PCa samples (Figure 1B). Furthermore,
PANoptosis-associated clusters in PCa were identified through
consensus clustering (Figure 1C). By implementing k-means
clustering on the TCGA cohort, two clusters with distinct
PRG expression patterns were distinguished (Figure 1D and 1E).
Notably, cluster C2 demonstrated elevated PRG expression lev-
els, classifying it as the PANoptosis-high subtype, whereas clus-
ter C1 was characterized by lower expression levels, defining
it as the PANoptosis-low subtype (Figure 1F). Survival analysis
revealed notable differences in clinical outcomes between these
subtypes, with the PANoptosis-low subtype being linked to an
unfavorable prognosis, whereas the PANoptosis-high subtype
exhibited better clinical results (Figure 1G).

DEGs and enriched pathways in PANoptosis subtypes
Considering that the PANoptosis-high subtype was linked
to favorable clinical outcomes, whereas the PANoptosis-low

subtype was associated with an unfavorable prognosis, an
investigation was conducted to identify key DEGs and sig-
naling pathways in each subtype to elucidate the molecular
mechanisms influencing prognosis. The analysis identified 746
DEGs (Figure 2A and 2B), encompassing 617 upregulated and
129 downregulated genes.

GO enrichment analysis demonstrated that elevated genes
within the PANoptosis-high subtype were predominantly
involved in immune-related biological processes, encom-
passing cytokine production enhancement, lymphocyte dif-
ferentiation, leukocyte-mediated immunity, and immune
response-regulating signaling pathways. Similarly, KEGG
pathway enrichment analysis suggested that these elevated
genes were markedly associated with immune activity path-
ways, including cytokine–cytokine receptor interaction, viral
protein interaction with cytokine and cytokine receptors, and
chemokine signaling (Figure 2C). Collectively, these findings
suggest that the PANoptosis-high subtype is defined by an
immune-active microenvironment, which may contribute to
its more favorable clinical outcomes. To examine the activated
signaling cascades within the PANoptosis-high subgroup,
GSEA was conducted to compare the PANoptosis-high and
PANoptosis-low cohorts. This analysis identified differential
enrichment of gene sets linked to immune pathways, including
granulocyte chemotaxis and the adaptive immune response
(Figure 2D).

Somatic mutations and TME in PANoptosis subtypes
Distinct somatic mutation profiles were identified across the
subtypes (Figure 3A and 3B). Although TP53, TTN, SPOP, MUC16,
and SYNE1 emerged as the genes with the highest mutation
rates, their mutation frequencies differed between subtypes.
Notably, the PANoptosis-high subtype demonstrated a higher
prevalence of TP53 and TTN mutations, comprising 14% and
11% of total mutations, respectively, in contrast to 9% and 10%
observed in the PANoptosis-low subtype.

Growing research indicates that PANoptosis plays a vital role
in eliciting anti-tumor immune responses. This investigation
analyzed the TME configuration concerning PANoptosis-high
and PANoptosis-low classifications. The analysis revealed that
immune scores were markedly elevated, while tumor purity
was notably reduced in the PANoptosis-high category relative
to the PANoptosis-low cohort (Figure 4A).

The investigation further explored variations in immune
cell infiltration across 22 immune cell populations between
these classifications utilizing the CIBERSORT methodology
combined with the LM22 signature matrix. The outcomes
obtained from examining 544 PCa cases within the TCGA
database are depicted in Figure 4B. Notably, patients classified
under the PANoptosis-high subtype demonstrated a substan-
tially increased presence of memory B cells, resting dendritic
cells, M1 macrophages, activated mast cells, neutrophils, acti-
vated memory CD4+ T cells, resting memory CD4+ T cells, CD8+
T cells, and γ δ T cells (Figure 4C).

Furthermore, all immune checkpoints exhibited upregula-
tion in the PANoptosis-high subtype, whereas a contrasting
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Figure 1. ldentification of PANoptosis-associated subtypes. (A) Protein-protein interaction network of PANoptosis-associated genes; (B) Heatmap
showing the expression profiles of 45 PANoptosis-associated genes in normal and tumor (PCa) samples from the TCGA database; (C) Consensus clustering
matrix for TCGA PCa samples at k = 2 based on the expression of 45 PANoptosis-associated genes; (D, E) Consensus cumulative distribution function
(CDF) curves for k = 2–6 and the corresponding delta area plot for k-means consensus clustering of PANoptosis-associated genes in the TCGA PCa cohort,
indicating that k = 2 provides the most stable PANoptosis-associated clustering solution; (F) Heatmap of the expression of 45 PANoptosis-associated genes
in the two PANoptosis-related clusters (C1 and C2), where red denotes higher and blue lower expression levels; (G) Kaplan-Meier curves for overall survival
comparing PANoptosis-high and PANoptosis-low groups in the TCGA PCa cohort. *P < 0.05, **P < 0.01, ***P < 0.001 &****P < 0.0001. PCa: Prostate
cancer; OS: Overall survival; PRG: PANoptosis-related gene; TCGA: The Cancer Genome Atlas; CDF: Cumulative distribution function; KM: Kaplan–Meier.
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Figure 2. ldentification of DEGs and associated signaling cascades across subgroups. (A) Volcano plot of differentially expressed genes (DEGs) between
PANoptosis-high and PANoptosis-low subtypes in the TCGA cohort (|log2 fold change| > 1 and adjusted P < 0.05); red and blue dots indicate up- and down-
regulated genes, respectively; (B) Heatmap depicting expression patterns of DEGs across PANoptosis-high and PANoptosis-low subtypes; (C) Gene Ontology
(GO) biological-process enrichment analysis of genes up-regulated in the PANoptosis-high subtype, shown as a bubble plot in which dot size represents
gene count and color indicates adjusted P values; (D) KEGG pathway enrichment analysis of genes up-regulated in the PANoptosis-high subtype, visualized
using the same bubble-plot scheme as in (C); (E–F) Gene Set Enrichment Analysis (GSEA) based on ranked gene expression between PANoptosis-high and
PANoptosis-low subtypes, illustrating enrichment of representative immune-related GO biological processes, including adaptive immune response (E) and
granulocyte chemotaxis (F). TCGA: The Cancer Genome Atlas; DEG: Differentially expressed gene; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes
and Genomes; GSEA: Gene set enrichment analysis.

trend was detected in the PANoptosis-low subtype (Figure 4D).
This finding suggests that the PANoptosis-high subtype is
linked to an immune-hot phenotype, while the PANoptosis-low
subtype corresponds to an immune-cold phenotype.

Development and verification of the PANoptosis risk signature
A prognostic model was developed based on PRGs. In the
Cox univariate analysis, four PRGs were identified as being
markedly linked to OS in patients (Figure 5A). These four PRGs
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Figure 3. Analysis of somatic alterations across distinct PANoptosis subtypes. (A and B) Graphs showing the top ten genes with the highest mutation
frequencies in the PANoptosis-high (A) and PANoptosis-low (B) subtypes.

were selected and validated for inclusion in the prediction
model using LASSO regression analysis (Figure 5B). The risk
score model was formulated using the following equation: Risk
score = (0.9075)*CASP7 + (0.0645)*ADAR + (0.6644)*DNM1L
+ (1.1522)*NAIP. Additionally, the correlation between survival
status and risk score was investigated. These observations indi-
cated that the proportion of surviving patients in the low-risk
cohort was markedly higher than in the high-risk cohort

(Figure 5C). The prognostic relevance of this risk profile in PCa
was further assessed through KM analysis (Figure 5D). Within
the TCGA cohort, a high-risk score was linked to poorer OS, and
these outcomes were validated in the GEO dataset (Figure 5E).

Connection between PANoptosis risk signature and TME
The TIDE tool was employed to assess the predictive potential
of the PANoptosis risk signature in determining the clinical
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Figure 4. Immune landscape of PANoptosis-high and PANoptosis-low subtypes. (A) Violin plots compare ESTIMATE-derived ImmuneScore and tumor
purity between PANoptosis-high and PANoptosis-low subtypes; (B) Composition plot showing the relative fractions of tumor-infiltrating immune cell subsets
in each sample from the PANoptosis-high and PANoptosis-low subtypes; (C) Box plots compare the abundance of representative immune cell subsets
between PANoptosis-high and PANoptosis-low subtypes; (D) Box plots display the differential expression of multiple immune checkpoint-related genes in
PANoptosis-high and PANoptosis-low subtypes. *P < 0.05, **P < 0.01, ***P < 0.001, &****P < 0.0001.
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Figure 5. Construction and validation of the PANoptosis risk signature. (A) The prognostic value of PANoptosis-related genes for OS is assessed using
univariate Cox analysis; (B) Lasso-Cox regression identifies four genes most closely associated with OS in the TCGA dataset; (C) The distribution of risk scores,
patient survival status, and heatmaps representing the prognostic four-gene signature within the TCGA database; (D and E) KM analyses demonstrate the
prognostic relevance of the risk model in the TCGA and GSE70770 cohorts. OS: Overall survival; TCGA: The Cancer Genome Atlas; KM: Kaplan–Meier.
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Figure 6. Association between the PANoptosis risk signature and the TME. (A) Box plot comparing TIDE scores between PANoptosis-based low-risk
and high-risk groups, reflecting predicted response to immune checkpoint blockade; (B) Scatter plot showing the correlation between the PANoptosis risk
score and the ESTIMATE stromal score in the TCGA cohort; (C) Scatter plots depict the association between the PANoptosis risk score and macrophage
infiltration (M1 and M2) in the GSE70770 cohort; (D, E) Univariate (D) and multivariate (E) Cox regression analyses evaluating the independent prognostic
value of the PANoptosis-based risk score alongside clinicopathological variables in patients with prostate cancer. PCa: Prostate cancer; TCGA: The Cancer
Genome Atlas; TME: Tumor microenvironment.
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Figure 7. ADAR is upregulated in PCa cell lines. (A–D) Transcript levels of CASP7, ADAR, DNM1L, and NAIP were analyzed by qRT-PCR in RWPE-1, PC-3M,
and 22RV1 cell lines; (E) qRT-PCR was performed to assess ADAR transcript levels in RWPE-1, C4-2, DU145, and PC-3 cell lines; (F and G) Knockdown efficiency
of siRNAs targeting ADAR in PC-3M and 22RV1 was evaluated by qRT-PCR; (H and I) Changes in PC-3M and 22RV1 cell viability before and after ADAR silencing
were measured; (J and K) IC50 variations in PC-3M and 22RV1 were assessed following Docetaxel treatment before and after ADAR knockdown. n = 3/per
cohort. PCa: Prostate cancer; qRT-PCR: Quantitative real-time polymerase chain reaction.

efficacy of immunotherapy. The findings indicated that patients
classified in the immunotherapy non-response cohort exhibited
higher PANoptosis risk scores, suggesting that those with lower
risk scores might derive greater benefit from immunotherapy
(Figure 6A).

Considering PANoptosis’s crucial immunological function in
anti-tumor immune responses, an in-depth analysis was per-
formed to investigate the association between the PANopto-
sis risk score and the TME. The outcomes demonstrated that
an elevated risk score was negatively associated with resting
dendritic cells (Figure 6B). Additionally, in the GEO cohort,
a negative correlation was observed between an increased
risk score and both Macrophages M1 and Macrophages M2
(Figure 6C).

Univariate and multivariate Cox analyses were performed to
assess the independent prognostic significance of the PANop-
tosis risk signature. The univariate Cox analysis identified a
high PANoptosis risk score as significantly associated with
diminished OS (Figure 6D). Moreover, multivariate Cox anal-
ysis confirmed the PANoptosis risk score’s capability to serve

as an independent prognostic factor for individuals with PCa
(Figure 6E).

ADAR promotes PCa progression in vitro
To validate the bioinformatics model, CASP7, ADAR, DNM1L, and
NAIP transcript levels were analyzed in PCa cell lines. Compared
to RWPE-1, transcripts of CASP7, ADAR, DNM1L, and NAIP were
upregulated in PC-3M and 22RV1, with ADAR demonstrating
the most pronounced increase (Figure 7A–7D). Furthermore,
ADAR transcript levels in RWPE-1 were evaluated against those
in C4-2, DU145, and PC-3. ADAR was markedly upregulated in
the PCa cell lines C4-2, DU145, and PC-3, indicating that ADAR
transcript upregulation is a widespread phenomenon in PCa cell
lines (Figure 7E).

For this reason, ADAR was selected for further investigation.
The inhibitory efficiency of small interfering RNAs targeting
ADAR was validated in PC-3M and 22RV1. Both si-ADAR-1 and
si-ADAR-2 suppressed ADAR transcription in these cell lines,
with si-ADAR-2 exhibiting the most pronounced inhibitory
effect (Table 2). Consequently, si-ADAR-2 (si-ADAR) was chosen
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Table 2. Target sequences (5′–3′) of siRNAs directed
against ADAR

Gene Target sequences (5′-3′)

si-ADAR-1 CAGTAGTTTCCTGCTTAAGCAAA

si-ADAR-2 CTGCGACTATCTCTTCAATGTGT

Abbreviations: siRNA: Small interfering RNA; ADAR: Adenosine
deaminase acting on RNA.

for subsequent experiments (Figure 7F and 7G). A substantial
reduction in cell viability was observed after ADAR suppression
in PC-3M and 22RV1 cell lines. Additionally, the IC50 values of
PC-3M and 22RV1 treated with Docetaxel in vitro were markedly
decreased (Figure 7H–7K).

The proliferative capacity of PC-3M and 22RV1 cell lines was
markedly reduced following ADAR knockdown, as indicated
by a decline in the percentage of EdU-positive cells and a
reduction in colony formation (Figure 8A–8D). Given that EMT
plays a pivotal role in cancer metastasis, the transcription
of EMT-related markers in PC-3M and 22RV1 was examined
before and after ADAR knockdown. The results demonstrated
that CDH1 expression was upregulated, whereas CDH2 and
VIM were downregulated following ADAR silencing (Figure 8E
and 8F), suggesting that ADAR promotes EMT in PCa cell lines.

Additionally, the impact of ADAR on cellular apoptosis and
pyroptosis was assessed, revealing that the transcriptional
upregulation of BAX, CASP1, and GSDMD following ADAR knock-
down reflects its inhibitory effect on programmed cell death
(Figure 8G and 8H).

Finally, the regulatory influence of ADAR on the immune
microenvironment was examined through its impact on
macrophages, which tended to polarize toward the M1 phe-
notype following ADAR knockdown. This observation sug-
gests that ADAR contributes to establishing an inflammation-
suppressive TME (Figure 9A–9D).

Discussion
Despite notable advancements in diagnostic and therapeutic
methodologies, PCa continues to be a predominant contributor
to cancer-related mortality in men, with recurrence occurring
in up to 40% of individuals diagnosed with localized PCa within
a decade [37–39]. Androgen deprivation therapy has long been
recognized as a conventional approach for PCa treatment. How-
ever, a considerable proportion of patients with advanced-stage
disease inevitably progress to castration-resistant PCa [40].
In recent years, innovative treatment approaches, includ-
ing immunotherapy, have been investigated to potentiate the
immune system’s capacity to eradicate malignant cells [41–44].
Nevertheless, the effectiveness of immunotherapy in managing
PCa, as well as its implications for patient prognosis, remains
a topic of ongoing debate. Certain studies indicate that the
intricate TME intrinsic to PCa fosters an inherent resistance
to immunotherapeutic interventions, thereby complicating
the identification of efficacious treatment strategies [45–47].

Consequently, delineating subpopulations that benefit from
PCa immunotherapy and establishing biomarkers predictive of
patient prognosis are imperative steps toward optimizing ther-
apeutic outcomes in PCa management.

Recent investigations have highlighted the essential role of
PRGs in PCa [48–50]. These genes govern the assembly of the
PANoptosome complex, which integrates the molecular mech-
anisms underlying pyroptosis, necroptosis, and apoptosis [7].
This unified pathway, termed PANoptosis, is pivotal in mod-
ulating tumor cell death and immune responses in PCa. Aber-
rant expression and notable mutations in PRGs have been
identified across multiple cancer types, with numerous PRGs
functioning as tumor risk determinants in diverse malignan-
cies. These observations indicate that PANoptosis serves a cru-
cial function in cancer development, and its induction could
potentially suppress both tumor initiation and progression [17].
For instance, research conducted by Jianzhong et al. demon-
strates that modifications in PRG expression can substan-
tially alter the immune microenvironment and therapeutic
responsiveness in PCa [51]. Similarly, research led by Wang
et al. [52] identified a notable connection between PANopto-
sis and clear cell renal cell carcinoma, further establishing a
prognostic model utilizing three specific miRNAs to predict
survival outcomes in cancer patients. Within the scope of PRAD
research, the intricate interactions and regulatory networks
linked to PANoptosis have been explored, encompassing gene
mutations, transcriptional alterations, methylation modifica-
tions, and their correlations with clinical characteristics [17].
Hence, this investigation sought to understand PANoptosis
functionality in PCa and construct a prognostic signature based
on PRGs.

In this study, a total of 45 PRGs were compiled from pre-
viously conducted relevant research. Based on the expression
profiles of these PRGs, PCa patients were categorized into
two distinct PANoptosis subgroups through consensus cluster-
ing. Subsequently, differential gene expression and functional
enrichment analyses were performed, revealing that these
genes participate in immune-associated pathways, including
the PI3K-Akt and TNF signaling pathways. To further delin-
eate immune disparities between the PANoptosis-high and
PANoptosis-low subgroups and deepen the understanding of
the TME’s role in disease progression and treatment outcomes,
immune infiltration and TIDE analyses were conducted. The
findings indicate a substantial divergence in immune pheno-
types: the PANoptosis-high subgroup exhibits an immune-hot
phenotype, whereas the PANoptosis-low subgroup presents an
immune-cold phenotype. In individuals classified within the
PANoptosis-high subgroup, an increased proportion of resting
dendritic cells, M1 macrophages, and other immune cells was
observed.

The TME has been shown to have a significant impact
on tumors [53–56]. Tumor-associated macrophages (TAMs)
constitute a major immune cell population within the inflam-
matory TME. As heterogeneous macrophages, TAMs exhibit
both pro-inflammatory (M1) and immunosuppressive (M2)
functionalities [57]. M1 macrophages are pivotal in the PCa
TME, characterized by their ability to secrete abundant
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Figure 8. ADAR promotes PCa progression in vitro. (A and B) Changes in the proportion of EdU-positive cells in PC-3M and 22RV1 before and after ADAR
knockdown; (C and D) Alterations in colony formation in PC-3M and 22RV1 before and after ADAR knockdown; (E and F) Changes in the expression of CDH1,
CDH2, and VIM in PC-3M and 22RV1 before and after ADAR knockdown; (G and H) Changes in the expression of BAX, CASP1, and GSDMD in PC-3M and 22RV1
after ADAR knockdown. n = 3/per cohort. PCa: Prostate cancer; EdU: 5-ethynyl-2′-deoxyuridine.

pro-inflammatory cytokines and chemokines. These cells
demonstrate an enhanced capacity for antigen presentation and
complement-mediated phagocytosis, primarily functioning to
eliminate pathogens and initiate Th1 immune responses while
also exerting direct cytotoxic effects on both microorganisms
and tumor cells. Conversely, M2 macrophages are commonly
implicated in tumor immune evasion, angiogenesis, tumor pro-
liferation, and metastasis [58]. The polarization of macrophages
is a highly intricate biological process meticulously regulated
by multiple factors, with its polarization state exerting a
profound influence on inflammatory responses and tumor
development [58].

Within the complex TME of PCa, various chemokines mod-
ulate macrophage polarization. For instance, CCL2 has been
shown to enhance LPS-induced IL-10 production, while CCL2

inhibition stimulates the expression of genes and cytokines
associated with M1 polarization and concurrently suppresses
M2 markers [59]. Additionally, research by Cristina I. Caescu
and colleagues identified miR-21 as a molecule activated by
the Y721 site (pTyr-721) of colony-stimulating factor-1 (CSF-1),
which facilitates suppression of the M1 phenotype while
promoting the M2 phenotype [60]. Another critical regula-
tory factor, miRNA-155, exhibits significant elevation during
M1 macrophage polarization and a notable reduction during
M2 polarization. Enhanced expression of miRNA-155 promotes
the polarization of M2 macrophages through the miR-155/SHIP1
pathway, consequently expediting tumor cell invasion, pro-
liferation, and migration [61, 62]. Based on these findings, it
is postulated that M1 macrophage infiltration may provide
survival advantages for patients exhibiting high PANoptosis
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Figure 9. ADAR modulates macrophage polarization. (A–D) Changes in surface expression levels of CD86 and CD206 in macrophages before and after
ADAR knockdown. n = 3/per cohort.

subtypes. Further investigation into the regulatory mecha-
nisms governing macrophage polarization in PCa could yield
novel insights and therapeutic strategies. Subsequent sur-
vival analysis identified four PRGs—CASP7, ADAR, DNM1L,
and NAIP—as being markedly associated with PCa progno-
sis. Cysteine aspartate-specific proteases (caspases) serve cru-
cial functions in apoptosis and inflammatory regulation, with
CASP7 (Caspase-7) being a key protease modulating these
processes [63, 64]. Research by So Hee Kim et al. demonstrated
that OTUD6A functions as a deubiquitinase by eliminating the
K48-linked polyubiquitin chain from nucleolin and the K63-
linked polyubiquitin chain from Caspase-7. Both nucleolin and
Caspase-7, identified as OTUD6A substrates, have been pro-
posed as potential therapeutic targets in cancer treatment [65].

ADAR is a core enzyme involved in RNA editing [66], with
previous research indicating a strong correlation between ADAR
dysregulation and tumor onset and progression. Julia Ramírez-
Moya et al. found that ADAR promotes thyroid cancer devel-
opment through RNA editing of CDK13 [67]. Similarly, Yu et al.
reported that ADAR is markedly upregulated in bladder cancer
tissues and shows a strong correlation with unfavorable patient
outcomes. Furthermore, ADAR has been shown to markedly
enhance the proliferation, migration, and invasion of bladder
cancer cells [68].

DNM1L, a mitochondrial fission-associated protein, has
emerged as a promising therapeutic candidate across various

malignancies [69]. Research by Inoue Yamauchi et al. [70]
revealed that the absence of DNM1L increases apoptosis
in colon cancer cells. Additionally, Xie et al. [71] discov-
ered that DNM1L depletion induces apoptosis in malignant
brain tumor-initiating cells and markedly inhibits tumor
growth.

NAIP, which belongs to the IAP family, is expressed in mam-
malian cells and can inhibit apoptosis triggered by diverse
signals [72]. Moreover, previous studies have suggested that
NAIP mediates innate immune inflammatory responses by acti-
vating caspase-1, -4, and -5 [73]. A study conducted by Chen
et al. [74] demonstrated that NAIP alleles undergo methyla-
tion in normal oral mucosal tissue, potentially representing an
early oncogenic event. Additionally, Choi et al. [75] observed
that NAIP expression is absent in normal breast tissue but
is markedly elevated in breast cancer. Although these genes
have been extensively associated with the pathogenesis and
progression of various malignancies, their specific mechanis-
tic roles in PCa remain to be fully elucidated. Ultimately,
prognosis-associated signatures derived from PRGs exhibited
strong predictive performance for OS across training, internal
validation, and external validation cohorts.

Despite the promising outcomes observed, certain limita-
tions inherent to this research must be acknowledged. Firstly,
while PRG-based prognostic features demonstrated strong pre-
dictive efficacy across both internal and external cohorts, the
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study predominantly relies on retrospective data, which may
introduce potential biases. To confirm the clinical applicabil-
ity and robustness of the proposed risk model, prospective
clinical trials remain essential. Secondly, although functional
enrichment and immune infiltration analyses offer valuable
insights into the TME and the immune disparities between
PANoptosis-high and PANoptosis-low subgroups, the precise
molecular mechanisms underlying these differences have yet
to be fully elucidated. Addressing these limitations in future
investigations will further reinforce the clinical significance
of PRGs and their potential role in informing PCa treatment
strategies.

Conclusion
In conclusion, a practical PANoptosis-risk algorithm based
on four PRGs was developed and validated, with the pro-
posed signature serving as a potential prognostic model for
PCa. Furthermore, this study offers novel insights into the
relationship between the PRG score and the immune microen-
vironment, providing valuable perspectives for the application
of immunotherapy in PCa patients.
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Supplemental data

Table S1. List of PANoptosis-related genes

CASP10 CASP2 CASP3
DCN APAF1 CASP7
FAS ZBP1 GSDMA
CASP8 IRF1 FADD
TNFRSF1A RIPK3 MLKL
GSDMB NINJ1 CDK1
BAX CASP9 NLRP6
DNM1L RIPK1 DIABLO
NLRC4 CASP1 NLRP9
NLRP1 CASP5 CASP4
MAPK1 CASP6 CASP12
MAPK3 GSDMC TNF
MEFV ADAR NFS1
PYCARD NLRP3 NAIP
GSDMD AIM2 TUG1

Abbreviations: CASP10: Caspase 10; DCN: Decorin; CASP8: Caspase 8; TNFRSF1A: Tumor necrosis
factor receptor superfamily member 1A; GSDMB: Gasdermin B; BAX: Bcl-2-associated X protein;
NLRP1: NLR family pyrin domain containing 1; MAPK1: Mitogen-activated protein kinase 1; MAPK3:
Mitogen-activated protein kinase 3; GSDMD: Gasdermin D; CASP2: Caspase 2; APAF1: Apoptotic
protease activating factor 1; ZBP1: Z-DNA binding protein 1; IRF1: Interferon regulatory factor 1;
NINJ1: Ninjurin 1; CASP9: Caspase 9; RIPK1: Receptor-interacting serine/threonine-protein kinase
1; CASP1: Caspase 1; CASP5: Caspase 5; CASP6: Caspase 6; GSDMC: Gasdermin C; ADAR: Adenosine
deaminase acting on RNA; CASP3: Caspase 3; CASP7: Caspase 7; GSDMA: Gasdermin A; CDK1:
Cyclin-dependent kinase 1; NLRP6: NLR family pyrin domain containing 6; NLRP9: NLR family
pyrin domain containing 9; CASP4: Caspase 4; CASP12: Caspase 12; TNF: Tumor necrosis factor;
TUG1: Taurine upregulated gene 1.
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