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R E S E A R C H A R T I C L E

Identification and validation of TUBB, CLTA, and FBXL5 as
potential diagnostic markers of postmenopausal
osteoporosis
Yue Tan 1,2#, Yujing Wang 3#, Qin Zhu 4#, Yan Xue 1,2, Xuhao Ji 1,2, Zhenkun Li 1,2, Jiawen Shen1,2, Chengming Sun 1,2,
Shiqi Ren 1,2∗ , Chenlin Zhang 5∗ , and Jianfeng Chen 6∗

Postmenopausal osteoporosis (PMOP) is recognized as the most prevalent bone disease worldwide. N6-methyladenosine (m6A) is one
of the most common RNA modifications influencing the progression of various disorders; however, its specific role in PMOP remains
unexplored. This study aims to investigate the expression profiles of m6A-related genes and their impact on the prognosis of PMOP
patients. We utilized the GSE56815 expression analysis dataset obtained from the Gene Expression Omnibus (GEO) database and
extracted m6A-related genes for further examination. Our analysis revealed that m6A-related genes exhibited differential expression
between PMOP patients and healthy controls. We employed consensus clustering to identify subgroups within the PMOP cohort and
conducted immunological analyses on these clusters. Additionally, we intersected the clusters to identify differentially expressed
genes (DEGs) and analyzed potential diagnostic markers for PMOP using support vector machine recursive feature elimination
(SVM-RFE), LASSO, and random forest (RF) algorithms, which were subsequently validated in the GSE56116 dataset. The receiver
operating characteristic (ROC) curve was employed to assess the diagnostic significance of these markers. Furthermore, quantitative
PCR (qPCR) was performed to validate the expression of the identified genes. In the GSE56815 dataset, we identified three subtypes
associated with m6A modifications, leading to the identification of 302 shared DEGs among these subtypes. Gene ontology (GO)
analysis indicated that the DEGs were predominantly enriched in nuclear specks, the nuclear envelope, and nucleocytoplasmic
transport processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis further revealed that DEGs were primarily
associated with endocytosis and nucleocytoplasmic transport pathways. Through the application of SVM, LASSO, and RF algorithms,
we identified three potential diagnostic markers: TUBB, CLTA, and FBXL5, which demonstrated promising diagnostic capabilities when
tested against an independent dataset. qPCR validation confirmed significant expression differences of these genes between the
control and PMOP groups. The genetic markers identified in this study hold potential for accurately predicting the risk of PMOP in
patients. The findings contribute to understanding the underlying molecular mechanisms of CLTA, TUBB, and FBXL5 in PMOP and may
facilitate the development of novel therapeutic strategies and improved monitoring of the disease.
Keywords: m6A, postmenopausal osteoporosis, PMOP, m6A methylation, diagnostic biomarkers, unsupervised clustering.

Introduction
Postmenopausal osteoporosis (PMOP) is a prevalent metabolic
bone disease that primarily affects postmenopausal women.
Due to decreasing estrogen levels and increased bone resorp-
tion, menopause causes the destruction of bone microstructure
and a reduction in bone mass, as well as increased brittleness [1].
Secondary osteoporotic fractures raise the social burden by
increasing disability and mortality, especially psychologically

and economically. It is a challenge for the healthcare system
to address osteoporosis due to its various complications and
the high personal and social costs, particularly as the majority
of affected individuals do not receive treatment. This lack of
health initiatives is evident in nearly 60% of affected individ-
uals who are at high risk for osteoporotic fractures and do not
receive bone protective therapy [2]. Currently, PMOP treat-
ment primarily relies on bisphosphonates, selective estrogen

mailto:wxzy009@njucm.edu.cn;
zclspinal@163.com
mailto:1617083061@stmail.ntu.edu.cn
https://doi.org/10.17305/bb.2025.12019
https://creativecommons.org/licenses/by/4.0/
https://www.biomolbiomed.com
https://www.biomolbiomed.com
https://orcid.org/0009-0007-9780-8311
https://orcid.org/0000-0001-7851-3736
https://orcid.org/0000-0002-9472-8638
https://orcid.org/0009-0001-0807-3963
https://orcid.org/0009-0005-1973-3700
https://orcid.org/0009-0008-4309-0057
https://orcid.org/0009-0005-3896-8601
https://orcid.org/0000-0001-5176-1975
https://orcid.org/0009-0001-4226-7745
https://orcid.org/0000-0001-8615-4796


receptor modulators (SERMs), calcitonin, RANKL inhibitors,
parathyroid hormone analogues, and Wnt pathway agonists [3].
Nevertheless, these therapies still face obstacles regarding
adherence, safety, and personalized efficacy, while current
diagnostic approaches (e.g., DXA) have poor sensitivity and
cannot accurately predict fracture risk. Thus, it is necessary to
identify more precise molecular markers for the early diagnosis
and personalized treatment of PMOP.

The most prevalent RNA methylation is N6-methyladenine
(m6A) [4], which occurs in the conserved RRACH motif (R = G
or A; H = A, C, or U) [5] and is concentrated close to the
stop codon of mRNAs [6]. Notably, m6A modification enzymes
have been identified as enzyme technology has progressed. The
major m6A methyltransferases are the methyltransferase-like
protein, methyltransferase, and Wilms tumor-associated pro-
tein complex, while fat and obesity-related protein (FTO) and
α-ketoglutarate-dependent [7, 8] dioxygenase base B homolog
(ALKBH5) are the main demethylases. Presently, among RNA
modifications, m6A has become a research hotspot [9]. The
aforementioned modification performs various regulatory roles
in post-transcription, such as transcriptional regulation, alter-
native splicing, stabilization, and translation, by binding to
YTH domain-containing proteins [10]. Additionally, m6A mod-
ification regulates cellular biological functions, including cell
differentiation, embryo development, and disease incidence.
Bones perform a vital role in providing support and pro-
tection to the body; although these are just a few of the
many other functions performed, including enabling move-
ment, blood production, and acting as a reservoir for various
minerals such as calcium. A variety of epigenetic modifica-
tions influence the expression of genes in bone cells through
various regulatory mechanisms, thereby affecting the pre-
cise processes of remodeling and development of bones.
These mechanisms include histone modification, along with
DNA and RNA methylation [11]. Prior research has indi-
cated a significant effect on the activity and function of bone
cells due to the disruption of epigenetic processes, which
could potentially lead to the development of bone-related
disorders [10, 11].

Based on the Integrated Gene Expression Omnibus (GEO)
database, consensus clustering was used to determine the
clustering of m6A-DEGs, and the Least Absolute Contrac-
tion and Selection Operator (LASSO) algorithm [12], sup-
port vector machine-recursive feature elimination (SVM-RFE)
algorithm [13], and random forest (RF) algorithm [14] were
used to determine the diagnostic markers. The three most rep-
resentative genes, TUBB, CLTA, and FBXL5, were verified in
GSE56116 [15]. Moreover, we explored the probable molecular
underpinnings of osteoporosis, ultimately benefiting the dis-
ease’s early detection, therapy, and prevention.

Materials and methods
Data retrieval
GEO datasets were utilized to acquire patient information
(GSE56815) [16]. GSE56815 contains 80 samples, including 40
postmenopausal osteoporosis samples and 40 premenopausal

samples. The m6A regulators that were removed included nine
writers, 15 readers, and two erasers.

m6A-DEGs in PMOP
The GSE56815 dataset underwent stringent data pre-processing
operations to achieve comparability and reproducibility in this
study. First, the raw expression data were processed by quantile
normalization and log2 conversion to remove technical noise
and optimize the data distribution. Second, we corrected the
data with ComBat (sva R package) to eliminate batch effects
and checked for batch effects with PCA to enable comparabil-
ity between different datasets. Then, the limma (v3.58.1) soft-
ware package was used to screen differentially expressed genes
(DEGs), with a screening criterion of a Benjamini–Hochberg
false discovery rate (FDR) adjusted P value of less than 0.05.
The specific markers TUBB, CLTA, and FBXL5 were validated in
other datasets via cross-validation to provide robustness and
reliability.

Construction of m6A clusters based on m6A-associated genes
Various m6A clusters were built considering the expression of
m6A-associated genes, while unsupervised clustering methods
were performed to categorize patients into discrete classifica-
tions. The use of the consensus clustering technique ensured
the quantity and stability of the clustering process, and the
“ConsensusClusterPlus” (v1.66.0) software was used to assess
the classification’s stability.

Inference of microenvironment and immune cells
The immune cell infiltration characteristics of the PMOP group
and control group were evaluated through single-sample gene
set enrichment analysis (ssGSEA). Reference was made to
the MSigDB and xCell immune cell marker gene sets, which
included 24 types of immune cells, and the ssGSEA score was
calculated using the GSVA (v1.50.5) R package. We used Z-score
normalization to compare the differences in each observation
within samples and Wilcoxon rank-sum tests for the assess-
ment of group differences, and we performed Spearman corre-
lation analysis to evaluate the correlation between core genes
and immune cells. The results dissected the immune microen-
vironment in the PMOP group and investigated the potential
function of TUBB, CLTA, and FBXL5 in immune regulation.

Identification of m6A gene expression between different
patterns
In order to better study the pathway of enrichment in degree,
we chose three intersecting genes, A-B, B-C, and A-C, for Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analy-
sis and gene ontology (GO) biological method using a P value
less than 0.05, a minimum count of 5, and an enrichment fac-
tor larger than 0.15. By installing the clusterProfiler (v4.10.1)
R package, gene set enrichment analysis (GSEA) was utilized to
analyze the subtype-associated activities of all genes consider-
ing their log2 fold change.

Acquisition of diagnostic markers
A detailed study of the efficacy of the major biomarkers
was conducted through algorithm screening. Three types of

Tan et al.
m6A-related biomarkers in PMOP 2 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


Table 1. Primer sequences for target genes

Gene names Forward primer Reverse primer

TUBB TCCATGAAGGAGGTCGATGA CAGACGGCTGTCTTGACATT

CLTA CCGCCATGGCTGAGTTAGA GGCTCTTCAGTGCACCAG

FBXL5 GGCAGATTTTAGAGCTTTGTCCTA CGAAGACTCTGGCAGCAACCAA

GAPDH GGAGTCCACTGGTGTCTTCA GGGAACTGAGCAATTGGTGG

intersection genes, A-B, B-C, and C-A, were selected for algo-
rithm screening, including minimum absolute contraction and
selection operator (LASSO) logistic regression, SVM-RFE, and
RandomForest (RF) [14, 17, 18]. These algorithms were utilized
to identify the relevant PMOP-associated genes. The precise
and efficient diagnostic biomarkers were detected through the
intersection of the screened PMOP-related feature genes, and
further analysis was performed.

Screening and verification of diagnostic markers
The degree of accuracy regarding the predictive capability of the
aforementioned diagnostic markers for patients with varying
risk outcomes was examined by deriving the area under the
curve (AUC) of the receiver operating characteristics (ROC),
where an increased AUC value denotes an increased accuracy of
the constructed gene signature. The box diagram of expression
differences of core genes was drawn to examine the variation
in the expression of the diagnostic markers between post-
menopausal and premenopausal samples. We then obtained
the gene for further verification in another dataset (GSE56116).
The PerformanceAnalytics R package was employed to conduct
a heat map analysis of gene correlation for the hub genes to
analyze whether there is a correlation between the diagnostic
markers and whether a correlation exists between their expres-
sion levels. The number cex = 0.7 was considered to be the
correlation coefficient.

To construct a nomogram model of postmenopausal
osteoporosis and premenopausal classification
The “rms” (v6.8-1) software creates the nomogram model with
consideration of the chosen explanatory variables. Based on the
qualities of each variable for the patient, we project upwards on
a tiny scale to determine the value of each item (point). The sum
is derived from each item’s score. The greater the overall value,
the greater the PMOP probability. The curves for calibration,
decision curve analysis (DCA), and clinical effect were analyzed
to confirm the model’s correctness. A 1000-resampling method
was used for internal validation of the model.

Single sample gene set enrichment analysis and correlation
heat map of hub genes
Single sample gene set enrichment analysis (GSEA) was exe-
cuted on the diagnostic markers screened through LASSO, SVM,
and RF to analyze the corresponding functions of high and low
expression of each hub gene. KEGG analysis was performed, and
the first five and the last five GSEA results were selected and
displayed together after ranking the analysis results.

Quantitative real-time polymerase chain reaction (qRT-PCR)
This study collected ten peripheral blood samples, including
five samples from healthy patients and five samples from PMOP.
This study has been approved by the Medical Ethics Committee
of Nantong University Affiliated Hospital. Samples were col-
lected and used according to approved guidelines. Total RNA
was extracted using the TRIzol method. Quantitative reverse
transcription-polymerase chain reaction (qRT-PCR) was per-
formed on RNA (2 μg) extracted from each sample on a Light-
Cycler 480 PCR system (Roche, USA) using FastStart Universal
SYBR Green Master. cDNA was used as a template in a 20 μL
reaction volume (2 μL cDNA template, 10 μL PCR mixture, 0.5
μL forward and reverse primers, and an appropriate amount
of water). The PCR reaction was performed using the follow-
ing procedure: cycling conditions started with an initial DNA
denaturation phase at 95°C for 30 s, followed by 45 cycles at 94°C
for 15 s, 56°C for 30 s, and 72°C for 20 s. Three separate analyses
were performed for each sample. Threshold cycle (CT) data
were obtained based on the 2-ΔΔCT method and normalized to
GAPDH levels for each sample. It was confirmed that the melting
curve was checked to ensure single amplicon specificity. The
sequence list of primer pairs for target genes is shown in Table 1.

Statistical analysis
The relationships between the genes (part of the gene signa-
ture) and the immune-associated cells were analyzed, and the
characteristic gene expression in the case group was compared
with that of the normal group for a more detailed investiga-
tion. The former correlation was determined using Spearman’s
rank correlation coefficient, whereas the latter process was
evaluated through the Wilcoxon signed-rank test. The AUC of
the ROC curve was measured using the timeROC (v 0.4) pack-
age to examine the accuracy of the predictive ability of genes
associated with PMOP for the probability of belonging to the
PMOP group. The prediction ability was associated with the
AUC values, wherein the general predictive value was set in
the range of AUC > 0.60, while a value of AUC > 0.70 was set
as a good predictive value. The R-4.0.3 software was utilized
for statistical analysis in this research. A P value < 0.05 was
considered statistically significant.

Results
m6A-DEGs in PMOP
Firstly, six m6A-related DEGs were identified between the con-
trol groups and PMOP groups. Further, we drew the expres-
sion heatmap of six m6A DEGs (Figure 1A) and found that the

Tan et al.
m6A-related biomarkers in PMOP 3 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


Figure 1. The expression levels of m6A RNA methylation regulators between postmenopausal and premenopausal samples. (A) Heatmap of m6A
RNA methylation regulator expression levels in each sample; (B) The chromosomal positions of the m6A-DEGs. *P < 0.05; **P < 0.01; ***P < 0.001.

expressions of WTAP, ZC3H13, RBM15, YTHDC1, and FMR1 in
the PMOP group were higher than those in the control group
(P < 0.01). In the control group, RBM15B expression was greater
than that in the PMOP group. The chromosomal positions of the
m6A-DEGs were plotted on a loop graph (Figure 1B).

Consensus clustering of m6A genes among three clusters
The m6A-related genes were categorized according to their
varying expression levels into different clusters. The crossover
among PMOP samples was detected to be minimal when the
consensus matrix K value was at 3 (Figure 2A). The expres-
sion of six m6A regulators in the clusters was studied, and
the associated boxplots were plotted (Figure 2B). The resulting
plots depicted the increased expression of WTAP in Cluster A
compared to that in other clusters (P < 0.01). The expression
level of RBM15B in Cluster B was elevated compared to the other
clusters (P < 0.01), while the expressions of ZC3H13, RBM15,
YTHDC1, and FMR1 in Cluster C were at a higher level than
those in other clusters (P < 0.01). Additionally, the three dis-
tinct patterns of distribution of PCA lend credence (Figure 2C)
to the classification generated by consensus clustering anal-
ysis. Increasing data show that osteoporosis advancement is
strongly associated with the immune milieu, leading to the
notion that the immune microenvironment can play a role in
postmenopausal osteoporosis progression. Therefore, the vari-
ation in the infiltration status of lymphocytes was investigated.
As shown in the figure (Figure 2D), immune cell infiltration
landscapes across the three groups were significantly different.
Immune cell infiltration analysis of the bone microenvironment
showed that the m6A B cluster was significantly correlated
with CD56 dim cells, immature dendritic cells, macrophages,
and monocytes in peripheral blood. m6A C was significantly
associated with immature B cell monocytes.

Immune microenvironment of the three clusters
The immune microenvironment analysis of the six m6A regula-
tors showed that the expression of FMR1 is high in immature

B cells but low in immature dendritic cells and macrophages
(Figure 3A). RBM15 was expressed at a high level in gamma
delta T cells and immature B cells, while it was expressed at a
low level in CD56dim natural killer cells (Figure 3B). RBM15B
was underexpressed in activated CD8 T cells and activated B
cells (Figure 3C). The expression of WTAP in the immunological
microenvironment was not substantially different (Figure 3D).
The immature YTHDC1 has enhanced expression in immature
B cells (Figure 3E). ZC3H13 is highly expressed in mast cells
(Figure 3F).

DEGs identification and functional annotation
To explore the potential biological differences of the m6A clus-
ter, we obtained 302 shared genes among three subgroups:
Cluster A, Cluster B, and Cluster C (Figure 4). In addition, we
performed GO and KEGG analyses on the 302 DEGs. The GO
analysis of the biological mechanisms depicted enrichment of
intersection genes in nuclear transport, protein localization to
the nucleus, and nucleocytoplasmic transport. The cytologi-
cal analysis of the aforementioned genes depicted their abun-
dance in nuclear specks and the nuclear envelope, whereas
their increased presence in transcription coregulator activity
was exhibited through analyzing molecular biological functions
(Figure 5A). The KEGG analysis of the biological mechanisms
depicted nucleocytoplasmic transport (Figure 5B).

Screening and verification of diagnostic markers
We utilized the LASSO algorithm to identify the major 12
biomarkers out of a total of 302 cross-genes (Figure 6A). The
major biomarkers from the cross-genes were detected by means
of the SVM-RFE algorithm and were found to be 168 genes
(Figure 6B). The RF algorithm was used to screen 19 key
biomarkers from 302 cross-genes (Figure 6C). After that, we
intersected the genes obtained by the three algorithms to
obtain the three diagnostic markers TUBB, CLTA, and FBXL5
(Figure 6D). The ROC curve of TUBB, CLTA, and FBXL5 showed
that they could be used as valuable biomarkers. The AUC
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Figure 2. Biological characteristics of distinct m6A clusters. (A) Consensus clustering matrix for k = 3; (B) A boxplot of the genes clustered in these
three m6A clusters; (C) Sample clustering by PCA; (D) The results of the GSEA scores in PMOP. *P < 0.05; **P < 0.01; ***P < 0.001.

value of TUBB was 0.724 (Figure 7A), that of CLTA was 0.736
(Figure 7B), and that of FBXL5 was 0.752 (Figure 7C), indicat-
ing that these three diagnostic markers had high prediction
accuracy. Differential expression analysis of these three genes
exhibited that the levels of expression of TUBB (Figure 7D) and
CLTA (Figure 7E) in the samples of normal patients were higher
than those of PMOP patients, whereas the results were vice
versa for FBXL5 (Figure 7F). In order to further verify the accu-
racy of these three genes, ROC curve verification was performed
in another dataset (GSE56116). The AUC value of TUBB was 0.778
(Figure 7G), that of CLTA was 0.778 (Figure 7H), and that of
FBXL5 was 0.889 (Figure 7I). Furthermore, we validated these
three genes using clinical samples, and the results showed that
the expression of TUBB and CLTA was significantly higher in the
control group than in PMOP. On the contrary, the expression
of FBXL5 in PMOP was significantly higher than that in normal
samples (Figure 7J).

To construct a nomogram model of postmenopausal
osteoporosis and premenopausal classification
Using these diagnostic markers, we constructed a nomogram
to predict PMOP (Figure 8A). By scoring the above features,

the higher the total score, the greater the probability of PMOP
occurring. Through the calibration curve, we observed a strong
agreement between the predicted and actual probabilities of
the nomogram (Figure 8B). DCA revealed that although both
the nomogram model and a single diagnostic marker created
a net profit, the one from the nomogram model was much
higher (Figure 8C). Consequently, nomogram models can be
more clinically useful than individual diagnostic indicators.
The examination of the clinical influence curve demonstrates
that the nomogram model possesses good diagnostic accuracy
(Figure 8D).

Analysis of GSEA
The GSEA analysis was executed for these three key biomark-
ers, and the results recorded for TUBB showed that high expres-
sion of TUBB may affect 2-oxocarboxylic acid metabolism and
the pentose phosphate pathway. Low expression is affected by
protein export as well as pentose and basal transcription factors
(Figure 9A).

CLTA showed that high expression of CLTA may affect
the pentose phosphate pathway and fructose and mannose
metabolism. Low expression affects steroid biosynthesis and
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Figure 3. Expression of genes in immune cells in PMOP. (A) The expression of FMR1; (B) The expression of RBM15; (C) The expression of RBM15B;
(D) The expression of WTAP; (E) The expression of YTHDC1; (F) The expression of ZC3H13. *P < 0.05; **P < 0.01; ***P < 0.001.

nucleocytoplasmic transport (Figure 9B). The GSEA analysis of
FBXL5 showed that high expression of FBXL5 may affect protein
export, basal transcription factors, and ribosome biogenesis in
eukaryotes. Low expression of the gene is affected by fructose
and mannose metabolism and 2-oxocarboxylic acid metabolism
(Figure 9C).

Discussion
The prevalence of osteoporosis is particularly high in post-
menopausal women of older age, thereby placing these women
at risk of fractures. Regarding this age range, the increas-
ing morbidity and mortality linked with hip and spinal frac-
tures have been somewhat worrying. The main purpose of
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Figure 4. Venn diagram of DEGs. There were 302 DEGs among the three
m6A gene patterns.

osteoporosis treatment is to stop bones from fracturing through
various means such as slowing or blocking bone loss, main-
taining bone strength, and reducing or eliminating causes of
fractures [19].

In eukaryotes, the major epigenetic modification that per-
forms various functions in biological processes is the N6-
methyladenosine (m6A) modification, which is involved in the
biological onset and progression of various diseases. Accumu-
lating data suggest that m6A modification plays a dominant role
in bone development and osteoporosis metabolism as a novel
epigenetic transcriptome marker [20, 21]. Currently, data from
many experiments have illustrated the role of m6A modifica-
tions in osteoporosis by linking various molecular mechanisms
involved in this disease to m6A modifications. Chen et al. [22]
found that the osteogenic differentiation of mesenchymal stem
cells (MSCs) was enhanced through m6A demethylation medi-
ated by FTO in the 3’ UTR of PPARG mRNA. Peng et al. [23]
found that osteogenesis could be promoted through the m6A
methylation of LINC00657 mediated by METTL3. Li et al. [24]
identified six novel PMOP-related genes using genome-wide
association and transcriptome prediction models. The role of
bone metabolism, the bone marrow microenvironment, and
the immune system is crucial. As such, future research should
integrate GWAS, transcriptomics, and m6A methylation data
to further investigate the precise role of m6A in the regula-
tion of PMOP-associated genes in order to elucidate a more
precise PMOP molecular regulatory network and provide new
targets for personalized therapy. Wu et al. [25] showed that the
m6A methyltransferase METTL3 in bone marrow MSCs (BMM-
SCs) could induce osteoporosis in mice, and overexpression
of METTL3 protected mice from estrogen deficiency-induced

osteoporosis. Therefore, searching for distinct diagnostic mark-
ers, analyzing the infiltration pattern of PMOP immune cells,
mining the database related to PMOP to find more characteristic
genes, providing new ideas for the treatment and prevention of
PMOP, and promoting the prognosis of PMOP cases are of great
significance.

The three different PMOP subtypes were identified in this
research. PMOP cluster B was considerably associated with
basic transcription factors and peripheral blood CD56 dim cells,
immature dendritic cells, macrophages, and monocytes. In the
PMOP C cluster, immature B cells were significantly associated.
The association between genes constructing the genetic signa-
tures and immune cells was examined. The analysis indicated
a significant association of FMR1 with immature B cells, imma-
ture dendritic cells, and macrophages. RBM15 was significantly
associated with gamma delta T cells, immature B cells, and
CD56 dim natural killer cells. RBM15B was significantly associ-
ated with activated CD8 T cells and activated B cells. YTHDC1
is significantly associated with immature B cells. ZC3H13 is
significantly associated with mast cells. A large body of lit-
erature has studied the relationship between immune cells
and bone. Macrophages can affect the formation of osteocytes
through paracrine signaling or direct cell-to-cell contact and
can also secrete reactive oxygen species (ROS) and inflamma-
tory cytokines (IL-1β, IL-6, TNF-α) to influence the formation of
osteoclasts [26]. Mast cells themselves contain many osteoclast
mediators, including IL-6 and TNF-α. Kroner et al. showed that
stimulated mast cell supernatant induced osteoclast genesis
when estrogen was absent [27, 28].

Several experiments have indicated that the lack of estro-
gen is an important factor that affects the formation of
postmenopausal osteoporosis. In a physiological state, estrogen
utilizes various signaling pathways to protect osteoblasts from
apoptosis, enhance the proliferation, maturation, and ossifica-
tion of osteoblasts, and maintain the formation of bone [29, 30].
The decrease in estrogen levels in postmenopausal women elim-
inates this protective effect on bone, promotes osteoclast gener-
ation and bone resorption, and inhibits apoptosis of osteoclasts
through various processes [29, 31]. Manolagas et al. pointed out
that the loss of estrogen reduces the defense against oxidative
stress in bone and unbalances the REDOX reaction. This exces-
sive increase in ROS leads to the excessive proliferation of osteo-
clasts, resulting in a gradual decline in the volume and density
of bone tissue [32]. The role of estrogen in the formation of
osteoporosis through its effect on the immune system has been
well established in many studies. Estrogen can inhibit osteo-
clast formation by down-regulating T lymphocytes and other
inflammatory cytokines. Estrogen deficiency increases T cell
activity, upregulates some inflammatory cytokines (IL-1β, IL-6,
TNF-α), increases the expression of NF-κB Ligand (RANKL), and
stimulates osteoclast production and bone resorption [33, 34].
Under conditions of estrogen deficiency, B lymphocytes regu-
late the production of osteoclasts by secreting RANKL, while
neutrophils become overactivated, leading to osteoblast apop-
tosis and increased osteoclast production by releasing ROS [28].
Because our knowledge of the relationship between the immune
system, estrogen, and osteoporosis is incomplete, further study

Tan et al.
m6A-related biomarkers in PMOP 7 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


Figure 5. The differentially expressed genes were analyzed using GO and KEGG.

Figure 6. The selection of postmenopausal osteoporosis (PMOP) feature genes by three algorithms. (A) Least absolute contraction and selection
operator (LASSO) algorithm; (B) Support vector machine-recursive feature elimination (SVM-RFE) algorithm; (C) Random forest (RF) algorithm; (D) The
intersection of characteristic genes screened by the three algorithms.
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Figure 7. Screening and verification of diagnostic markers. (A) The AUC value of TUBB was 0.724; (B) The AUC value of CLTA was 0.736; (C) The AUC
value of FBXL5 was 0.752; (D) The expression of TUBB in the normal groups was higher than that in the PMOP groups; (E) The expression of CLTA in the
normal groups was higher than that in the PMOP groups; (F) The expression of FBXL5 in the PMOP groups was higher than that in the normal groups;
(G) The AUC value of TUBB was 0.778; (H) The AUC value of CLTA was 0.778; (I) The AUC value of FBXL5 was 0.889; (J) Differential expression of TUBB, CLTA,
and FBXL5 between the control group and PMOP group. *P < 0.05; **P < 0.01; ***P < 0.001. C: Control; P: PMOP.
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Figure 8. Developing a postmenopausal and premenopausal nomogram model. (A) A nomogram model was created considering the selected diagnostic
indicators (TUBB, CLTA, FBXL5); (B) A description of the nomogram model’s diagnostic capacity calibration curve; (C) Based on DCA, nomogram models have
more clinical usefulness than individual diagnostic indicators; (D) Clinical impact curves reveal that the nomogram model possesses a high capacity for
diagnosis.

is required. A potentially beneficial strategy to treat PMOP
would be to target the immune system. In addition, the inter-
section genes of these three different PMOP isoforms were
analyzed by GO enrichment analysis, and the results indi-
cated a significant association of the 302 PMOP central genes
with biological processes such as macrophage autophagy and
protein dephosphorylation. Osteoporosis is characterized by
reduced bone mass and significant adipose tissue accumulation
within the bone marrow environment. Autophagy is extremely
important in the elimination of dysfunctional or unnecessary
organelles and proteins [35].

Recent research has shown that m6A modification plays a
vital role in the regulation of autophagy and adipogenesis [36].
Qi et al. [37] found that autophagy affects the develop-
ment of PMOP by regulating endogenous BMMSCs. Jiao
et al. [38] found that m6A modification could inhibit adipocyte

differentiation. Singh et al. [39] found that autophagy regulates
fat accumulation and lipogenesis. Recent studies have shown
that dephosphorylation not only plays a crucial role in the con-
trol of osteogenesis and adipogenesis [40] but is also involved in
the regulation of chondrocytes [41]. Aging or other pathological
stimuli affect the imbalance of protein phosphorylation, which
contributes to bone marrow obesity and progressive bone loss,
leading to the development of osteoporosis [40].

In this study, LASSO, RF, and SVM-RFE algorithms were per-
formed using previously obtained 302 central genes. Three hub
genes related to PMOP were identified from the intersection
of genes obtained by these three algorithms. Later, to identify
the three characteristic genes, CLTA, TUBB, and FBXL5, the ROC
curve was used for analysis, and the results indicated that the
gene marker under study had excellent predictive ability. At
present, no relevant studies have investigated the mechanism
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Figure 9. GSEA analysis Results of diagnostic markers. (A) GSEA analysis results of TUBB; (B) GSEA analysis results of CLTA; (C) GSEA analysis results of
FBXL5.
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between CLTA and PMOP. Huang et al. found that CLTA was
linked with rheumatoid arthritis [42]. They discovered that
CCAAT/enhancer binding protein β (C/EPPβ) combined with
CLTA was involved in FAO metabolism, which caused osteo-
clast overgeneration and bone destruction. At the same time,
many studies have confirmed that the FAO metabolic mecha-
nism is involved in osteoclast metabolism [43, 44], and it can be
assumed that CLTA may also affect PMOP by similarly causing
bone loss. The mechanism of this interaction needs to be further
studied. TUBB is one of the components that form microtubules.
Previous studies have shown that microtubules affect bone
resorption through their effects on the actin cytoskeleton of
osteoclasts [45, 46]. The relationship between microtubules and
the actin cytoskeleton is physiological and functional [46]. The
actin cytoskeleton and microtubules are required for the devel-
opment of foot processes and osteoclast bone resorption [47].
Kodama [48] pointed out that microtubules mediate the forma-
tion of podosomes by microfilaments and affect the differentia-
tion and maturation of osteoclasts.

At present, the mechanism of action between TUBB and
PMOP is not yet known, although it is believed that TUBB
may also affect the generation of osteoclasts by regulating
osteoclast activity, thus leading to OP. Iron is an important
substance in human cell metabolism. Numerous investiga-
tions conducted recently have revealed a clear association
between abnormal iron metabolism and osteoporosis [49]. Post-
menopausal women experience an accumulation of iron along
with estrogen deficiency. According to Chen et al., increased
iron levels are a risk factor for PMOP in postmenopausal
women [50]. A disorder of iron metabolism affects bone
homeostasis [51]. In addition to promoting osteoclast differen-
tiation and osteoblast death, excess iron decreases osteoblast
proliferation and differentiation [50]. Several studies have
indicated a close correlation of FBXL5 with iron metabolism,
and FBXL5 can affect cellular iron metabolism by mediating
iron regulatory protein 1 (IRP1) and iron regulatory protein
2 (IRP2) [51, 52]. According to Liu et al., iron buildup con-
trols osteoblast apoptosis through the lncRNA XIST/Mir-758-
3p/caspase 3 axis, leading to osteoporosis [53]. Although the
direct mechanism of FBXL5 and PMOP has not been studied, we
believe that FBXL5 is likely to cause osteoporosis by affecting
iron metabolism.

Despite this, there are still some limitations in this study,
which systematically analyzed the GEO public database and
confirmed that TUBB, CLTA, and FBXL5 could be identified as
potential diagnostic markers of PMOP using ML algorithms.
First of all, this study is mostly based on bioinformatics data
mining, and further experimental validation of the biological
functions of these markers in PMOP progression is warranted.
Second, the heterogeneity of the samples may affect the univer-
sality of the analysis results because the data are obtained from
public databases. Therefore, to further prove the reliability and
application value of this study, future studies should confirm
the specific mechanisms of TUBB, CLTA, and FBXL5 in PMOP
development via cell experiments, animal models, and clinical
samples, and evaluate their utility value with respect to clinical
diagnosis and treatment.

Conclusion
This study has identified and validated that TUBB, CLTA, and
FBXL5 could serve as potential diagnostic markers for PMOP
and has shown their utility in early screening, personalized
risk assessment, and targeted therapy. These genes can serve as
non-invasive blood tests to increase the early diagnosis rate of
PMOP and be potential therapeutic targets for iron metabolism
regulation, microtubule stability, and immune intervention.
Future work should integrate clinical validation, multi-omics
analysis, and novel molecular intervention strategies to facil-
itate the precise diagnosis and treatment of PMOP and offer
patients more effective prevention and treatment measures.
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