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R E S E A R C H A R T I C L E

Immunogenic cell death-related risk signature for tumor
microenvironment profiling and prognostic prediction
in colorectal cancer
Pengcheng Wang 1∗, Wei Zhao 2, Linghong Guo 1, and Hailei Cao 3

Immunogenic cell death (ICD) reshapes the tumor immune microenvironment and activates the adaptive immune response. However,
the clinical significance of ICD-associated genes in colorectal cancer (CRC) remains unclear. In this study, we used weighted gene
co-expression network analysis (WGCNA) to identify ICD-related gene modules. An ICD-related risk score (ICDRS) was then constructed
using Cox regression modeling and LASSO analysis. Immune cell infiltration in patients with different risk levels was assessed using the
ESTIMATE and single-sample Gene Set Enrichment Analysis algorithms (GSEA). The oncoPredict package was employed to explore the
association between the ICDRS and chemotherapy drug sensitivity. Finally, the expression levels of ICD-related genes were validated
through in vitro cellular experiments. Three CRC prognostic genes—CLMP, Neuropilin-1 (NRP1), and PLEKHO1—were identified from a
set of 34 ICD-associated genes based on WGCNA and LASSO analyses. These genes were used to construct the ICDRS model. Notably,
a high ICDRS was found to be an independent predictor of poorer overall survival (OS) in CRC patients. High-risk patients also exhibited
increased immune cell infiltration. Moreover, the ICDRS was significantly correlated with sensitivity to conventional chemotherapeutic
drugs, suggesting its potential utility in guiding personalized chemotherapy. Cellular assays confirmed that CLMP, NRP1, and PLEKHO1
were differentially expressed between normal and cancerous cells, and that NRP1 specifically promoted the proliferation, migration,
and invasion of CRC cells. In conclusion, the ICDRS may serve as a reliable predictor of CRC prognosis and offers a promising direction
for the clinical management of CRC patients.
Keywords: Colorectal cancer, CRC, drug resistance, prognostic signature, immunogenic cell death, ICD, tumor immune
microenvironment, TIME, cancer.

Introduction
Colorectal cancer (CRC) ranks as the third most frequently
diagnosed cancer worldwide. Its annual incidence has reached
1.9 million cases, accounting for approximately 10% of all newly
diagnosed cancers globally. Notably, there is a rapid rise in CRC
incidence among younger populations in both developed and
developing regions [1, 2]. The progression of CRC is a complex,
multistep process involving various genetic alterations. CRC
cells display distinct biological behaviors, including aggressive
proliferation, a high tendency for relapse, and the potential to
metastasize [3, 4]. Despite advances in treatment, CRC survival
rates remain poor [5–7], highlighting the urgent need for novel
prognostic, therapeutic, and diagnostic biomarkers.

Immunogenic cell death (ICD) is a form of cell death [8, 9]
characterized by an active interaction between immune cells
and dying cells, representing a key mode of communication
between the immune system and tumor cells [10]. ICD primarily

occurs through apoptosis, during which damage-associated
molecular patterns (DAMPs) are released from tumor cells.
These DAMPs are recognized by NOD-like receptors (NLRs) and
innate immune receptors such as Toll-like receptors (TLRs),
triggering immune responses that specifically target tumor
cells. This dual mechanism—directly killing cancer cells while
enhancing antitumor immunity—can both promote and pro-
long the effectiveness of chemotherapeutic drugs [11, 12]. A pre-
vious study developed and validated an ICD risk signature for
lower-grade glioma based on the expression, function, and
genetic alterations of 34 ICD-associated genes, ultimately iden-
tifying a 12-gene signature [13]. Additionally, two ICD-related
subtypes were identified using consensus clustering, and
an ICD-associated prognostic model was established to pre-
dict survival in patients with head and neck squamous cell
carcinoma [14]. In another study, single-cell analysis of ascend-
ing thoracic aortic aneurysms revealed that endothelial cells
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were the primary targets of ICD. In this context, the aortic
endothelial cell receptor ACKR1 promoted the infiltration of
T cells and myeloid cells through interaction with CCL5 and
CXCL8 ligands, respectively [15]. These findings suggest that
identifying effective ICD-related biomarkers may improve clin-
ical outcomes for patients with CRC. The role of the immune
system in cancer initiation, progression, and treatment has
been extensively studied. Recent therapeutic research under-
scores the importance of the interaction between dying or dead
cancer cells and immune cells in determining the efficacy of
cancer therapies [16]. ICD stimulates both innate and adap-
tive immune responses, contributing to the development of
long-lasting immunological memory [17–19]. Similarly, many
cancer treatments aim to induce ICD to enhance antitumor
immunity and establish durable immune protection against
cancer recurrence [20].

The aim of this study was to construct a risk score model
based on ICD-related genes to evaluate its potential applica-
tion in prognosis prediction, tumor immune microenviron-
ment characterization, and personalized treatment guidance
for patients with CRC. An ICD-related risk score (ICDRS) was
established using weighted gene co-expression network anal-
ysis (WGCNA) to identify genes correlated with ICD in CRC.
The prognostic value and independent predictive performance
of the ICDRS were subsequently validated. Additionally, the
ICDRS was analyzed in relation to somatic mutation status and
copy number alterations (CNAs) through molecular character-
ization. Functional pathway alterations and immune cell infil-
tration patterns were also assessed. In conclusion, the ICDRS
model demonstrates potential as an independent prognostic
indicator for CRC and may offer novel biomarkers and thera-
peutic targets to support precision immunotherapy and person-
alized chemotherapy strategies.

Materials and methods
Data acquisition and preprocessing
Bulk-sequencing data in the form of FPKM values were log2-
transformed. Survival data for 367 primary CRC samples and
51 normal samples from The Cancer Genome Atlas Program
(TCGA, https://cancergenome.nih.gov) were processed using
the R package TCGAbiolinks [21] and used as the training
cohort (TCGA-COADREAD). Somatic mutation data (MAF files)
and CNA data based on whole-exome sequencing were also
obtained from the TCGA database. For validation, clinical data
and gene expression profiles of 50 CRC patients were collected
from the Gene Expression Omnibus (GEO; accession number:
GSE17537; https://www.ncbi.nlm.nih.gov/geo/). Clinical char-
acteristics of patients from both the TCGA-COADREAD and
GSE17537 datasets are summarized in Table S1. For genes with
multiple probes, the median expression value was used to rep-
resent gene expression.

WGCNA analysis and key ICD-associated genes
ICD-related genes identified in a previous study [22] were
used to calculate ICD enrichment scores for each sample using
the R package GSVA [23]. Co-expression network analysis

was conducted with the R package WGCNA [24], applying a
soft-thresholding power of three, which yielded a scale-free
topology fit index of 0.85. Samples with the highest ICD enrich-
ment scores and the top 50% median absolute deviation (MAD)
in expression profiles were included in the co-expression net-
work analysis. Modules containing at least 30 genes were
identified through hierarchical clustering. ICD-related modules
were selected based on their correlation with clinical data, with
the pink and turquoise modules chosen for further analysis.
Genes within these modules that exhibited high module mem-
bership (MM > 0.8) and gene significance (GS > 0.6) were
considered as hub genes.

Construction and evaluation of the ICDRS
Based on the expression value of the selected ICD-related mod-
ules, prognostic markers were identified using univariate Cox
proportional hazard regressions (P values < 0.05). Next, the
ICDRS was developed with LASSO-penalized Cox regression.
The LASSO penalty parameter λ was refined to determine the
coefficient for each gene, and the ICDRS was formulated as
follows:

Score =
n∑

i = 0
βi ∗ χ i,

where χ i represented the expression of a gene and βi repre-
sented the gene’s coefficient from the LASSO-penalized Cox
regression model. Low-risk and high-risk patients were accord-
ingly grouped by the median ICDRS value.

The correlation between clinical features and the ICDRS
Univariate Cox regression analysis was conducted to evalu-
ate the association between clinical factors—such as gender,
age, TNM stage, lymphatic invasion, and risk scores—and
patient survival [25]. The independent prognostic value of the
ICDRS was further assessed using multivariate Cox propor-
tional hazards regression. Differences in clinical characteristics
between the two risk groups were compared using the Wilcoxon
rank-sum test.

Analyses of functional and pathway enrichment
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed using
the R package clusterProfiler [26, 27]. An FDR-adjusted P value
< 0.05 was considered statistically significant. To identify
highly enriched gene sets (nominal P values <0.05 and
FDR-adjusted P values < 0.05), gene set variation analysis
(GSVA) was conducted using the 50 hallmark gene sets from the
MSigDB database.

Estimation of immune cell infiltration
Immune infiltration in each sample was assessed using the
single-sample Gene Set Enrichment Analysis (ssGSEA) algo-
rithm, based on the expression levels of immune cell-specific
markers [28]. This method was chosen because ssGSEA does
not depend on a reference dataset, making it particularly suit-
able for RNA-seq data and allowing for a comprehensive eval-
uation of immune cell infiltration at the individual sample
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level. The resulting immune infiltration scores were analyzed to
investigate their correlation with the ICDRS and their potential
role in the tumor immune microenvironment of CRC. Addition-
ally, tumor purity, as well as the abundance of intratumoral,
stromal, and immune cells within the tumor microenvironment
(TME), were estimated using the ESTIMATE algorithm based on
the gene expression profiles of CRC tissues [29].

Genetic variation analysis
Genetic variation analysis was conducted based on single
nucleotide polymorphisms (SNPs) and copy number variations
(CNVs) obtained from the TCGA database. Mutation types and
gene mutation frequencies were visualized using the R package
maftools [30]. CNA summary plots were generated with the
ggplot2 package to illustrate chromosomal changes. Addition-
ally, Circos plots were created using the RCircos package [31] to
display the genomic distribution of ICD-correlated genes.

Drug sensitivity determination
The GDSC v2 database (http://www.cancerrxgene.org) pro-
vides gene expression and drug response data for cancer cell
lines, enabling correlation analysis between drug sensitiv-
ity and risk scores. Drug response prediction was performed
using the R package oncoPredict [32, 33]. The half-maximal
inhibitory concentration (IC50) represents the drug concentra-
tion required to achieve 50% of its maximal inhibitory effect,
with lower IC50 values indicating higher sensitivity. The asso-
ciation between chemotherapy sensitivity and risk scores was
evaluated using Spearman correlation analysis.

Cell culture and cell transfection
DMEM medium containing 1% antibiotic/antifungal solution
and 10% fetal bovine serum (FBS) was used to culture the
Caco2 (CRC cell line) and NCM460 (normal colonic mucosal
epithelial cell line) purchased from the American Type Cul-
ture Collection (ATCC) at 37 °C with 5% CO2. Following the
manufacturer’s guidelines, Lipofectamine 2000 (Invitrogen,
Carlsbad, CA, USA) was utilized for cell transfection. Briefly,
Caco2 cells were seeded at a density of 2 × 105 cells per
well in a six-well plate and transfected with siRNA at a
final concentration of 50 nM using 5 μL of Lipofectamine
2000 per well. To downregulate the Neuropilin-1 (NRP1) gene,
Caco2 cells were transfected with NRP1-specific siRNA (si-
NRP1#1: 5′-CAGCCTTGAATGCACTTATAT-3′ and si-NRP1#2: 5′-
CAGAAGAATGGTACAAATCCAAG-3′, Sigma-Aldrich, St. Louis,
MO, USA), while the controls were transfected with the cor-
responding non-specific control siRNA (si-NC, Sigma-Aldrich,
St. Louis, MO, USA). After the transfection, the cells were cul-
tured in an incubator for 48 h for subsequent experimental
analysis.

Quantitative reverse transcriptase PCR (qRT-PCR)
Following the manufacturer’s guidelines, TRIzol reagent (Invit-
rogen, Carlsbad, CA, USA) was employed to separate total RNA,
which was reverse-transcribed into cDNA using the Prime-
Script RT kit (Takara Bio, Shiga, Japan). To quantify the expres-
sion levels of the CLMP, PLEKHO, and NRP1 genes, qRT-PCR
analysis was performed with the use of SYBR Green PCR

Master Mix (Applied Biosystems, Foster City, CA, USA) on an
ABI 7500 real-time PCR system (Applied Biosystems, Foster
City, CA, USA), strictly following the instructions. The primer
sequences were listed as follows: CLMP Forward Sequence 5′-3′:
TCCTACTATGTTGGAACCTTGGG and Reverse Sequence 5′-3′:
CGGTGAGCAGCCATTCAATATC; PLEKHO1 Forward Sequence
5′-3′: GGGACCAGCTCTACATCTCTG and Reverse Sequence 5′-
3′: TGGAGTGGGCAAGAGTAAACT; NRP1 Forward Sequence 5′-
3′: GGCGCTTTTCGCAACGATAAA and Reverse Sequence 5′-3′:
TCGCATTTTTCACTTGGGTGAT. GAPDH Forward Sequence 5′-
3′: GTCTCCTCTGACTTCAACAGCG and Reverse Sequence 5′-3′:
ACCACCCTGTTGCTGTAGCCAA.

CCK-8 assay
Caco-2 cells in the logarithmic growth phase were seeded into a
96-well plate at a density of 1 × 104 cells per well and incubated
at 37 °C with 5% CO2 for 0, 24, 48, or 72 h. Following incubation,
10 μL of CCK-8 solution was added to each well, and the plate
was further incubated at 37 °C for 2 h. Absorbance at 450 nm was
then measured to generate the CCK-8 curve, with absorbance
values plotted on the Y-axis and time on the X-axis.

Wound healing test
A total of 4 × 105 Caco-2 cells were suspended in 10 mL of
medium and seeded into a 10-cm dish. Once the cells reached
95% confluency, uniform wounds were created in the cell mono-
layer using the tip of a 100 μL pipette. The scratches were then
washed with PBS and the remaining cells were incubated in
complete medium containing 1% FBS at 37 °C in 5% CO2. Scratch
width was observed under an inverted microscope at 0 and 48 h
post-wounding. Images were analyzed using ImageJ software
(version 1.51n).

Transwell assay
A cell invasion assay was performed using Matrigel (BD Bio-
sciences, San Jose, CA, USA) to pre-coat the upper chambers
of Transwell inserts (8.0 μm pore size, Corning Inc., Corn-
ing, NY, USA). Transfected Caco-2 cells (si-NRP1 and si-NC)
were suspended in FBS-free DMEM and seeded into the upper
chambers, while DMEM containing 20% FBS was added to the
lower chambers as a chemoattractant. After 24 h of incubation,
non-invading cells on the upper surface were removed, and
cells that had invaded through the membrane were fixed with
4% formaldehyde and stained with 0.1% crystal violet. Invaded
cells were counted under a microscope (Olympus Corporation,
Tokyo, Japan).

Statistical analysis
All statistical analyses were performed using the R lan-
guage (https://www.R-project.org) or GraphPad Prism 8.0.2
(GraphPad Inc., La Jolla, CA, USA). Prior to hypothesis test-
ing, the normality of data distribution was assessed using
the Shapiro–Wilk test. For normally distributed data, results
were presented as mean ± standard deviation (SD), while
for non-normally distributed data, results were expressed as
median with interquartile range. Continuous variables between
groups were compared using the Wilcoxon rank-sum test
for non-normally distributed data and the Student’s t-test
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for normally distributed data. The log-rank test was used to
determine statistically significant differences in survival dura-
tions between groups under investigation. Independent prog-
nostic factors associated with survival were identified using
univariate and multivariate Cox proportional hazards regres-
sion analysis. ICD-related gene associations were assessed by
Spearman correlation analysis. Unpaired t-tests, one-way anal-
ysis of variance, and two-way analysis of variance were applied
during the statistical analysis of experimental data.

Statistical significance was set at P values < 0.05. ns: not sig-
nificant (P values > 0.05); ∗P values < 0.05; ∗∗P values < 0.01;
∗∗∗P values < 0.001; ∗∗∗∗P values <0.0001.

Results
ICD-related gene changes in CRC
A total of 34 genes involved in the ICD process were selected
for further investigation based on a recent study [22]. Differ-
ential expression analysis revealed that 82% (28 out of 34) of
these genes were significantly altered in tumor tissues com-
pared to normal samples in the TCGA-CRC cohort (Figure 1A).
Notable examples include CD8A, CD8B, CASP8, CASP1, CALR,
HSP90AA1, IFNG, IFNGR1, PRF1, PIK3CA, and TNF. CRC patients
were stratified by TNM stage, lymphatic invasion, age, gen-
der, and the presence of perineural invasion. Gene expression
comparisons showed that CD8A, CASP1, IFNG, and IL17A were
significantly downregulated in stage III/IV patients compared
to those in stage I/II, suggesting a diminished immune response
in more advanced tumors (Figure 1B). Additionally, significant
differences in the expression levels of CASP1, ATG5, EIF2AK3,
ENTPD, and IL17A were observed between patients with and
without lymphatic invasion (Figure S1A). Moreover, expression
of ENTPD1, IL1R1, LY96, MYD88, and NLRP3 was significantly
upregulated in patients with perineural invasion compared
to those without (Figure S1B). In contrast, only a few genes
were associated with age and gender in CRC (Supplementary
Figure S1C and S1D). These findings are critical for understand-
ing immunomodulation in CRC and for guiding the develop-
ment of targeted therapeutic strategies.

The genomic variation landscape of ICD-correlated genes
was also analyzed. Overall, these genes exhibited a generally
low mutation frequency, with the notable exception of PIK3CA,
which displayed missense mutations in 23% of CRC samples
(Figure 1C). This finding suggests that PIK3CA may contribute
to immune evasion and influence treatment response in CRC.
Additionally, copy number amplification of IL6 may upregulate
the expression of pro-inflammatory factors, thereby promoting
tumor progression and affecting the response to immunother-
apy (Figure 1D). The observed variation patterns in these genes
indicate that ICD-related genes may play a pivotal role in cancer
immunomodulation and could serve as valuable biomarkers for
predicting responses to immunotherapy.

Screening ICD-related gene modules based on WGCNA
WGCNA was conducted to identify key ICD-related gene clus-
ters. After removing outlier data, a soft threshold (β = 3,
scale-free R2 = 0.850) was applied to ensure the network

conformed to a scale-free topology (Figure 2A; Figure S2A).
Subsequently, correlations between module eigengenes and
ICD scores in CRC samples were calculated using ssGSEA
(Figure 2B and 2C). The pink and turquoise modules, which
showed stronger correlations than other modules, were selected
for further analysis. Applying thresholds of cor.GS > 0.6 and
MM > 0.8, a total of 183 ICD-associated hub genes were
identified (Figure 2D and 2E). Protein–protein interaction (PPI)
network analysis was performed using Metascape to fur-
ther explore the interactions among these genes (Figure S2B).
Functional enrichment analysis of GO biological processes
revealed predominant enrichment in T cell activation, immune
response-regulating signaling, immune response activation,
and leukocyte proliferation (Figure S2C). These findings were
consistent with the enriched cellular component and molecular
function terms identified in the GO analysis (Figure S2D and
S2E). KEGG pathway enrichment analysis further showed that
these genes were involved in immune-related pathways, such
as chemokine signaling and leukocyte transendothelial migra-
tion (Figure S2F).

Development of the prognostic signature ICDRS for CRC
To further identify key prognostic markers, we first selected
seven ICD-related genes—C5AR1, VIM, PLEKHO1, CSGALNACT2,
NRP1, CLMP, and GPNMB—using univariate Cox regression
analysis (Figure 3A). We then performed LASSO Cox regres-
sion analysis to determine the optimal penalty parameter
λ (Figure 3B and 3C), which was subsequently applied to
the ICDRS model. Ultimately, three prognostic genes—CLMP,
NRP1, and PLEKHO1—were selected to construct the ICDRS
model (Figure 3D). Based on the median expression levels of
these three genes, patients were categorized into high and
low expression groups. As shown in Figure 3E–3G, all three
genes were significantly associated with the prognosis of CRC
patients.

Evaluation and validation of ICDRS
ICDRS scores were calculated and evaluated in both the train-
ing and validation cohorts. Patients with high-risk scores had
significantly poorer survival outcomes compared to those with
low-risk scores (Figure 4A and 4B; log-rank test, P < 0.05).
Moreover, neither cohort exhibited any extreme or abnormal
events in the distribution of risk scores (Figure 4C and 4D).
Univariate and multivariate Cox regression analyses confirmed
that ICDRS serves as an independent prognostic indicator for
the overall survival (OS) of CRC patients (Figure 4E and 4F).
Collectively, these results suggest that the ICDRS signature may
represent a novel prognostic biomarker for CRC.

ICDRS revealed the molecular characteristics and pathway
alterations in CRC
To explore the functional differences and molecular char-
acteristics associated with ICDRS, patients were stratified
into low-risk and high-risk groups based on their ICDRS
scores. Compared to the low-risk group, high-risk patients
exhibited higher mutation frequencies in COL27A1 (9% vs 2%)
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Figure 1. Genetic landscape of ICD-related genes. (A) Genes related to ICD between tumor and normal samples were subjected to differential expression
analysis; (B) Between stage I/II and III/IV samples, differential expression analysis on the ICD-correlated genes with differences was performed; (C) Mutation
landscape of ICD-correlated genes in the TCGA-CRC cohort; (D) CNV frequencies of ICD-correlated genes. ICD: Immunogenic cell death; TCGA: The Cancer
Genome Atlas; CRC: Colorectal cancer; CNV: Copy number variation.
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Figure 2. ICD-related key gene screening. (A) Scale-free fit index analyses of network topologies for various soft-thresholding powers. (B) Gene clustering
dendrogram based on topological overlaps. Various modules were assigned different colors. (C) Module and clinical trait correlation study. MM and GS
correlation analysis. Correlation analysis using scatter plots of the pink and (D) Turquoise modules (E). ssGSEA: Single-sample Gene Set Enrichment Analysis;
ICD: Immunogenic cell death.
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Figure 3. ICD-related genes with prognostic significance. (A) The univariate Cox regression analysis of ICD-related genes was presented as forest plot;
(B) LASSO regression complexity controlled by the lambda; (C) LASSO regression confidence intervals of λ; (D) LASSO regression coefficients of the three key
prognostic genes; (E–G) According to the expressions of key prognostic genes, the OS in low and high expression groups was visually compared according
to Kaplan–Meier curves. ICD: Immunogenic cell death; OS: Overall survival; NRP1: Neuropilin-1.

Figure 4. Evaluation and validation of ICDRS. (A) Kaplan–Meier curves of OS between the low-risk and high-risk groups based on the median ICDRS in
the TCGA-CRC cohort; (B) According to the median ICDRS value in the validation cohort, Kaplan–Meier curves of OS were plotted for the two risk groups;
(C) Risk score distribution in the TCGA-CRC cohort; (D) Risk score distribution in the validation cohort; (E) Univariate and multivariate Cox regression analyses
to calculate risk score for TCGA-CRC patients; (F) Using univariate and multivariate Cox regression analyses for assessing the risk scores in validation cohort.
ICDRS: Immunogenic cell death-related risk score; TCGA: The Cancer Genome Atlas; CRC: Colorectal cancer; OS: Overall survival.

and PTEN (7% vs 1%), specifically in the form of single nucleotide
variants (SNVs). Conversely, mutations in COL7A1 were more
common in the low-risk group than in the high-risk group

(7% vs 1%). Notably, the majority of these mutations were mis-
sense variants (Figure 5A and 5B). Additionally, the high-risk
group showed significant gene amplifications and deletions
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Figure 5. Association between the ICDRS signature and molecular traits. (A) The 10 most frequently mutated genes in the high-risk group were displayed
in an oncoplot; (B) The 10 most frequently mutated genes in the low-risk group were displayed in an oncoplot; (C) Variations in copy numbers in the high-risk
group; (D) Copy number variations in the low-risk group; (E) The distribution of copy number variations between the two risk groups; (F) Heatmap of the
50 signature pathway activity scores between the two risk groups. CNV: Copy number variation; ICDRS: Immunogenic cell death-related risk score.

across several chromosomal regions, while the low-risk group
exhibited a generally lower frequency of CNVs (mean CNV
value: 0.68 for low-risk vs 0.70 for high-risk; Figure 5C–5E,
Table S2). To further assess functional differences, we

evaluated the activity of 50 cancer hallmark signatures in
the TCGA-CRC cohort. Substantial differences in hallmark
pathway activity were observed between the two groups
(Figure 5F). The high-risk group demonstrated elevated activity
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in pathways, such as HYPOXIA, TGF-β signaling, APOPTOSIS,
NOTCH signaling, and the INTERFERON GAMMA RESPONSE.
In contrast, the low-risk group showed upregulation of MYC
targets and PEROXISOME-related processes. These findings
support the utility of ICDRS in accurately distinguishing CRC
patients based on distinct biological processes.

Immune infiltration profiles defined by ICDRS
ICDRS stratification was positively correlated with immune
infiltration, as the high-risk group exhibited higher ESTIMATE,
stromal, and immune scores—indicating greater immune
cell infiltration and lower tumor purity (Figure 6A–6D). A
comprehensive analysis of immune cell subtypes revealed
elevated levels of immunosuppressive cells, such as T follicular
helper cells and regulatory T cells, in the high-risk group
(Figure 6E) [34, 35]. Additionally, the ICDRS was strongly
associated with tumor mutation burden (Figure 6F, R = 0.31,
P = 7.4e-09), T cell receptor (TCR) diversity (Figure 6G,
R = 0.5, P < 2.2e-16), and cytolytic activity (Figure 6H,
R = 0.55, P < 2.2e-16). The ICDRS was also significantly higher
in the MSI-high group (Figure 6I, Wilcoxon rank-sum test,
P = 5e-04). These findings suggest a complex TME in CRC,
where immune suppression and anticancer immune responses
coexist.

ICDRS-guided chemotherapy strategies
By stimulating ICD with specific chemotherapy agents,
tumors may become more susceptible to checkpoint block-
ade therapies. However, identifying the optimal combi-
nation of chemotherapy and immunotherapy remains a
significant challenge [36, 37]. Since the ICDRS was devel-
oped based on ICD-associated genes, we hypothesized that
it might also be correlated with chemotherapy response.
The oncoPredict R package was used to estimate the
IC50 values of various drugs. Spearman correlation anal-
ysis was then performed between the log2-transformed
IC50 values of each drug and the ICDRS. The ICDRS
was negatively correlated with sensitivity to AZ960_1250,
AZD1332_1464, AZD8055_1059, ribociclib_1632, WZ4003_1614,
and XAV939_1268 (Figure 7A). Notably, AZ960—a novel Jak2
inhibitor—has been reported to effectively induce apoptosis in
cancer cells [38]. In contrast, the sensitivity to BI-2536_1086,
dihydrorotenone_1827, SB5051_1194, SCH772984_1564, ulixer-
tinib_1908, and ulixertinib_2047 showed a positive correlation
with the ICDRS (Figure 7B), suggesting their potential as
candidate treatments for cancer patients with varying ICDRS.
Nevertheless, further research is needed to validate the
association between ICDRS and drug susceptibility.

The expressions of characterized genes in CRC cells
To further validate the prognostic signatures we identified, we
first examined the expression levels of CLMP, PLEKHO, and
NRP1 in CRC cells (Caco2) and normal colonic mucosal cells
(NCM460) using qRT-PCR and Western blotting. The mRNA
expression levels of PLEKHO and NRP1 were significantly ele-
vated in CRC cells compared to NCM460 cells, while CLMP
expression was significantly downregulated (Figure 8A). Con-
sistently, the protein levels of these genes mirrored the mRNA

expression patterns (Figure 8B). Previous studies have shown
that NRP1 is closely associated with tumor progression and
metastasis and is significantly linked to poorer patient survival
in CRC [39]. Based on this evidence, we selected NRP1 for further
investigation to evaluate the impact of its knockdown on CRC
cell proliferation, migration, and invasion (Figure 8C). CCK-8
assay results demonstrated that silencing NRP1 expression sig-
nificantly suppressed the proliferation of CRC cells (Figure 8D).
Additionally, NRP1 knockdown markedly inhibited CRC cell
migration and invasion (Figure 8E and 8F). These findings sug-
gest that prognostic markers identified based on ICD-related
genes may play important roles in the development and pro-
gression of CRC.

Discussion
Advancements in treatment have been made; however, CRC
remains a deadly disease characterized by significant hetero-
geneity. This variability underscores the need to optimize ther-
apies to improve survival rates and reduce mortality. As such,
identifying reliable prognostic biomarkers is essential for strat-
ifying survival risk and guiding therapeutic strategies tailored
to specific subtypes. Li et al. employed a multistep approach
to construct a signature map based on immune-related genes
using data from the TCGA and GEO databases. Their find-
ings indicated that CRC patients with low immune risk scores
experienced better outcomes with immunotherapy [40]. Sim-
ilarly, Zhao et al. [41] explored the molecular characteristics
of PANoptosis in CRC prognosis and developed a predictive
model incorporating four PANoptosis-related genes: TIMP1,
CDKN2A, CAMK2B, and TLR3. The ICDRS offers a distinct
advantage over existing prognostic indicators in assessing CRC
patient outcomes. As a novel form of regulated cell death, ICD
has been shown to enhance adaptive immunity and amplify
anti-tumor immune responses. This suggests that identify-
ing ICD-related biomarkers could help pinpoint CRC patients
more likely to benefit from immunotherapy [42]. The ICDRS,
based on the expression of ICD-related genes, captures complex
changes within the TME. It enables more accurate identification
of high-risk patients who may require intensified treatment
or immunotherapy, offering greater predictive accuracy and
enhanced value for individualized treatment planning.

In this study, we first assessed the expression differences of
ICD-correlated genes in both CRC and adjacent normal tissue
samples using public databases, and analyzed the variants of
ICD-related genes in the TCGA-CRC cohort. The intracellular
mediator phosphatidylinositol-3-kinase (PI3K), encoded by the
PIK3CA gene, plays a crucial role in promoting cell transforma-
tion and proliferation, tumor initiation, and resistance to apop-
tosis. Activation of PI3K occurs in response to external growth
factors and hormones [43]. Dysregulation of PI3K leads to the
activation of AKT, a serine/threonine kinase, in various cancer
types, ultimately affecting numerous downstream proteins that
drive unchecked cellular and tumor proliferation [44]. Approx-
imately 15%–20% of CRC cases harbor activating mutations in
PIK3CA, which are associated with OS and progression-free sur-
vival in CRC patients [45]. Moreover, PIK3CA mutations are
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Figure 6. The tumor immune microenvironment and immunogenomic characteristics of CRC related to theICDRS. ESTIMATE score comparison (A),
immune score (B), stromal score (C), and tumor purity (D) calculated using ESTIMATE between the high- and low-risk groups. (E) Comparison of the immune
cell abundances between the two risk groups. Spearman correlation between the ICDRS risk score and tumor mutation burden (F), TCR diversity (G), and
cytolytic activity (H). (I) ICDRS risk score distribution in the MSI-high and MSI-stability cohorts. To determine significance, the Wilcoxon rank-sum test was
utilized. “ns”: P values > 0.05, “∗”: P values < 0.05, “∗∗”: P values < 0.01, “∗∗∗”: P values < 0.001, and “∗∗∗∗”: P values < 0.0001. TCR: T cell receptor;
ICDRS: Immunogenic cell death-related risk score; CRC: Colorectal cancer.
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Figure 7. Correlation of the sensitivity of drugs with ICDRS signature. (A) Top six agents negatively associated with ICDRS; (B) Top six agents positive
associated with ICDRS. ICDRS: Immunogenic cell death-related risk score.

linked to distinct immune profiles in gastric cancer and can
modulate tumor immunogenicity [46]. Notably, we observed a
high mutation frequency of PIK3CA in CRC samples based on
the mutation profiles of ICD-associated genes, suggesting that
PIK3CA mutations may influence CRC growth and progression
via DAMPs, by altering the tumor’s immune response.

The ICDRS was developed for CRC by integrating LASSO Cox
regression analysis, univariate Cox regression, and WGCNA.
It demonstrated strong predictive power for independently
assessing the survival outcomes of CRC patients. The robust-
ness of the signature was validated using both internal and
multiple external datasets. Notably, many genes analyzed
in this study have previously been associated with CRC. For
example, C5AR1 acts as a master regulator in CRC tumorigenesis
through immune modulation [47]. The expression of VIM

changes in Caco2 cells after co-cultivation with CRC-associated
bacteria [48]. The prognostic relevance and underlying
mechanism of PLEKHO1 in the immune microenvironment
of colon cancer have also been reported [49]. PLEKHO1 con-
tributes to the development of renal cell carcinoma, and its
knockdown significantly inhibits cancer cell viability while
promoting apoptosis [50]. CLMP regulates colon epithelial
cell proliferation and helps prevent tumor growth [51]. It
also has an anti-CRC effect and influences the resistance of
CRC cells to all-trans retinoic acid [52]. NRP1, an important
immunomodulatory receptor, is closely linked to CRC pro-
gression. Its role in the TME is multifaceted, involving both
immunosuppression and angiogenesis [53]. NRP1 suppresses
anti-tumor immune responses by enhancing regulatory T cell
infiltration and promoting immune escape [54]. It also activates
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Figure 8. The role of ICDRS signature on the biological function of CRC cells. (A) The mRNA expression levels of NRP1, CLMP, and PLEKHO in NCM460
and Caco2 cells, respectively; (B) The protein expression levels of NRP1, CLMP, and PLEKHO in NCM460 and Caco2 cells, respectively; (C) Based on qRT-PCR
to verify the efficiency of NRP1 knockdown (si-NRP1#1 and si-NRP1#2); (D) CCK-8 assay to verify the effect of NRP1 knockdown on the proliferative capacity
of CRC cells; (E) Wound healing assay to assess the effect of NRP1 on the migration of CRC cells; (F) Transwell assay to assess the ability of NRP1 knockdown
to inhibit invasion of CRC cells. All procedures were subjected to three independent repetitive tests. “∗”: P values < 0.05, “∗∗”: P values < 0.01, “∗∗∗”:
P values < 0.001, and “∗∗∗∗”: P values < 0.0001. NRP1: Neuropilin-1; ICDRS: Immunogenic cell death-related risk score; qRT-PCR: Quantitative reverse
transcriptase PCR; CRC: Colorectal cancer.

angiogenic pathways by interacting with vascular endothelial
growth factor receptor 2 (VEGFR2), thereby increasing nutrient
supply to tumors and driving tumor growth and metastasis [55].
This study is the first to demonstrate the impact of NRP1
on CRC cell proliferation, migration, and invasion based on
ICD-related genes. Thus, NRP1 is not only a key mediator
of tumor immunomodulation but also plays a central role
in angiogenesis. Targeting NRP1 may help restore immune
responses and inhibit angiogenesis, offering a promising
strategy for both immunotherapy and anti-tumor treatment.

CRC is often associated with chronic inflammation [56].
Inflammation in the gastrointestinal tract can trigger
cancer-promoting genetic changes and initiate CRC devel-
opment. Additionally, immune cells, such as myeloid and
lymphoid cells infiltrate tumors and drive “tumor-provoked
inflammation,” which promotes cancer progression by support-
ing the survival and proliferation of malignant cells [57, 58].
In this study, we identified two ICDRS subtypes with distinct
TME profiles. A higher ICDRS was associated with increased
infiltration of various immune cells, suggesting the coexis-
tence of both pro- and anti-tumor components within the
TME. The presence of activated CD4+ and CD8+ T cells in
CRC patients has been closely linked to effective antitumor
immunity [59, 60], while follicular helper T cells are also associ-
ated with improved survival outcomes in CRC [61]. On the other
hand, Th17-type cytokines can promote CRC tumorigenesis
by activating the STAT3 and NF-κB pathways [62]. Given this
dual nature of immune activation and suppression, GSVA
revealed that immune-related characteristics were enriched
in the high ICDRS group. Compared to patients with low ICDRS
scores, those with high ICDRS are more likely to benefit from

checkpoint inhibitor therapy, as they exhibit elevated levels of
immune checkpoints.

Limitations
Despite these promising findings, the present study has some
limitations. The analysis of the relationship between ICDRS and
therapeutic sensitivity to anti-PD-L1 treatment was constrained
by the limited availability of data from CRC patients under-
going immune checkpoint blockade (ICB) therapy. To gain a
deeper understanding of the molecular mechanisms underly-
ing CRC immunobiology, future research should aim to vali-
date the prognostic value of ICDRS using larger, multi-omics
datasets. Additionally, transcriptomic analyses could be fur-
ther enhanced by integrating proteomic and metabolomic data.
Importantly, the functional roles of the identified prognostic
genes in CRC should be validated through experimental studies,
such as mouse xenograft or gene knockout models.

Conclusion
This study established and validated a robust ICD-correlated
prognostic signature that accurately predicts survival outcomes
and reveals distinct immune profiles and molecular character-
istics between the two CRC risk groups. Further research and
validation are needed to explore the therapeutic implications of
this signature in CRC.
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