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ABSTRACT

Single-cell RNA sequencing (ScCRNA-seq) has significantly advanced our understanding of
cellular heterogeneity and the complex interplay within the tumor microenvironment (TME)
of colorectal cancer (CRC). However, translating these molecular insights into clinically
actionable prognostic biomarkers and therapeutic strategies remains a considerable challenge.
In this study, we conducted a comprehensive scCRNA-seq analysis of 306 CRC samples
comprising 448,255 cells to characterize the TME in depth. By constructing intercellular
communication networks based on connection counts and communication probabilities, we
identified fibroblasts as central regulatory hubs within the TME. Using Wilcoxon rank-sum
tests and univariate survival analyses, we initially identified 23 prognostic fibroblast markers.
These were refined to a seven-gene fibroblast-related prognostic signature via an integrated
machine learning approach. The signature exhibited robust predictive performance in the The
Cancer Genome Atlas - Colon Adenocarcinoma (TCGA-COAD) training cohort (n=351; C-
index=0.65) and was successfully validated in the GSE17536 dataset (n=177; C-index=0.63).
Functional enrichment analyses revealed that this signature is involved in immune regulation
and multiple tumor-associated cellular pathways. Notably, high-risk patients displayed
increased macrophage and NK cell infiltration, impaired immune function, and elevated
immune rejection scores, while low-risk patients demonstrated heightened sensitivity to
camptothecin and irinotecan. Together, our findings underscore the prognostic value of
fibroblast-derived signatures in CRC and support their potential utility in risk stratification and
the development of personalized therapeutic strategies, contributing to the advancement of

precision oncology.

Keywords: Colorectal cancer; CRC; fibroblasts; prognosis signature; machine learning;
therapy.



INTRODUCTION

According to GLOBOCAN 2022, colorectal cancer (CRC) ranks fourth in global cancer
incidence and third in cancer-related mortality.[1]. Despite advances in multimodal
treatments[2, 3], patient outcomes remain poor, particularly for advanced cases with only 14%
five-year survival rates [4, 5]. The poor prognosis of CRC can be attributed to several key
factors. In particular, tumor heterogeneity-induced differential treatment responses and
acquired drug resistance have led researchers to increasingly focus on the determinant
influence of the tumor microenvironment (TME) in tumor prognosis and therapeutic

outcomes|6, 7].

Recent studies[8, 9] have demonstrated that TME elements significantly influence CRC
progression and treatment outcomes. While researchers have developed multiple prediction
models derived from survival- correlated genes, these approaches have largely focused on
tumor cell characteristics alone[10], overlooking the crucial role of the TME. Cancer-
associated fibroblasts (CAFs) within the TME secrete various growth factors and cytokines
that promote tumor growth and metastasis[11]. The composition of tumor-infiltrating
lymphocytes has also been found to be closely associated with patient survival rates, with
higher CD8+ T cell density typically indicating a better prognosis[12]. In addition, Regulatory
T cells and myeloid-derived suppressor cells create an environment that inhibits anti-tumor
immune responses[13]. This immunosuppression particularly affects the efficacy of
immunotherapy, with only 15% of microsatellite instability-high CRC patients responding to
immune checkpoint inhibitors (ICIs). Based on these complex interactions within the TME, a
deep understanding and specific targeting of the key regulatory factors of the TME are expected
to provide an important theoretical foundation for the prognosis assessment and optimization

of personalized treatment plans for CRC.

Recent advances in single-cell RNA sequencing (SCRNA-seq) [14] have enhanced our analysis
of TME complexity. scRNA-seq provides gene expression profiles at single-cell
resolution[15], enabling detailed cell subpopulation analysis, as demonstrated in CRC research
where it identified distinct T cell exhaustion states[16]. While bulk RNA-seq[17] lacks this
resolution, it offers larger-scale data essential for clinical pattern identification. Integrating
these complementary approaches - combining the high-resolution cellular analysis of SCRNA-
seq with the large-scale validation capabilities of bulk RNA sequencing - represents a powerful

prognostic assessment strategy in contemporary cancer research[18].



Therefore, this study aims to integrate high-resolution scRNA-seq data with large-scale bulk
RNA sequencing data to gain a deeper understanding of the complexity of the TME and to
identify key components within the CRC TME. We will focus on key regulatory factors
discovered in our research and utilize advanced machine learning methods to provide deeper
insights into the prognostic risks for CRC patients, thereby offering new perspectives for the

identification of novel therapeutic targets.

MATERIALS AND METHODS

scRNA-sequencing data collection and analysis

The scRNA-seq data used in this study were obtained from a comprehensive dataset integrating
15 independent colorectal cancer cohorts compiled by Zhang et al [19]. This integrated dataset,
which comprised 671,192 cells and 51,971 genes, is publicly available on Figshare
(https://figshare.com/). We extracted all 204 tumor core tissues and 102 adjacent tissues from
the integrated dataset. The sample types were classified based on the metadata information
from the original dataset. Batch effects had already been addressed and corrected in the original
integrated dataset using the Harmony algorithm, ensuring the homogeneity of samples across
different datasets. Quality control excluded cells with fewer than 1,000 detected genes,

mitochondrial gene content exceeding 20%, or red blood cell gene content above 3%.

scRNA-seq analysis was performed using Seurat v4.0[20] on tumor core tissue samples. The
RunUMAP function facilitated nonlinear dimensionality reduction and visualization of the cell
gene matrix. Cell clustering employed the Louvain algorithm with a 0.2 resolution parameter.
Cell annotation was based on original dataset metadata and differential expression gene

analysis using the FindAllMarkers function.

Subsequently, we employed CellChat analysis on the tumor core tissue samples to delineate
the intercellular communication networks within the CRC TME. Based on curated ligand-
receptor interaction databases, we quantified communication probabilities across signaling
pathways. Comparative analysis between the 204 tumor core tissues and 102 adjacent non-
cancerous tissues were performed to identify key cellular components governing TME

interactions.

Bulk RNA-seq data collection
Bulk RNA-seq datasets TCGA-COAD[21] and GSE17536[22]) were obtained from the TCGA
and GEO, respectively. The training dataset comprised 351 CRC patient samples from TCGA-
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COAD, with sample selection predicated on survival duration exceeding one month and
comprehensive genomic expression data availability. An external validation cohort of 177

samples from GSE17536 was identified using identical inclusion criteria.

Machine learning-driven integrative signature development

Following CellChat analysis highlighting fibroblasts' critical role in TME, we investigated their
prognostic value in CRC patients. Using Wilcoxon rank-sum test, we identified fibroblast-
specific marker genes (FSM genes) with strict criteria (LogFC threshold = 2, min.pct = 0.25,
FDR < 0.05). Then, these FSM genes were screened through univariate Cox regression analysis
in TCGA-COAD to identify potential prognostic markers.

To develop a robust risk score, we implemented an integrated machine learning approach
combining 10 algorithms: Random Survival Forest, Elastic Net, Lasso regression, Ridge
regression, Stepwise Cox regression, CoxBoost, Partial Least Squares Regression Cox model,
Supervised Principal Component Analysis, Gradient Boosting Machine, and Survival-SVM.
The integration process evaluated 101 algorithm combinations using Leave-One-Out Cross-
Validation (LOOCV). Risk scores were calculated as linear combinations of gene expression
levels, with model performance assessed via Concordance index (C-index). Top-performing
algorithm combinations were selected based on validation set C-index and clinical translational
potential, leading to the establishment of a fibroblast-related signature (FRS) for predicting
CRC patient overall survival risk.

To validate FRS as an independent prognostic factor, we compared its ROC curves with other
clinical characteristics and developed an integrated nomogram merging FRS with clinical

characteristics to estimate survival outcomes in patients with CRC.

Enrichment analysis

To explore the potential functions of FRS and the associated biological pathways, we utilized
the STRING[23] to predict genes that may interact with the FRS gene, defining these genes as
FRS-related genes (FRSR genes). Subsequently, functional enrichment analysis using KEGG
pathways and GO terms were conducted on the FRSR genes to investigate the biological
functions these genes play in tumor development. In this study, the KEGG pathway and GO
enrichment analyses were performed using the OmicShare platform, an integrated online tool
that provides comprehensive bioinformatics analysis functions with user-friendly visualization

capabilities.



Exploration of immune characteristics
To investigate the correlation between FRS and immune cell infiltration in the CRC TME, we
quantified the infiltration levels of 22 immune cell types using the CIBERSORT method[24].
To validate the reliability and accuracy of the CIBERSORT analysis results, we also performed
cross-validation using 5 supplementary algorithms: EPIC[25], Estimate[26], MCP-
counter[27], QuantiSeq[27], TIMER][28].

To determine the immunogenicity based on immunomodulators, immunosuppressive cells, and
effector cells, the immune response profile was characterized through TIDE score computation,
which assesses patient responses to immunotherapy based on integrated gene expression data.
The TIDE scores for TCGA-COAD patient samples were obtained from the TIDE
(http://tide.dfci.harvard.edu/).

Drug discovery and sensitivity analysis

To identify candidate therapeutic agents, we leveraged the Drug Signature Database (DSigDB)
[29] to screen for compounds targeting FRS-associated genes. We then employed the
oncoPredict package to evaluate chemotherapeutic sensitivity in CRC patients stratified by
FRS risk scores. This approach enabled estimation of drug-specific IC50 values based on gene

expression profiles, facilitating individualized drug response prediction.

Statistical analysis

R software (version 4.4.0, R Foundation for Statistical Computing, Vienna, Austria) was used
for the main analytical procedures, including data manipulation, statistical computations, and
visualization. The analysis workflow incorporated a comprehensive suite of specialized R
packages: Seurat for processing single-cell RNA sequencing data and correcting batch effects;
dplyr, stringr, tidyverse, and reshape2 for data manipulation; scRNAtoolVis, ggplot2, ggpubr,
and ComplexHeatmap for data visualization; DoubletFinder for doublet detection; CellChat for
intercellular communication analysis; limma and Mimel for integrating and constructing
machine learning models; oncoPredict for drug sensitivity prediction; IOBR for immune
infiltration analysis; survival, survminer, and ggDCA for survival analysis; and org.Hs.eg.db
and msigdbr for annotation and pathway analysis. Enrichment analyses were performed using

the OmicShare platform.

For statistical analyses, the normality of the data was first assessed using the Shapiro-Wilk test,
which revealed a non-normal distribution (p < 0.05). Consequently, the Wilcoxon rank-sum

test was employed for paired group comparisons, with data presented as median * interquartile
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range (IQR). Nomograms were constructed using multivariate Cox regression analysis, and
enrichment analysis applied hypergeometric tests to identify pathways or terms significantly
enriched in differentially expressed genes compared to the whole genome background. All

statistical tests were two-sided, with a < 0.05 considered statistically significant.

RESULTS

T cells and epithelial cells constitute the primary cellular components of CRC tissues

A graphic abstract of this study was presented in Figure 1. To comprehensively characterize
the TME of CRC and delineate its cellular heterogeneity, we performed an integrated analysis
of scRNA-seq data derived from 204 tumor core samples encompassing 15 independent
datasets. The UMAP algorithm identified 21 distinct cell clusters (Figures S1A-C). Our
analysis identified 15 distinct cell types (Figure 2A), with T cells and malignant/epithelial cells
dominating the tumor tissue, alongside significant immune cell populations including
monocytes/macrophages (11.6%) and NK cells (11.0%) (Figure 2B). To examine the precision
of cell annotations, we constructed a heatmap of key marker gene expression across the various
cell types (Figure 2C). Moreover, Gene Set Variation Analysis (GSVA) revealed that
proliferating myeloid cells and proliferating T cells demonstrated significant enrichment in cell
cycle-associated gene sets. Notably, fibroblasts showed marked upregulation of epithelial-
mesenchymal transition signatures, implicating their potential involvement in facilitating

tumor progression and metastasis (Figure 2D).

Cellchat analysis highlights fibroblasts as key regulators in CRC TME

To identify the essential regulatory components in the CRC TME, we performed CellChat
analysis on 204 tumor core tissues to systematically investigate intercellular communication
patterns. Our analysis revealed that in the CRC tumor tissues, fibroblasts and endothelial cells
exhibited higher net counts and interaction weights in intercellular interactions compared to
other cell types (Figures 3A, B). These findings suggest that these two cell types serve as central
regulators in modulating the functions and behaviors of other cells in the TME. Further
investigation demonstrated that compared to other cells, fibroblasts contribute the most to the
outgoing signals in the cellular communication network (Figures S2A, B). Significant
variations in incoming and outgoing signal contributions were observed across different

cellular groups (Figures 3C, D).



In addition, to elucidate key differences in cellular communication networks between tumor
and normal tissues, we conducted comparative analysis between 204 tumor core tissues and
102 adjacent normal tissues and found that, compared to adjacent normal tissues, the net counts
and interaction weights between fibroblasts, endothelial cells, and malignant/epithelial cells in
tumor tissues were significantly increased (Figures 3E, F). The changes in fibroblasts are
particularly notable (Figures 3G, H), indicating that in the CRC TME, fibroblasts may play an
important regulatory role in tumor development by enhancing their interactions with other key

cell types.

A robust 7-gene fibroblast-related signature predicts CRC prognosis using the LOOCV
framework

Acknowledging the central role of fibroblasts in cellular interactions, we explored the potential
value of FRS in predicting the prognosis of CRC patients. Through the Findmarkers function,
435 FSM genes that are highly expressed in fibroblasts within tumor tissue have been
identified. Then, we performed univariate Cox regression analysis on the FSM genes in TCGA-
COAD, which has yielded 23 potential prognostic biomarkers. Subsequently, these markers
were fitted into 101 combination models using LOOCV framework. The predictive
performance of each model was evaluated by calculating C-index in both the training and

validation set (Figure 4A).

All models were ranked based on their C-indices in the validation set. While four combination
models incorporating all 23 biomarkers demonstrated optimal predictive performance (C-index
= 0.64) (Figure 4A), we sought to develop a more clinically applicable signature. To enhance
translational potential and minimize overfitting effects caused by multiple correlated genes, we
conducted a comprehensive model selection process. This analysis revealed that a more
parsimonious model, combining Lasso regression with forward stepwise Cox regression and
including only 7 genes, achieved comparable predictive performance (C-index = 0.63). Based
on these findings, we selected the Lasso+StepCox[forward] model as the optimal approach and
developed a 7-gene FRS for predicting prognosis in CRC patients.

The Lasso+StepCox model-derived FRS stratified patients into high- and low-risk groups using
median scores. Survival analyses demonstrated significantly poorer outcomes in high-risk
patients across both training and validation sets (HR = 2.39 and 2.41 respectively, both P <
0.001; Figures 4B, C). The robustness of the FRS as a prognostic tool was further supported

by time-dependent ROC analysis, which demonstrated consistent predictive accuracy for



progression-free survival at 1-year (AUC in TCGA = 0.655, AUC in GSE17536 = 0.644), 3-
year (AUC in TCGA = 0.612, AUC in GSE17536 = 0.639), and 5-year (AUC in TCGA =
0.678, AUC in GSE17536 = 0.68) intervals (Figures 4D-F).

The expression validation of 7 FRS genes in fibroblasts across independent scRNA-seq

datasets was shown in Figures S4A-I.

Integration of FRS with clinical characteristics improves prognostic accuracy in CRC
To assess the prognostic value of FRS in comparison with conventional clinical characteristics,
we compared its prognostic value with characteristics including age, gender, tumor grade, and
stage in GSE17536. Univariate Cox regression analysis revealed that FRS exhibited superior
predictive accuracy (AUC=0.68) compared to these clinical characteristics, as evidenced by
higher AUC values (Figure 5A). DCA demonstrated that FRS exhibited superior net clinical
benefit across low-risk threshold (threshold < 0.5) probabilities (Figure 5B). Moreover,
stratification analysis revealed differences in the distribution of tumor stage and grade among
FRS-defined risk subgroups (Figures 5C, D).

To enhance the clinical utility of FRS, we developed a nomogram incorporating FRS with
clinical characteristics using Cox regression analysis (Figure 5E). The model achieved a C-
index of 0.81 (95% CI: 0.76-0.85), with FRS remaining an independent prognostic factor in
multivariate analysis (P < 0.001). The calibration curves demonstrated that the nhomogram
exhibited better predictive performance for 1-year survival compared to 3-year and 5-year
survival predictions (Figure 5F). Additionally, these findings were independently validated in
the TCGA-COAD (Figures S3A-F).

To further investigate the individual prognostic contributions of FRS genes, we performed
univariate Cox analysis of the 7 signature genes. The results revealed that elevated expression
of CSRP2, DBN1, FSTL3, GPX3, PAM, and RGS16 correlated with poor prognosis, while
CXCL14 showed protective effects (Figure S5A). CSRP2 emerged as the strongest predictor
(HR=1.94, 95% CI: 1.34-2.82). Risk score-based clustering demonstrated concordant patterns

between gene expression, risk scores, and survival outcomes (Figures S5B, C).

FRS-related genes are enriched in immune regulation and cellular signaling pathways
To elucidate the basic mechanisms by which FRS affects the prognosis of CRC patients, we
analyzed genes interacting with FRS (designated as FRSR genes) using the STRING database

(Figure 6A). According to the KEGG enrichment analysis of each module, the main classes



were signal transduction, immune system and signaling molecules and interaction (Figure 6B).
Meanwhile, further analysis indicated that Cytokine-cytokine receptor interaction (ko04060)
and Chemokine signaling pathway (ko04062) were the most significantly enriched pathways
for FRSR genes (Figure 6C), suggesting that FRSR genes may regulate cancer-related

processes through modulating immune system functions.

Similarly, GO enrichment analysis was performed on FRSR genes, categorizing terms with P
< 0.05 into three main aspects: biological processes, cellular components, and molecular
functions (Figure 6D). The analysis revealed that FRSR genes were predominantly enriched in
cellular process (G0O:0009987), cellular anatomical entity (GO:0110165), and binding
(GO:0005488). Additionally, bubble plot visualization demonstrated that FRSR genes were
mainly involved in cellular signaling transduction and immune response, highlighting their
broad participation in fundamental cellular activities (Figure 6E). These findings, together with
the KEGG pathway analysis, further support the possibility that FRSR genes may influence

tumor progression through immune regulation.

FRS correlates with immune microenvironment characteristics and predicts
immunotherapy efficacy

To evaluate the impact of the FRS on immune cell infiltration in CRC patients, we employed
the CIBERSORT algorithm to quantify immune cell abundance in TCGA-COAD samples.
Cross-validation using 5 additional algorithms confirmed the reliability of the results (Figure
7A). The results showed consistency across different algorithms. Notably, under the Estimate
algorithm, the high-risk group had significantly higher stromalscore, immunescore, and
estimatescore, but lower tumorpurity (Figure 7A). Wilcoxon rank-sum test analysis revealed
statistically substantial differences in the infiltration of 10 immune cell types between risk
subgroups (Figure 7B), notably increased infiltration of activated NK cells and macrophage
subsets in high-risk group, suggesting that the infiltration of different immune cells may
influence the prognosis of CRC patients. Therefore, we analyzed the relationship between
immune cell infiltration and overall survival of CRC patients. The results showed that 6 cell
types were significantly associated with the prognosis of CRC patients (Figures S6B-G).
Integrating differential (Figure 7B) and survival analyses (Figures S6B-G) identified three key
immune microenvironment cell types: M1 macrophages, activated NK cells, and resting

memory CD4+ T cells (Figure 7C).
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To investigate the potential association between the prognostic biomarkers we developed and
the response to immunotherapy, we employed the TIDE algorithm to predict immune escape
scores in the training set. The results indicated that patients in the high-risk group exhibited
significantly higher (P < 0.001) immune escape scores (Figure 7D), suggesting that tumors in
the high-risk group are more capable of evading immune system surveillance and attack.
Further analysis of the two key TIDE indicators demonstrated that immunological disorders
manifested as T cell dysfunction and T cell rejection, with both scores being significantly
higher in the high-risk group compared to the low-risk group (P < 0.001) (Figure 7E). These
findings suggest that patients in the high-risk group might have a poorer response to

immunotherapy, which is consistent with their unfavorable survival outcomes.

Moreover, to better understand the interplay between FRS genes and the immune
microenvironment, we constructed a network diagram to display the correlations between these
genes and different immune cell subsets (Figure 7F). We found that genes such as FSTL3 and
CSRP2 showed a high positive correlation with multiple immune cell subsets, especially
macrophage subsets and neutrophils. These results suggest that specific genes may play a key

role in immune regulation.

FRS-targeted therapeutic agents reveal distinct drug response patterns in different risk
groups

To identify potential therapeutic agents targeting FRS, we analyzed the DSigDB database and
ranked candidate drugs by p-value. The top 10 most significant candidates are listed in Table
1. Among these candidate drugs, four anticancer agents widely used in clinical practice were
identified: camptothecin, irinotecan, sanguinarine, and daunorubicin. It is worth noting that
camptothecin and Irinotecan, as topoisomerase | inhibitors, are commonly used

chemotherapeutic agents in clinical treatment of CRC.

Considering that the dynamic and heterogeneous nature of the TME may lead to drug
resistance, we assessed the sensitivity of FRS risk subgroups to five commonly used
chemotherapy drugs for CRC, including camptothecin, Irinotecan, and three other standard
treatments (5-Fluorouracil, paclitaxel, and oxaliplatin) (Figure 8A). The results indicated that
enhanced sensitivity was observed in the low-risk group (P < 0.01) for camptothecin and
irinotecan. Conversely, the high-risk group demonstrated increased sensitivity to paclitaxel (P
< 0.05). The scatter plot (Figure 8B) between FRS risk scores and drug sensitivity reveals

similar results: as the risk score increases, the sensitivity of tumor cells to camptothecin (P <
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0.001) and irinotecan (P < 0.001) significantly decreases, while their sensitivity to paclitaxel
markedly increases (P < 0.001). Detailed correlation studies demonstrated a significant positive
association between oxaliplatin sensitivity and multiple FRS gene expression patterns (Figure
8C), suggesting these FRS genes may serve distinct functions in modulating tumor cell

responses to various chemotherapeutic agents.

DISCUSSION

In this study, we extracted integrated SCRNA-seq data and employed methods such as sSSGSEA
and CellChat to explore the heterogeneity of TME of CRC. The systematic analysis based on
single-cell sequencing not only revealed the functional diversity of fibroblasts in the TME, but
also facilitated the identification of specific marker genes. Building on these findings, we
innovatively developed a prognostic signature composed of 7 fibroblast-related genes by
integrating multiple machine learning algorithms. Importantly, the FRS demonstrated strong
prognostic predictive capabilities in both the training set and independent validation cohorts,
outperforming traditional clinical variables and exhibiting robustness across various algorithms
(Lasso + CoxBoost and Lasso + plsRcox). Additionally, our study not only highlights the
pivotal role of FRS in CRC prognosis but also elucidates its potential mechanism in affecting
patient outcomes by modulating the tumor immune microenvironment. This provides a
theoretical foundation for developing personalized treatment strategies based on FRS

expression patterns.

Fibroblasts, abundant components in the tumor microenvironment, play crucial roles in
modulating CRC initiation and progression[30]. Consistent with our enrichment analysis,
multiple studies[31, 32] have demonstrated that fibroblasts create a favorable
microenvironment for tumor growth and metastasis through promoting angiogenesis, immune
modulation, and matrix remodeling, highlighting their prognostic significance in CRC patients.
Furthermore, fibroblast-derived ECM proteins and matrix-remodeling MMPs not only form
physical barriers but also increase matrix stiffness and interstitial pressure[33], impeding the
penetration of chemotherapeutic and targeted agents. The accumulation of aberrant ECM
components further exacerbates immunosuppression and interferes with immune checkpoint
inhibitor efficacy[34], emphasizing the value of patient stratification based on fibroblast

signatures and the development of targeted therapies for specific fibroblast-defined subgroups.

In contrast to Zhang et al[35], who developed a 20-marker CRC fibroblast-related prognostic
signature using bulk RNA-seq and WGCNA with validation cohort AUCs of 0.638 and 0.55,
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our study employed a more sophisticated approach. We utilized scRNA-seq to derive an FRS
through a LOOCV framework integrating 10 machine learning algorithms and their
combinations. Our methodology successfully reduced variable complexity, ultimately
identifying a consensus 7-gene FRS with enhanced predictive performance. The signature
demonstrated superior prognostic accuracy, achieving a 3-year AUC of 0.639, and exhibited
strong clinical translational potential. Critically, integrating the FRS with clinical features in a
nomogram revealed significant net benefit improvements, positioning it as a promising

precision medicine tool for colorectal cancer survival prediction.

Our research reveals significant differences in different FRS subgroups regarding immune
responses and cancer progression. The high-risk group exhibited increased infiltration of
activated NK cells and specific macrophage subsets, suggesting compensatory activation of
innate immunity in response to compromised adaptive immune function. However, this
compensatory mechanism appears insufficient to inhibit tumor progression and may promote
TME formation through chronic inflammation[36]. Decreased infiltration of plasma cells and
resting memory CD4* T cells indicated impaired adaptive immunity, affecting tumor-specific
antibody production, immune memory, and ICI efficacy[37]. High-risk patients demonstrated
enhanced immune evasion during checkpoint blockade therapy, characterized by compromised
T cell function and reduced tumor infiltration. This suggests a dual immunosuppressive
mechanism in the high-risk TME: impaired T cell infiltration coupled with functional deficits

in successfully infiltrating T cells.

Notably, all genes included in our constructed FRS have been reported to be closely associated
with immune responses or tumor development. DBNL1 is significantly overexpressed in the
CRCEZ1 cell line, and immunohistochemical experiments have validated its association with
CRC metastasis[38]. FSTL3, containing a follistatin-like domain[39] , promotes tumor
invasion and metastasis by modulating epithelial-mesenchymal transition (EMT) key
molecules through the TGF-B1 signaling pathway. Studies have demonstrated that FSTL3 is
significantly elevated in CRC tissues, particularly in high-grade tumors[40, 41] . Although
GPX3 negatively correlates with cholesterol levels, it is significantly elevated in poorly
differentiated and advanced CRC patients, influencing CRC development through regulation
of the cholesterol-T cell immune axis[42] . PAM, a bifunctional enzyme commonly
dysregulated in cancer[43] , has been studied by Zhang et al. [44] , who identified three PAM
patterns with distinct prognoses and tumor microenvironment characteristics from 1,224 CRC

samples. The high PAM level subgroup correlates with advanced stages, immune-suppressive
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cell infiltration, and poor prognosis. RGS16, characterized by a conserved RH domain and a-
helix[45] , exhibits high expression associated with poor overall survival in CRC patients [46].
Research has revealed that RGS16 inhibits JNK/P38-mediated apoptosis in CRC cells by
disrupting TAB2/TAK1 recruitment to TRAF6[47] . CSRP2, a member of the CSRP protein
family, shows lower expression in CRC tissues compared to adjacent non-tumor tissues, with
functional experiments confirming its inhibitory effects on CRC cell proliferation, migration,
and invasion[48] . Interestingly, our findings in this study regarding CSRP2's tumor-promoting
role are inconsistent with previous reports, which may be attributed to tumor heterogeneity and
multifactor analysis. CXCL14, a crucial member of the chemokine family, plays a vital role in
immune regulation and tumor microenvironment[49] . In colorectal cancer, CXCL14 is
primarily downregulated due to epigenetic silencing and exerts tumor-suppressive effects by
inhibiting EMT and regulating cell cycle progression. Its low expression has been associated

with poor prognosis in CRC patients[50] .

Another key finding, computational analysis identified camptothecin and its semisynthetic
derivative irinotecan as potential targeted therapeutics for FRS in CRC, consistent with clinical
practice where irinotecan-based FOLFIRI[51] and oxaliplatin-based FOLFOX][52] regimens
serve as standard treatments. Our analysis suggests enhanced efficacy of camptothecin and its
derivative irinotecan in CRC patients with low FRS scores, offering a molecular classification-
based approach to treatment selection. The therapeutic efficacy of drugs in colorectal cancer is
strongly supported by Douillard et al[53], whose multicenter randomized controlled trial
(n=387) demonstrated that in metastatic colorectal cancer patients who failed 5-FU treatment,
irinotecan monotherapy significantly prolonged median overall survival compared to best
supportive care (9.2 months vs. 6.5 months), and improved objective response rate (13% vs.
0%) and disease control rate (49% vs. 21%).However, TME heterogeneity frequently leads to
treatment resistance, compromising therapeutic efficacy; therefore, these findings warrant
comprehensive clinical validation, particularly through prospective clinical trials stratifying
patients by FRS risk score to directly compare sensitivity to both camptothecin and its
derivative irinotecan across molecular subtypes, which would provide definitive evidence for
implementing this molecular classification-based approach in personalized treatment

decisions.

Our investigation underscores the pivotal role of FRS in informing targeted prevention and
personalized medicine for CRC. The findings suggest that FRS can furnish vital insights to

support clinicians' individualized treatment decisions, thereby improving patient outcomes

14



while potentially curbing unnecessary costs. Nonetheless, this study has certain limitations.
First, although the FRS were evaluated and validated in both training and external cohorts,
further confirmation through large-scale, multicenter prospective investigations is needed.
Second, additional in vitro and in vivo research will be crucial for elucidating the biological
mechanisms of FRS-related genes in CRC. Third, although we assessed the sensitivity of
different FRS risk subgroups to various small-molecule drugs, these predictions still require
validation through in vitro drug experimentation and clinical trials. Fourth, while our current
study identified fibroblasts as an important regulatory component in the tumor
microenvironment, our single-cell analysis pipeline did not delve into the heterogeneity of
fibroblast populations. A more refined characterization of fibroblast subtypes, including their
distinct molecular signatures and functional states, might provide additional insights into their
diverse roles in tumor progression and potentially enhance the prognostic value of our
signature. Future research should focus on more nuanced classification of stromal cell
populations to further optimize risk stratification strategies. Collectively, these limitations

point to key directions for future work.

CONCLUSION

This study provides a comprehensive single-cell RNA sequencing analysis of colorectal cancer,
revealing the critical role of fibroblasts in the tumor microenvironment. By developing a novel
7-gene fibroblast-related signature, we have demonstrated a robust prognostic tool that not only
predicts patient survival with high accuracy but also offers insights into potential personalized
treatment strategies. The FRS signature highlights the complex interactions between
fibroblasts, immune cells, and cancer progression, opening new avenues for precision medicine

in colorectal cancer management.
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TABLES AND FIGURES WITH LEGENDS
Table 1. Drug prediction based on intrinsic target genes of FRS from DSigDB

Odds Combined
Term P-value Ratio? Score P Genes ©
CSRP2; GPX3; RGS16; CXCL14;
estradiol <0.001 109648 1173816 PAM; DBN1; FSTL3
camptothecin <0.001 67.7 676.8 GPX3; RGS16; FSTL3
ellipticine <0.001 100.8 806.6 CSRP2; RGS16
15-delta prostaglandin <0.001 66.2 475.8 CSRP2; GPX3
irinotecan 0.0012 21.7 146.1 GPX3; RGS16; FSTL3
sanguinarine 0.0019 40.8 254.9 CSRP2; RGS16
progesterone 0.0023 12.6 76.6 CSRP2; GPX3; CXCL14; DBN1
daunorubicin 0.0027 344 203.2 CSRP2; RGS16
3-Nitrobenzanthrone 0.0038 333.1 1852.2 CXCL14
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Arecoline hydrobromide 0.0042 302.8 1657.4 RGS16

"30dds Ratio: a measure of the association strength between the term and target genes. °
Combined Score: a comprehensive indicator, higher scores indicate more reliable associations

between the term and target genes. ¢ Genes: genes that interact with the drug.

I 124 Sources of ScCRNA-Seq Data ] I
Extraction Extraction
204 &Qc GSE148771 | GSE150115(
J.ai GSE188711 G.Li _E
Tumor Tissue | GSE132257 | GSE201348 | K.James | Tumord ©
288,881 GSE132465| C.Smillie [R i ':"i‘“e"‘ %
ormal Tissue
GSE144735 | GSE125527 | Palka.K E
[
Seurat & CellChat Analysis Differential Analysis w
[ >
Fibroblasts o
Glial Cells. 4 o
Innate Lymphold Cells . 2
B Cells
CD8+ T Cells © —
NK Cells
TRegulatory Cells (Tregs) ~ ~2 lOpllmlleﬂ models
Mast cells
Dendritic Cells Lassor
Plasma Cells Stepeoxtforward)
TCells
= . 435 genes 23 genes 7 genes
72313733 3828GE;¢% (Single-cell Advanced Model) ¢ ana 9
8 o & 2 5 ] 2 & 32 i 5] Univariate Cox SIS | ooq, Stopcox
g 2 £ - g analysis reveal Development ans BEE oo R
873 g 58 2 et ) —b..-—D---—’b
H 23 3 F 2 % 5 the critical role | Based on the H1 sas s s
g 18 = 9 @ 2
A =873 & 3 of Loocv-1- ¢ opiast F;R-. — Machine Leaming
9 §" 83 3 fibroblasts, Framework || markers genes Model
L H
= -— - -
Traditional Clinical Variables = Validation @Tumor Microenvironment
. Univariate : i i X
TCGA-COAD  GSE17536 cox rearession | 2F. Frognostic Multi-omics
a < 2 Risk Prediction janalysis reveals
Age e | = Performance of ' the mechanism
Gender of action of FRS
Gender —_— I ERS 1 /
Stage E————Hlg
il H‘ H\ 1= X . \ # N
Stage I 1~ £ Correlation Analysis of -
g Grade ¥ 1 @hd 3 -
FRS and Clinical Variables VA @®Immune Infiltration

|‘ I I‘\‘\ ‘II\: .

\#

dig{ )

MRREE -2 »°
.‘..I’ - 'L Multivariable Survival Analysis %

"

aee —
11 e &
aee { il =
Single Gene Survival Analysis T cell W/ Cancer L
FRS - (effector) Ty,  celldeath
it ) @Clinical Treatment v

Figure 1. Abstract figure of this study. Integrated analysis of colorectal cancer tumor
microenvironment and development of key cellular signatures for overall survival prediction
and personalized therapy. QC refers to quality control, FRS refers to fibroblast-related

signature, FRSR genes refers to FRS-related genes.
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Figure 2. Overview of various cell types in the TME of CRC at the scRNA transcriptome

level. (A) Identification of 15 cell types in 204 CRC tumor center tissues. (B) Bar plot showing
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the distribution proportion of each cell type. (C) Heatmap showing the expression distribution
of classic marker genes for each cell type. (D)ssGSEA score from hallmark gene sets of Human
MSigDB Collections, Changes in the heatmap cell colors indicate the level of activity of the
corresponding pathways in specific cell types.
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Figure 3. CellChat reveals the crucial role of fibroblasts in the TME of CRC.
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The circular network diagram displays the net number (A) and strength (B) of intercellular
communication among different cell types in tumor tissue. colors represent different cell types,
while the thickness of the lines indicates the magnitude of change. Heatmaps detail the
contribution of signaling molecules, separately showing incoming(C) and outgoing(D) signals
for each cell type. Circular plots display the differential networks of net number (E) and
interaction strengths (F) of cell-cell interactions between tumor core and adjacent normal
tissues. Blue indicates decrease, red indicates increase, and the thickness of the lines represents
the magnitude of change. The heatmap provides a more intuitive representation of the
variations in the quantity(G) and intensity(H) of interactions between tumor core and adjacent

normal tissues.
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Figure 4. Establishment and validation of a consensus FRS through a machine learning-

based integrated pipeline. (A) total of 101 types of prediction models using the LOOCV

25



framework and further calculated the C-index of each model in all validation datasets. Kaplan-
Meier survival curves for different risk groups in TCGA-COAD (B) and GSE17536 (C). The

ROC curves illustrate the OS performance at 1 year (D), 3 years (E), and 5 years (F) in the two
datasets.
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Figure 5. Compared to traditional clinical variables, FRS demonstrates potential as an
independent prognostic factor in GSE17536. Univariate ROC Curve (A) and DCA Curve
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(B) of Clinical characteristics and Signature. (C)The distribution of clinical characteristics and
the expression of model genes according to the FRS risk score. (D)Correlation between the
FRS low- and high-risk groups and clinical characteristics. (E)Construction of the nomogram
based on the FRS and clinical characteristics, including age, gender, grade and stage.
(F)Calibration curve of the nomogram for 1, 3, and 5-year OS. ROC curve(G) and DCA
Curve(H) shows the prediction performance between the nomogram and Clinical

characteristics.
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Figure 6. Functional enrichment analysis reveals the potential molecular mechanisms by

which FRS affects prognosis. (A)PPI network of FRSR genes predicted through String
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database. (B)The number of differentially expressed genes (DEGS) in various pathways in
KEGG analysis. (C) KEGG enrichment circle diagram of cyan module (from the outside to the
inside, the first circle represents the top 15 enrichment pathways, and the number outside the
circle is the coordinate ruler of the number of genes; The second circle represents the number
and Q value of background genes in this pathway, and the more genes, the longer the bar; The
third circle represents the number of the DEGs in this pathway; The fourth circle represents the
value of Rich Factor in each pathway). (D)The number of DEGs in various terms in GO
enrichment analysis. (E)Enrichment of the top 15 gene sets (ranked by p-value) across the three

primary categories of GO enrichment analysis.
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Figure 7. The immune landscape associated with FRS in CRC. (A)The heatmap shows the

immune infiltration landscape of 6 methods under different FRS risk subgroups. (B)The
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abundance of each type of tumor-infiltrating immune cell in high-risk and low-risk groups, ns
(not significant), * (p<0.05), ** (p<0.01), *** (p<0.001). (C)Types of infiltrating cells in the
TME intersecting with differential analysis and survival analysis. (D) TIDE scores for each
sample within different risk subgroups, TIDE refers to the TIDE score derived from the TIDE
database. ns (not significant), * (p<0.05), ** (p<0.01), *** (p<0.001). (E)T-cell Dysfunction
and Exclusion Scores between High- and Low-Risk Groups, ns (not significant), * (p<0.05),
** (p<0.01), *** (p<0.001). (F)The network diagram of the correlation between immune cell
subsets and gene expression (The correlation between specific cell and FRS genes is
represented by different colored lines, with orange indicating positivity and green indicating
negativity. The thickness of the lines reflects the strength of the correlation. Abs[52] represents
the absolute value of the correlation coefficient, and Cell-cell cor indicates the correlation
coefficient between different cell types.).
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Figure 8. The drug sensitivity associated with FRS in CRC. (A) Drug sensitivity of five
compounds calculated by the oncoPredict function across different FRS subgroups, ns (not
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significant), * (p<0.05), ** (p<0.01), *** (p<0.001). (B) The scatter plot shows the sensitivity
of the samples to five compounds as a function of FRS. (C) The network heatmap reflects the
relationship between drug sensitivity and gene expression. (Abs[52] represents the absolute
value of the correlation coefficient, and Drugs cor represents the correlation coefficient

between different drugs.).
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