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ABSTRACT 

Single-cell RNA sequencing (scRNA-seq) has significantly advanced our understanding of 

cellular heterogeneity and the complex interplay within the tumor microenvironment (TME) 

of colorectal cancer (CRC). However, translating these molecular insights into clinically 

actionable prognostic biomarkers and therapeutic strategies remains a considerable challenge. 

In this study, we conducted a comprehensive scRNA-seq analysis of 306 CRC samples 

comprising 448,255 cells to characterize the TME in depth. By constructing intercellular 

communication networks based on connection counts and communication probabilities, we 

identified fibroblasts as central regulatory hubs within the TME. Using Wilcoxon rank-sum 

tests and univariate survival analyses, we initially identified 23 prognostic fibroblast markers. 

These were refined to a seven-gene fibroblast-related prognostic signature via an integrated 

machine learning approach. The signature exhibited robust predictive performance in the The 

Cancer Genome Atlas - Colon Adenocarcinoma (TCGA-COAD) training cohort (n=351; C-

index=0.65) and was successfully validated in the GSE17536 dataset (n=177; C-index=0.63). 

Functional enrichment analyses revealed that this signature is involved in immune regulation 

and multiple tumor-associated cellular pathways. Notably, high-risk patients displayed 

increased macrophage and NK cell infiltration, impaired immune function, and elevated 

immune rejection scores, while low-risk patients demonstrated heightened sensitivity to 

camptothecin and irinotecan. Together, our findings underscore the prognostic value of 

fibroblast-derived signatures in CRC and support their potential utility in risk stratification and 

the development of personalized therapeutic strategies, contributing to the advancement of 

precision oncology. 

Keywords: Colorectal cancer; CRC; fibroblasts; prognosis signature; machine learning; 

therapy. 
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INTRODUCTION 

According to GLOBOCAN 2022, colorectal cancer (CRC) ranks fourth in global cancer 

incidence and third in cancer-related mortality.[1]. Despite advances in multimodal 

treatments[2, 3] , patient outcomes remain poor, particularly for advanced cases with only 14% 

five-year survival rates [4, 5]. The poor prognosis of CRC can be attributed to several key 

factors. In particular, tumor heterogeneity-induced differential treatment responses and 

acquired drug resistance have led researchers to increasingly focus on the determinant 

influence of the tumor microenvironment (TME) in tumor prognosis and therapeutic 

outcomes[6, 7]. 

Recent studies[8, 9] have demonstrated that TME elements significantly influence CRC 

progression and treatment outcomes. While researchers have developed multiple prediction 

models derived from survival- correlated genes, these approaches have largely focused on 

tumor cell characteristics alone[10], overlooking the crucial role of the TME. Cancer-

associated fibroblasts (CAFs) within the TME secrete various growth factors and cytokines 

that promote tumor growth and metastasis[11]. The composition of tumor-infiltrating 

lymphocytes has also been found to be closely associated with patient survival rates, with 

higher CD8+ T cell density typically indicating a better prognosis[12]. In addition, Regulatory 

T cells and myeloid-derived suppressor cells create an environment that inhibits anti-tumor 

immune responses[13]. This immunosuppression particularly affects the efficacy of 

immunotherapy, with only 15% of microsatellite instability-high CRC patients responding to 

immune checkpoint inhibitors (ICIs). Based on these complex interactions within the TME, a 

deep understanding and specific targeting of the key regulatory factors of the TME are expected 

to provide an important theoretical foundation for the prognosis assessment and optimization 

of personalized treatment plans for CRC. 

Recent advances in single-cell RNA sequencing (scRNA-seq) [14] have enhanced our analysis 

of TME complexity. scRNA-seq provides gene expression profiles at single-cell 

resolution[15], enabling detailed cell subpopulation analysis, as demonstrated in CRC research 

where it identified distinct T cell exhaustion states[16]. While bulk RNA-seq[17] lacks this 

resolution, it offers larger-scale data essential for clinical pattern identification. Integrating 

these complementary approaches - combining the high-resolution cellular analysis of scRNA-

seq with the large-scale validation capabilities of bulk RNA sequencing - represents a powerful 

prognostic assessment strategy in contemporary cancer research[18]. 
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Therefore, this study aims to integrate high-resolution scRNA-seq data with large-scale bulk 

RNA sequencing data to gain a deeper understanding of the complexity of the TME and to 

identify key components within the CRC TME. We will focus on key regulatory factors 

discovered in our research and utilize advanced machine learning methods to provide deeper 

insights into the prognostic risks for CRC patients, thereby offering new perspectives for the 

identification of novel therapeutic targets. 

MATERIALS AND METHODS  

scRNA-sequencing data collection and analysis 

The scRNA-seq data used in this study were obtained from a comprehensive dataset integrating 

15 independent colorectal cancer cohorts compiled by Zhang et al [19]. This integrated dataset, 

which comprised 671,192 cells and 51,971 genes, is publicly available on Figshare 

(https://figshare.com/). We extracted all 204 tumor core tissues and 102 adjacent tissues from 

the integrated dataset. The sample types were classified based on the metadata information 

from the original dataset. Batch effects had already been addressed and corrected in the original 

integrated dataset using the Harmony algorithm, ensuring the homogeneity of samples across 

different datasets. Quality control excluded cells with fewer than 1,000 detected genes, 

mitochondrial gene content exceeding 20%, or red blood cell gene content above 3%. 

scRNA-seq analysis was performed using Seurat v4.0[20] on tumor core tissue samples. The 

RunUMAP function facilitated nonlinear dimensionality reduction and visualization of the cell 

gene matrix. Cell clustering employed the Louvain algorithm with a 0.2 resolution parameter. 

Cell annotation was based on original dataset metadata and differential expression gene 

analysis using the FindAllMarkers function. 

Subsequently, we employed CellChat analysis on the tumor core tissue samples to delineate 

the intercellular communication networks within the CRC TME. Based on curated ligand-

receptor interaction databases, we quantified communication probabilities across signaling 

pathways. Comparative analysis between the 204 tumor core tissues and 102 adjacent non-

cancerous tissues were performed to identify key cellular components governing TME 

interactions. 

Bulk RNA-seq data collection 

Bulk RNA-seq datasets TCGA-COAD[21] and GSE17536[22]) were obtained from the TCGA 

and GEO, respectively. The training dataset comprised 351 CRC patient samples from TCGA-
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COAD, with sample selection predicated on survival duration exceeding one month and 

comprehensive genomic expression data availability. An external validation cohort of 177 

samples from GSE17536 was identified using identical inclusion criteria. 

Machine learning-driven integrative signature development 

Following CellChat analysis highlighting fibroblasts' critical role in TME, we investigated their 

prognostic value in CRC patients. Using Wilcoxon rank-sum test, we identified fibroblast-

specific marker genes (FSM genes) with strict criteria (LogFC threshold = 2, min.pct = 0.25, 

FDR < 0.05). Then, these FSM genes were screened through univariate Cox regression analysis 

in TCGA-COAD to identify potential prognostic markers. 

To develop a robust risk score, we implemented an integrated machine learning approach 

combining 10 algorithms: Random Survival Forest, Elastic Net, Lasso regression, Ridge 

regression, Stepwise Cox regression, CoxBoost, Partial Least Squares Regression Cox model, 

Supervised Principal Component Analysis, Gradient Boosting Machine, and Survival-SVM. 

The integration process evaluated 101 algorithm combinations using Leave-One-Out Cross-

Validation (LOOCV). Risk scores were calculated as linear combinations of gene expression 

levels, with model performance assessed via Concordance index (C-index). Top-performing 

algorithm combinations were selected based on validation set C-index and clinical translational 

potential, leading to the establishment of a fibroblast-related signature (FRS) for predicting 

CRC patient overall survival risk.  

To validate FRS as an independent prognostic factor, we compared its ROC curves with other 

clinical characteristics and developed an integrated nomogram merging FRS with clinical 

characteristics to estimate survival outcomes in patients with CRC. 

Enrichment analysis 

To explore the potential functions of FRS and the associated biological pathways, we utilized 

the STRING[23] to predict genes that may interact with the FRS gene, defining these genes as 

FRS-related genes (FRSR genes). Subsequently, functional enrichment analysis using KEGG 

pathways and GO terms were conducted on the FRSR genes to investigate the biological 

functions these genes play in tumor development. In this study, the KEGG pathway and GO 

enrichment analyses were performed using the OmicShare platform, an integrated online tool 

that provides comprehensive bioinformatics analysis functions with user-friendly visualization 

capabilities. 
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Exploration of immune characteristics 

To investigate the correlation between FRS and immune cell infiltration in the CRC TME, we 

quantified the infiltration levels of 22 immune cell types using the CIBERSORT method[24]. 

To validate the reliability and accuracy of the CIBERSORT analysis results, we also performed 

cross-validation using 5 supplementary algorithms: EPIC[25], Estimate[26], MCP-

counter[27], QuantiSeq[27], TIMER[28]. 

To determine the immunogenicity based on immunomodulators, immunosuppressive cells, and 

effector cells, the immune response profile was characterized through TIDE score computation, 

which assesses patient responses to immunotherapy based on integrated gene expression data. 

The TIDE scores for TCGA-COAD patient samples were obtained from the TIDE 

(http://tide.dfci.harvard.edu/). 

Drug discovery and sensitivity analysis 

To identify candidate therapeutic agents, we leveraged the Drug Signature Database (DSigDB) 

[29] to screen for compounds targeting FRS-associated genes. We then employed the 

oncoPredict package to evaluate chemotherapeutic sensitivity in CRC patients stratified by 

FRS risk scores. This approach enabled estimation of drug-specific IC50 values based on gene 

expression profiles, facilitating individualized drug response prediction. 

Statistical analysis 

R software (version 4.4.0, R Foundation for Statistical Computing, Vienna, Austria) was used 

for the main analytical procedures, including data manipulation, statistical computations, and 

visualization. The analysis workflow incorporated a comprehensive suite of specialized R 

packages: Seurat for processing single-cell RNA sequencing data and correcting batch effects; 

dplyr, stringr, tidyverse, and reshape2 for data manipulation; scRNAtoolVis, ggplot2, ggpubr, 

and ComplexHeatmap for data visualization; DoubletFinder for doublet detection; CellChat for 

intercellular communication analysis; limma and Mime1 for integrating and constructing 

machine learning models; oncoPredict for drug sensitivity prediction; IOBR for immune 

infiltration analysis; survival, survminer, and ggDCA for survival analysis; and org.Hs.eg.db 

and msigdbr for annotation and pathway analysis. Enrichment analyses were performed using 

the OmicShare platform. 

For statistical analyses, the normality of the data was first assessed using the Shapiro-Wilk test, 

which revealed a non-normal distribution (p < 0.05). Consequently, the Wilcoxon rank-sum 

test was employed for paired group comparisons, with data presented as median ± interquartile 
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range (IQR). Nomograms were constructed using multivariate Cox regression analysis, and 

enrichment analysis applied hypergeometric tests to identify pathways or terms significantly 

enriched in differentially expressed genes compared to the whole genome background. All 

statistical tests were two-sided, with α < 0.05 considered statistically significant. 

RESULTS 

T cells and epithelial cells constitute the primary cellular components of CRC tissues 

A graphic abstract of this study was presented in Figure 1. To comprehensively characterize 

the TME of CRC and delineate its cellular heterogeneity, we performed an integrated analysis 

of scRNA-seq data derived from 204 tumor core samples encompassing 15 independent 

datasets. The UMAP algorithm identified 21 distinct cell clusters (Figures S1A-C). Our 

analysis identified 15 distinct cell types (Figure 2A), with T cells and malignant/epithelial cells 

dominating the tumor tissue, alongside significant immune cell populations including 

monocytes/macrophages (11.6%) and NK cells (11.0%) (Figure 2B). To examine the precision 

of cell annotations, we constructed a heatmap of key marker gene expression across the various 

cell types (Figure 2C). Moreover, Gene Set Variation Analysis (GSVA) revealed that 

proliferating myeloid cells and proliferating T cells demonstrated significant enrichment in cell 

cycle-associated gene sets. Notably, fibroblasts showed marked upregulation of epithelial-

mesenchymal transition signatures, implicating their potential involvement in facilitating 

tumor progression and metastasis (Figure 2D). 

Cellchat analysis highlights fibroblasts as key regulators in CRC TME 

To identify the essential regulatory components in the CRC TME, we performed CellChat 

analysis on 204 tumor core tissues to systematically investigate intercellular communication 

patterns. Our analysis revealed that in the CRC tumor tissues, fibroblasts and endothelial cells 

exhibited higher net counts and interaction weights in intercellular interactions compared to 

other cell types (Figures 3A, B). These findings suggest that these two cell types serve as central 

regulators in modulating the functions and behaviors of other cells in the TME. Further 

investigation demonstrated that compared to other cells, fibroblasts contribute the most to the 

outgoing signals in the cellular communication network (Figures S2A, B). Significant 

variations in incoming and outgoing signal contributions were observed across different 

cellular groups (Figures 3C, D). 
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In addition, to elucidate key differences in cellular communication networks between tumor 

and normal tissues, we conducted comparative analysis between 204 tumor core tissues and 

102 adjacent normal tissues and found that, compared to adjacent normal tissues, the net counts 

and interaction weights between fibroblasts, endothelial cells, and malignant/epithelial cells in 

tumor tissues were significantly increased (Figures 3E, F). The changes in fibroblasts are 

particularly notable (Figures 3G, H), indicating that in the CRC TME, fibroblasts may play an 

important regulatory role in tumor development by enhancing their interactions with other key 

cell types. 

A robust 7-gene fibroblast-related signature predicts CRC prognosis using the LOOCV 

framework 

Acknowledging the central role of fibroblasts in cellular interactions, we explored the potential 

value of FRS in predicting the prognosis of CRC patients. Through the Findmarkers function, 

435 FSM genes that are highly expressed in fibroblasts within tumor tissue have been 

identified. Then, we performed univariate Cox regression analysis on the FSM genes in TCGA-

COAD, which has yielded 23 potential prognostic biomarkers. Subsequently, these markers 

were fitted into 101 combination models using LOOCV framework. The predictive 

performance of each model was evaluated by calculating C-index in both the training and 

validation set (Figure 4A). 

All models were ranked based on their C-indices in the validation set. While four combination 

models incorporating all 23 biomarkers demonstrated optimal predictive performance (C-index 

= 0.64) (Figure 4A), we sought to develop a more clinically applicable signature. To enhance 

translational potential and minimize overfitting effects caused by multiple correlated genes, we 

conducted a comprehensive model selection process. This analysis revealed that a more 

parsimonious model, combining Lasso regression with forward stepwise Cox regression and 

including only 7 genes, achieved comparable predictive performance (C-index = 0.63). Based 

on these findings, we selected the Lasso+StepCox[forward] model as the optimal approach and 

developed a 7-gene FRS for predicting prognosis in CRC patients.  

The Lasso+StepCox model-derived FRS stratified patients into high- and low-risk groups using 

median scores. Survival analyses demonstrated significantly poorer outcomes in high-risk 

patients across both training and validation sets (HR = 2.39 and 2.41 respectively, both P < 

0.001; Figures 4B, C). The robustness of the FRS as a prognostic tool was further supported 

by time-dependent ROC analysis, which demonstrated consistent predictive accuracy for 
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progression-free survival at 1-year (AUC in TCGA = 0.655, AUC in GSE17536 = 0.644), 3-

year (AUC in TCGA = 0.612, AUC in GSE17536 = 0.639), and 5-year (AUC in TCGA = 

0.678, AUC in GSE17536 = 0.68) intervals (Figures 4D-F). 

The expression validation of 7 FRS genes in fibroblasts across independent scRNA-seq 

datasets was shown in Figures S4A-I. 

Integration of FRS with clinical characteristics improves prognostic accuracy in CRC 

To assess the prognostic value of FRS in comparison with conventional clinical characteristics, 

we compared its prognostic value with characteristics including age, gender, tumor grade, and 

stage in GSE17536. Univariate Cox regression analysis revealed that FRS exhibited superior 

predictive accuracy (AUC=0.68) compared to these clinical characteristics, as evidenced by 

higher AUC values (Figure 5A). DCA demonstrated that FRS exhibited superior net clinical 

benefit across low-risk threshold (threshold < 0.5) probabilities (Figure 5B). Moreover, 

stratification analysis revealed differences in the distribution of tumor stage and grade among 

FRS-defined risk subgroups (Figures 5C, D). 

To enhance the clinical utility of FRS, we developed a nomogram incorporating FRS with 

clinical characteristics using Cox regression analysis (Figure 5E). The model achieved a C-

index of 0.81 (95% CI: 0.76-0.85), with FRS remaining an independent prognostic factor in 

multivariate analysis (P < 0.001). The calibration curves demonstrated that the nomogram 

exhibited better predictive performance for 1-year survival compared to 3-year and 5-year 

survival predictions (Figure 5F). Additionally, these findings were independently validated in 

the TCGA-COAD (Figures S3A-F).  

To further investigate the individual prognostic contributions of FRS genes, we performed 

univariate Cox analysis of the 7 signature genes. The results revealed that elevated expression 

of CSRP2, DBN1, FSTL3, GPX3, PAM, and RGS16 correlated with poor prognosis, while 

CXCL14 showed protective effects (Figure S5A). CSRP2 emerged as the strongest predictor 

(HR=1.94, 95% CI: 1.34-2.82). Risk score-based clustering demonstrated concordant patterns 

between gene expression, risk scores, and survival outcomes (Figures S5B, C). 

FRS-related genes are enriched in immune regulation and cellular signaling pathways 

To elucidate the basic mechanisms by which FRS affects the prognosis of CRC patients, we 

analyzed genes interacting with FRS (designated as FRSR genes) using the STRING database 

(Figure 6A). According to the KEGG enrichment analysis of each module, the main classes 
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were signal transduction, immune system and signaling molecules and interaction (Figure 6B). 

Meanwhile, further analysis indicated that Cytokine-cytokine receptor interaction (ko04060) 

and Chemokine signaling pathway (ko04062) were the most significantly enriched pathways 

for FRSR genes (Figure 6C), suggesting that FRSR genes may regulate cancer-related 

processes through modulating immune system functions. 

Similarly, GO enrichment analysis was performed on FRSR genes, categorizing terms with P 

< 0.05 into three main aspects: biological processes, cellular components, and molecular 

functions (Figure 6D). The analysis revealed that FRSR genes were predominantly enriched in 

cellular process (GO:0009987), cellular anatomical entity (GO:0110165), and binding 

(GO:0005488). Additionally, bubble plot visualization demonstrated that FRSR genes were 

mainly involved in cellular signaling transduction and immune response, highlighting their 

broad participation in fundamental cellular activities (Figure 6E). These findings, together with 

the KEGG pathway analysis, further support the possibility that FRSR genes may influence 

tumor progression through immune regulation. 

FRS correlates with immune microenvironment characteristics and predicts 

immunotherapy efficacy 

To evaluate the impact of the FRS on immune cell infiltration in CRC patients, we employed 

the CIBERSORT algorithm to quantify immune cell abundance in TCGA-COAD samples. 

Cross-validation using 5 additional algorithms confirmed the reliability of the results (Figure 

7A). The results showed consistency across different algorithms. Notably, under the Estimate 

algorithm, the high-risk group had significantly higher stromalscore, immunescore, and 

estimatescore, but lower tumorpurity (Figure 7A). Wilcoxon rank-sum test analysis revealed 

statistically substantial differences in the infiltration of 10 immune cell types between risk 

subgroups (Figure 7B), notably increased infiltration of activated NK cells and macrophage 

subsets in high-risk group, suggesting that the infiltration of different immune cells may 

influence the prognosis of CRC patients. Therefore, we analyzed the relationship between 

immune cell infiltration and overall survival of CRC patients. The results showed that 6 cell 

types were significantly associated with the prognosis of CRC patients (Figures S6B-G). 

Integrating differential (Figure 7B) and survival analyses (Figures S6B-G) identified three key 

immune microenvironment cell types: M1 macrophages, activated NK cells, and resting 

memory CD4+ T cells (Figure 7C).  
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To investigate the potential association between the prognostic biomarkers we developed and 

the response to immunotherapy, we employed the TIDE algorithm to predict immune escape 

scores in the training set. The results indicated that patients in the high-risk group exhibited 

significantly higher (P < 0.001) immune escape scores (Figure 7D), suggesting that tumors in 

the high-risk group are more capable of evading immune system surveillance and attack. 

Further analysis of the two key TIDE indicators demonstrated that immunological disorders 

manifested as T cell dysfunction and T cell rejection, with both scores being significantly 

higher in the high-risk group compared to the low-risk group (P < 0.001) (Figure 7E). These 

findings suggest that patients in the high-risk group might have a poorer response to 

immunotherapy, which is consistent with their unfavorable survival outcomes. 

Moreover, to better understand the interplay between FRS genes and the immune 

microenvironment, we constructed a network diagram to display the correlations between these 

genes and different immune cell subsets (Figure 7F). We found that genes such as FSTL3 and 

CSRP2 showed a high positive correlation with multiple immune cell subsets, especially 

macrophage subsets and neutrophils. These results suggest that specific genes may play a key 

role in immune regulation. 

FRS-targeted therapeutic agents reveal distinct drug response patterns in different risk 

groups 

To identify potential therapeutic agents targeting FRS, we analyzed the DSigDB database and 

ranked candidate drugs by p-value. The top 10 most significant candidates are listed in Table 

1. Among these candidate drugs, four anticancer agents widely used in clinical practice were 

identified: camptothecin, irinotecan, sanguinarine, and daunorubicin. It is worth noting that 

camptothecin and Irinotecan, as topoisomerase I inhibitors, are commonly used 

chemotherapeutic agents in clinical treatment of CRC.  

Considering that the dynamic and heterogeneous nature of the TME may lead to drug 

resistance, we assessed the sensitivity of FRS risk subgroups to five commonly used 

chemotherapy drugs for CRC, including camptothecin, Irinotecan, and three other standard 

treatments (5-Fluorouracil, paclitaxel, and oxaliplatin) (Figure 8A). The results indicated that 

enhanced sensitivity was observed in the low-risk group (P < 0.01) for camptothecin and 

irinotecan. Conversely, the high-risk group demonstrated increased sensitivity to paclitaxel (P 

< 0.05). The scatter plot (Figure 8B) between FRS risk scores and drug sensitivity reveals 

similar results: as the risk score increases, the sensitivity of tumor cells to camptothecin (P < 
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0.001) and irinotecan (P < 0.001) significantly decreases, while their sensitivity to paclitaxel 

markedly increases (P < 0.001). Detailed correlation studies demonstrated a significant positive 

association between oxaliplatin sensitivity and multiple FRS gene expression patterns (Figure 

8C), suggesting these FRS genes may serve distinct functions in modulating tumor cell 

responses to various chemotherapeutic agents. 

DISCUSSION 

In this study, we extracted integrated scRNA-seq data and employed methods such as ssGSEA 

and CellChat to explore the heterogeneity of TME of CRC. The systematic analysis based on 

single-cell sequencing not only revealed the functional diversity of fibroblasts in the TME, but 

also facilitated the identification of specific marker genes. Building on these findings, we 

innovatively developed a prognostic signature composed of 7 fibroblast-related genes by 

integrating multiple machine learning algorithms. Importantly, the FRS demonstrated strong 

prognostic predictive capabilities in both the training set and independent validation cohorts, 

outperforming traditional clinical variables and exhibiting robustness across various algorithms 

(Lasso + CoxBoost and Lasso + plsRcox). Additionally, our study not only highlights the 

pivotal role of FRS in CRC prognosis but also elucidates its potential mechanism in affecting 

patient outcomes by modulating the tumor immune microenvironment. This provides a 

theoretical foundation for developing personalized treatment strategies based on FRS 

expression patterns. 

Fibroblasts, abundant components in the tumor microenvironment, play crucial roles in 

modulating CRC initiation and progression[30]. Consistent with our enrichment analysis, 

multiple studies[31, 32] have demonstrated that fibroblasts create a favorable 

microenvironment for tumor growth and metastasis through promoting angiogenesis, immune 

modulation, and matrix remodeling, highlighting their prognostic significance in CRC patients. 

Furthermore, fibroblast-derived ECM proteins and matrix-remodeling MMPs not only form 

physical barriers but also increase matrix stiffness and interstitial pressure[33], impeding the 

penetration of chemotherapeutic and targeted agents. The accumulation of aberrant ECM 

components further exacerbates immunosuppression and interferes with immune checkpoint 

inhibitor efficacy[34], emphasizing the value of patient stratification based on fibroblast 

signatures and the development of targeted therapies for specific fibroblast-defined subgroups. 

In contrast to Zhang et al[35], who developed a 20-marker CRC fibroblast-related prognostic 

signature using bulk RNA-seq and WGCNA with validation cohort AUCs of 0.638 and 0.55, 
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our study employed a more sophisticated approach. We utilized scRNA-seq to derive an FRS 

through a LOOCV framework integrating 10 machine learning algorithms and their 

combinations. Our methodology successfully reduced variable complexity, ultimately 

identifying a consensus 7-gene FRS with enhanced predictive performance. The signature 

demonstrated superior prognostic accuracy, achieving a 3-year AUC of 0.639, and exhibited 

strong clinical translational potential. Critically, integrating the FRS with clinical features in a 

nomogram revealed significant net benefit improvements, positioning it as a promising 

precision medicine tool for colorectal cancer survival prediction. 

Our research reveals significant differences in different FRS subgroups regarding immune 

responses and cancer progression. The high-risk group exhibited increased infiltration of 

activated NK cells and specific macrophage subsets, suggesting compensatory activation of 

innate immunity in response to compromised adaptive immune function. However, this 

compensatory mechanism appears insufficient to inhibit tumor progression and may promote 

TME formation through chronic inflammation[36]. Decreased infiltration of plasma cells and 

resting memory CD4⁺ T cells indicated impaired adaptive immunity, affecting tumor-specific 

antibody production, immune memory, and ICI efficacy[37]. High-risk patients demonstrated 

enhanced immune evasion during checkpoint blockade therapy, characterized by compromised 

T cell function and reduced tumor infiltration. This suggests a dual immunosuppressive 

mechanism in the high-risk TME: impaired T cell infiltration coupled with functional deficits 

in successfully infiltrating T cells. 

Notably, all genes included in our constructed FRS have been reported to be closely associated 

with immune responses or tumor development. DBN1 is significantly overexpressed in the 

CRCE1 cell line, and immunohistochemical experiments have validated its association with 

CRC metastasis[38]. FSTL3, containing a follistatin-like domain[39] , promotes tumor 

invasion and metastasis by modulating epithelial-mesenchymal transition (EMT) key 

molecules through the TGF-β1 signaling pathway. Studies have demonstrated that FSTL3 is 

significantly elevated in CRC tissues, particularly in high-grade tumors[40, 41] . Although 

GPX3 negatively correlates with cholesterol levels, it is significantly elevated in poorly 

differentiated and advanced CRC patients, influencing CRC development through regulation 

of the cholesterol-T cell immune axis[42] . PAM, a bifunctional enzyme commonly 

dysregulated in cancer[43] , has been studied by Zhang et al. [44] , who identified three PAM 

patterns with distinct prognoses and tumor microenvironment characteristics from 1,224 CRC 

samples. The high PAM level subgroup correlates with advanced stages, immune-suppressive 
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cell infiltration, and poor prognosis. RGS16, characterized by a conserved RH domain and α-

helix[45] , exhibits high expression associated with poor overall survival in CRC patients [46]. 

Research has revealed that RGS16 inhibits JNK/P38-mediated apoptosis in CRC cells by 

disrupting TAB2/TAK1 recruitment to TRAF6[47] . CSRP2, a member of the CSRP protein 

family, shows lower expression in CRC tissues compared to adjacent non-tumor tissues, with 

functional experiments confirming its inhibitory effects on CRC cell proliferation, migration, 

and invasion[48] . Interestingly, our findings in this study regarding CSRP2's tumor-promoting 

role are inconsistent with previous reports, which may be attributed to tumor heterogeneity and 

multifactor analysis. CXCL14, a crucial member of the chemokine family, plays a vital role in 

immune regulation and tumor microenvironment[49] . In colorectal cancer, CXCL14 is 

primarily downregulated due to epigenetic silencing and exerts tumor-suppressive effects by 

inhibiting EMT and regulating cell cycle progression. Its low expression has been associated 

with poor prognosis in CRC patients[50] . 

Another key finding, computational analysis identified camptothecin and its semisynthetic 

derivative irinotecan as potential targeted therapeutics for FRS in CRC, consistent with clinical 

practice where irinotecan-based FOLFIRI[51] and oxaliplatin-based FOLFOX[52] regimens 

serve as standard treatments. Our analysis suggests enhanced efficacy of camptothecin and its 

derivative irinotecan in CRC patients with low FRS scores, offering a molecular classification-

based approach to treatment selection. The therapeutic efficacy of drugs in colorectal cancer is 

strongly supported by Douillard et al[53], whose multicenter randomized controlled trial 

(n=387) demonstrated that in metastatic colorectal cancer patients who failed 5-FU treatment, 

irinotecan monotherapy significantly prolonged median overall survival compared to best 

supportive care (9.2 months vs. 6.5 months), and improved objective response rate (13% vs. 

0%) and disease control rate (49% vs. 21%).However, TME heterogeneity frequently leads to 

treatment resistance, compromising therapeutic efficacy; therefore, these findings warrant 

comprehensive clinical validation, particularly through prospective clinical trials stratifying 

patients by FRS risk score to directly compare sensitivity to both camptothecin and its 

derivative irinotecan across molecular subtypes, which would provide definitive evidence for 

implementing this molecular classification-based approach in personalized treatment 

decisions. 

Our investigation underscores the pivotal role of FRS in informing targeted prevention and 

personalized medicine for CRC. The findings suggest that FRS can furnish vital insights to 

support clinicians' individualized treatment decisions, thereby improving patient outcomes 
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while potentially curbing unnecessary costs. Nonetheless, this study has certain limitations. 

First, although the FRS were evaluated and validated in both training and external cohorts, 

further confirmation through large-scale, multicenter prospective investigations is needed. 

Second, additional in vitro and in vivo research will be crucial for elucidating the biological 

mechanisms of FRS-related genes in CRC. Third, although we assessed the sensitivity of 

different FRS risk subgroups to various small-molecule drugs, these predictions still require 

validation through in vitro drug experimentation and clinical trials. Fourth, while our current 

study identified fibroblasts as an important regulatory component in the tumor 

microenvironment, our single-cell analysis pipeline did not delve into the heterogeneity of 

fibroblast populations. A more refined characterization of fibroblast subtypes, including their 

distinct molecular signatures and functional states, might provide additional insights into their 

diverse roles in tumor progression and potentially enhance the prognostic value of our 

signature. Future research should focus on more nuanced classification of stromal cell 

populations to further optimize risk stratification strategies. Collectively, these limitations 

point to key directions for future work. 

CONCLUSION 

This study provides a comprehensive single-cell RNA sequencing analysis of colorectal cancer, 

revealing the critical role of fibroblasts in the tumor microenvironment. By developing a novel 

7-gene fibroblast-related signature, we have demonstrated a robust prognostic tool that not only 

predicts patient survival with high accuracy but also offers insights into potential personalized 

treatment strategies. The FRS signature highlights the complex interactions between 

fibroblasts, immune cells, and cancer progression, opening new avenues for precision medicine 

in colorectal cancer management. 
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 TABLES AND FIGURES WITH LEGENDS 

Table 1. Drug prediction based on intrinsic target genes of FRS from DSigDB 

Term P-value 

Odds 

Ratioa 

Combined 

Score b Genes c 

estradiol <0.001 109648 1173816 

CSRP2; GPX3; RGS16; CXCL14; 

PAM; DBN1; FSTL3 

camptothecin <0.001 67.7 676.8 GPX3; RGS16; FSTL3 

ellipticine <0.001 100.8 806.6 CSRP2; RGS16 

15-delta prostaglandin <0.001 66.2 475.8 CSRP2; GPX3 

irinotecan 0.0012 21.7 146.1 GPX3; RGS16; FSTL3 

sanguinarine 0.0019 40.8 254.9 CSRP2; RGS16 

progesterone 0.0023 12.6 76.6 CSRP2; GPX3; CXCL14; DBN1 

daunorubicin 0.0027 34.4 203.2 CSRP2; RGS16 

3-Nitrobenzanthrone 0.0038 333.1 1852.2 CXCL14 
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Arecoline hydrobromide 0.0042 302.8 1657.4 RGS16 

 

*aOdds Ratio: a measure of the association strength between the term and target genes. b 

Combined Score: a comprehensive indicator, higher scores indicate more reliable associations 

between the term and target genes. c Genes: genes that interact with the drug. 

 

 

Figure 1. Abstract figure of this study. Integrated analysis of colorectal cancer tumor 

microenvironment and development of key cellular signatures for overall survival prediction 

and personalized therapy. QC refers to quality control, FRS refers to fibroblast-related 

signature, FRSR genes refers to FRS-related genes. 
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Figure 2. Overview of various cell types in the TME of CRC at the scRNA transcriptome 

level. (A) Identification of 15 cell types in 204 CRC tumor center tissues. (B) Bar plot showing 
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the distribution proportion of each cell type. (C) Heatmap showing the expression distribution 

of classic marker genes for each cell type. (D)ssGSEA score from hallmark gene sets of Human 

MSigDB Collections, Changes in the heatmap cell colors indicate the level of activity of the 

corresponding pathways in specific cell types. 
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Figure 3. CellChat reveals the crucial role of fibroblasts in the TME of CRC. 
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The circular network diagram displays the net number (A) and strength (B) of intercellular 

communication among different cell types in tumor tissue. colors represent different cell types, 

while the thickness of the lines indicates the magnitude of change. Heatmaps detail the 

contribution of signaling molecules, separately showing incoming(C) and outgoing(D) signals 

for each cell type. Circular plots display the differential networks of net number (E) and 

interaction strengths (F) of cell-cell interactions between tumor core and adjacent normal 

tissues. Blue indicates decrease, red indicates increase, and the thickness of the lines represents 

the magnitude of change. The heatmap provides a more intuitive representation of the 

variations in the quantity(G) and intensity(H) of interactions between tumor core and adjacent 

normal tissues. 
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Figure 4. Establishment and validation of a consensus FRS through a machine learning-

based integrated pipeline. (A) total of 101 types of prediction models using the LOOCV 
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framework and further calculated the C-index of each model in all validation datasets. Kaplan-

Meier survival curves for different risk groups in TCGA-COAD (B) and GSE17536 (C). The 

ROC curves illustrate the OS performance at 1 year (D), 3 years (E), and 5 years (F) in the two 

datasets. 
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Figure 5. Compared to traditional clinical variables, FRS demonstrates potential as an 

independent prognostic factor in GSE17536. Univariate ROC Curve (A) and DCA Curve 
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(B) of Clinical characteristics and Signature. (C)The distribution of clinical characteristics and 

the expression of model genes according to the FRS risk score. (D)Correlation between the 

FRS low- and high-risk groups and clinical characteristics. (E)Construction of the nomogram 

based on the FRS and clinical characteristics, including age, gender, grade and stage. 

(F)Calibration curve of the nomogram for 1, 3, and 5-year OS. ROC curve(G) and DCA 

Curve(H) shows the prediction performance between the nomogram and Clinical 

characteristics. 
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Figure 6. Functional enrichment analysis reveals the potential molecular mechanisms by 

which FRS affects prognosis. (A)PPI network of FRSR genes predicted through String 



 

30 

 

database. (B)The number of differentially expressed genes (DEGs) in various pathways in 

KEGG analysis. (C) KEGG enrichment circle diagram of cyan module (from the outside to the 

inside, the first circle represents the top 15 enrichment pathways, and the number outside the 

circle is the coordinate ruler of the number of genes; The second circle represents the number 

and Q value of background genes in this pathway, and the more genes, the longer the bar; The 

third circle represents the number of the DEGs in this pathway; The fourth circle represents the 

value of Rich Factor in each pathway). (D)The number of DEGs in various terms in GO 

enrichment analysis. (E)Enrichment of the top 15 gene sets (ranked by p-value) across the three 

primary categories of GO enrichment analysis. 
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Figure 7. The immune landscape associated with FRS in CRC. (A)The heatmap shows the 

immune infiltration landscape of 6 methods under different FRS risk subgroups. (B)The 
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abundance of each type of tumor-infiltrating immune cell in high-risk and low-risk groups, ns 

(not significant), * (p<0.05), ** (p<0.01), *** (p<0.001). (C)Types of infiltrating cells in the 

TME intersecting with differential analysis and survival analysis. (D) TIDE scores for each 

sample within different risk subgroups, TIDE refers to the TIDE score derived from the TIDE 

database. ns (not significant), * (p<0.05), ** (p<0.01), *** (p<0.001). (E)T-cell Dysfunction 

and Exclusion Scores between High- and Low-Risk Groups, ns (not significant), * (p<0.05), 

** (p<0.01), *** (p<0.001). (F)The network diagram of the correlation between immune cell 

subsets and gene expression (The correlation between specific cell and FRS genes is 

represented by different colored lines, with orange indicating positivity and green indicating 

negativity. The thickness of the lines reflects the strength of the correlation. Abs[52] represents 

the absolute value of the correlation coefficient, and Cell-cell cor indicates the correlation 

coefficient between different cell types.). 
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Figure 8. The drug sensitivity associated with FRS in CRC. (A) Drug sensitivity of five 

compounds calculated by the oncoPredict function across different FRS subgroups, ns (not 
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significant), * (p<0.05), ** (p<0.01), *** (p<0.001). (B) The scatter plot shows the sensitivity 

of the samples to five compounds as a function of FRS. (C) The network heatmap reflects the 

relationship between drug sensitivity and gene expression. (Abs[52] represents the absolute 

value of the correlation coefficient, and Drugs cor represents the correlation coefficient 

between different drugs.). 
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