
 

Biomolecules and Biomedicine 

ISSN: 2831-0896 (Print) | ISSN: 2831-090X (Online) 
 
Journal Impact Factor® (2024): 2.2 

CiteScore® (2024): 5.2 
www.biomolbiomed.com | blog.biomolbiomed.com 

The BiomolBiomed publishes an “Advanced Online” manuscript format as a free service to authors in order to expedite the dissemination of 
scientific findings to the research community as soon as possible after acceptance following peer review and corresponding modification 

(where appropriate). An “Advanced Online” manuscript is published online prior to copyediting, formatting for publication and author 

proofreading, but is nonetheless fully citable through its Digital Object Identifier (doi®). Nevertheless, this “Advanced Online” version is 
NOT the final version of the manuscript. When the final version of this paper is published within a definitive issue of the journal with 

copyediting, full pagination, etc., the new final version will be accessible through the same doi and this "Advanced Online" version of the 
paper will disappear. 

 

1 

 

RESEARCH ARTICLE 

 

Wang et al: TMGs in CRC prognosis 

 

Role of telomere maintenance genes as a predictive biomarker for 

colorectal cancer immunotherapy response and prognosis 

 

Zhikai Wang1#, Chunyan Zhao2#, Yifen Huang3*, Chong Li2* 

 

1Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou, 

China 

2Department of Oncology, The Affiliated Dazu's Hospital of Chongqing Medical University, 

Chongqing, China 

3Outpatient Department, The Affiliated Dazu's Hospital of Chongqing Medical University, 

Chongqing, China 

 

*Correspondence to Yifen Huan: 3516882473@qq.com and Chong Li: 

152389@hospital.cqmu.edu.cn  

#Equally contributed to this work: Zhikai Wang and Chunyan Zhao 

DOI: https://doi.org/10.17305/bb.2025.12053  

  

https://www.scopus.com/sourceid/21101152701
http://www.biomolbiomed.com/
mailto:3516882473@qq.com
mailto:152389@hospital.cqmu.edu.cn
https://doi.org/10.17305/bb.2025.12053


 

2 

 

ABSTRACT  

Colorectal cancer (CRC) represents a significant global health challenge. Although telomere 

maintenance plays a crucial role in tumorigenesis, the prognostic value and 

immunotherapeutic relevance of telomere maintenance genes (TMGs) in CRC remain poorly 

understood. In this study, relevant data were retrieved from The Cancer Genome Atlas 

(TCGA) and the Gene Expression Omnibus (GEO) databases. TMG scores were calculated 

using the single-sample gene set enrichment analysis (ssGSEA) method, and TMGs 

associated with prognosis were subsequently identified. TCGA-CRC samples were classified 

into subtypes via consensus clustering (ConsensusClusterPlus). A risk prediction model was 

then constructed using univariate and Lasso Cox regression analyses. Survival analysis was 

performed using Kaplan–Meier curves generated with the survival package. Key genes were 

validated in vitro using cellular models. Immune cell infiltration was evaluated through 

ssGSEA, TIMER, and MCP-Counter tools, and chemotherapy responses were predicted 

using the pRRophetic package. From 28 prognosis-related TMGs, two distinct CRC subtypes 

were established, with subtype C1 demonstrating more favorable clinical outcomes. 

Additionally, a risk model incorporating seven TMG-related genes (CDC25C, CXCL1, 

RTL8C, FABP4, ITLN1, MUC12, and ERI1) was developed for CRC prognosis. Differential 

mRNA expression levels of these genes were confirmed between CRC cell lines and normal 

control cells. Furthermore, silencing MUC12 suppressed CRC cell migration and invasion in 

vitro. Importantly, CRC patients classified as low-risk exhibited superior responses to 

immunotherapy, whereas high-risk patients showed increased sensitivity to conventional anti-

cancer treatments. This study represents the first systematic evaluation of TMGs in CRC 

prognosis and immunotherapy, providing novel insights that could inform personalized 

therapeutic strategies. 

 

Keywords: Immunotherapy; Risk model; Prognostic signature; Telomere maintenance gene; 

Colorectal cancer. 
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INTRODUCTION 

Colorectal cancer (CRC) ranks among the most prevalent malignancies of the digestive 

system [1, 2], with statistics suggesting it will affect ~2.5 million individuals by 2035 [3]. 

Globally, CRC represents 9.6% of all cancer cases, making it the third most frequently 

detected cancer [4]. It has been reported that CRC has the second highest death rate (9.3%), 

resulting in an annual death number of 900,000 all over the world [4, 5]. As a result of its 

asymptomatic nature in early stages, timely diagnosis and treatment remain difficult, which 

requires more advanced screening methods [6, 7]. Though studies identified transcription 

factors (e.g., Nrf2) and ferroptosis-related genes (GSH, GPX4, P53) as potential therapeutic 

targets for CRC [8], a lack of reliable biomarkers continues to lower the accuracy of 

prognostic prediction [9]. Thus, discovering biomarkers specific to CRC and developing 

prognostic models are essential for the early detection and prognosis of CRC [10]. 

Telomeres, composed of protective proteins and TTAGGG repeats [11, 12], are regarded 

as nucleoprotein complexes locating at the termini of human chromosomes. Study has 

revealed crucial roles of telomeres in protecting chromosomal and genome stabilities[13]. 

However, under certain cell division or disease states, the length of telomeres shortens 

gradually [14, 15]. In order to maintain a normal length, telomerase adds TTAGGG DNA 

sequence to the location of the end of chromosomes[16, 17]. Studies have increasingly shown 

the relevance between the shortening of telomere length and the incidence of various diseases 

such as tumors [13, 18, 19]. It has been observed that TMGs influence cancer occurrence 

through regulating the mutations in telomerase reverse transcriptase promoter (TERT), 

highlighting the potential of TMGs to act as cancer biomarkers[20, 21]. In cancers, two 

telomere elongation mechanisms [22], namely, telomerase activation[23] and alternative 

lengthening of telomeres (ALT)[24], have been found. Telomerase overexpression is 

frequently observed in many tumor cells [25, 26], for instance, thyroid cancer abnormal 

activation of ALT detected in telomerase-negative tumors [27]. Despite these results, in order 

to improve the current therapeutic strategies, the prognostic value of TMGs in CRC awaits to 

be clarified. 

Hence, the current study was designed to systematically evaluate the expression 

patterns, molecular subtypes, and prognostic significance of TMGs in CRC, along with their 
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immune microenvironment interactions and treatment response correlations. Utilizing the 

transcriptomic data of CRC in public databases, the ssGSEA method was employed to 

compute the TMG expression scores, and key survival-related genes were identified. Next, 

molecular subtypes were classified by the prognostically correlated TMGs applying 

consensus clustering method, followed by performing differential expression analysis and 

functional enrichment analysis to analyze the potential biological mechanisms. Next, a 

RiskScore model was created to evaluate the performance of the TMGs in evaluating the 

immune cell infiltration, immunotherapy response and chemotherapy sensitivity, and survival 

for CRC patients. Finally, in vitro experiments were carried out for the purpose of verifying 

the expressions and biological functions of the key genes. Collectively, our discoveries 

revealed the essential role of TMGs in immune regulation and CRC development, offering 

novel insights for personalized treatment and risk assessment. 

MATERIAL AND METHODS 

 

Acquisition and preprocessing of data 

CRC data including clinical information (both colon adenocarcinoma and rectum 

adenocarcinoma), copy number variations (CNVs), and somatic mutations were retrieved 

from TCGA database (https://portal.gdc.cancer.gov/). 589 tumor samples with survival time 

longer than 0 day were retained after filtering out samples lacking survival. The RNA-seq 

expression profiles were converted to TPM format and log2-transformed. Additionally, we 

downloaded GSE17537 microarray data from GEO (https://www.ncbi.nlm.nih.gov/geo) and 

transformed the probes to symbols based on the annotation file. 55 tumor samples in 

GSE17537 were retained after excluding those without clinical follow-up data or survival 

time. Finally, 2093 TMGs were extracted from a past study [28]. 

 

Identification of CRC-related TMGs and analysis of their mutations and CNVs  

Using ssGSEA method, the TMG scores for the TCGA-CRC dataset were computed. 

DEGs between tumor and adjacent tissues were identified and intersected with TMG 

signatures. Prognosis-correlated TMGs were then selected through univariate Cox regression 

analysis. CNV and mutation data from the TCGA database were collected. Briefly, MuTect2 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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[29] was employed to analyze the mutational landscape of TMG in primary CRC samples 

from the TCGA-CRC cohort, followed by visualizing the mutational status into a waterfall 

plot with the maftools R package[30]. Then, the CNV status of the TMGs in primary CRC 

samples were detected by ADTEx[31]. 

 

Molecular clustering 

Using the ConsensusClusterPlus package [32], we performed consensus clustering on 

the tumor samples with the parameters of hierarchical clustering (clusterAlg = "hc") and 

Pearson correlation distance (distance = "pearson"). The analysis involved 500 iterations with 

a resampling rate of 80%. The optimal number of clusters (k) was identified based on 

stabilized cumulative distribution function (CDF) curve, minimal incremental gains in the 

delta area plots, and high intra-cluster consensus and clear inter-cluster separation in 

consensus matrices. Finally, the clinical features (M.stage, N.stage, T.stage, stage, status, age 

and gender) and prognosis in different molecular subtypes were systematically assessed. 

 

Enrichment analysis 

DEGs between the C1 and C2 were identified by the limma package (FDR < 0.05 & 

|log2FC| >log2(1.5)) [33] to select common genes for enrichment analysis. The TCGA-CRC 

cohort was subdivided using the DEGs into two molecular subtypes. Next, the clusterProfiler 

R package[34] was used for conducting GO and KEGG enrichment analysis [35]. 

 

Establishment of a risk model 

Prognosis-correlated DEGs were screened through univariate Cox regression analysis, 

followed by refining the risk model with Lasso Cox regression in the glmnet package[36] and 

10-fold cross-validation. A RiskScore model was formulated applying stepwise multivariate 

Cox regression analysis as follow: 

𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 = ∑ 𝛽𝑖 × 𝐸𝑥𝑝𝑖 

Where, βi represents the coefficient of a gene in the Cox regression model, and Expi 

represents the gene expression. The samples were assigned by the median RiskScore as the 

threshold into low- and high-risk groups, followed by analyzing the survival difference 
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between the two groups using KM curves with the survival package[37]. The prognostic 

classification by the RiskScore model was validated using receiver operating characteristic 

(ROC) analysis in timeROC R package[38] and principal component analysis (PCA). 

Furthermore, the prognostic differences in the two risk groups across gender, age, and stage 

were compared by calculating the RiskScores for all the patients. 

Independent clinical and pathological factors (stage, M.stage, N.stage, T.stage, status, 

age and gender) for CRC prognosis were selected by univariate and multivariate Cox 

regression analyses along with the RiskScore model. To predict 1-, 3-, and 5-year survival for 

CRC patients, a prognostic nomogram was developed using the rms package[39]. Finally, the 

clinical reliability of the nomogram was tested by calibration curve analysis and decision 

curve analysis (DCA). 

 

Tumor microenvironment (TME) differences across the risk groups 

Immune cell infiltration in each risk groups was comprehensively examined using  the 

ssGSEA algorithm, the MCPcounter package[40], and the TIMER online tool 

(http://cistrome.org/TIMER). Specifically, the TIMER offer six main analysis modules to 

enable the correlation analysis between a range of factors and immune infiltration. 

 

Culture and transfection of cells 

 Human colon adenocarcinoma cells SW1116 (BNCC100262) and human normal colon 

epithelial cells NCM460 (BNCC339288) ordered from BeiNa Culture Collection (Beijing, 

China) were cultured in RPMI Medium 1640 (31800, Solarbio Lifesciences, Beijing, China) 

or Leibovitz's L-15Cell Culture Medium (LA9510, Solarbio Lifesciences) supplemented with 

10% FBS (S9020, Solarbio Lifesciences). The temperature was constantly maintained at 

37°C to ensure the optimal cell growth condition. Additionally, NCM460 culture was 

performed in 5%CO₂. 

The siRNA was synthesized by GenePharma (Suzhou, China) and transfected into 

MUC12 cells applying Lipofectamine 2000 (11668027, Invitrogen, Carlsbad, CA), and the 

negative control with scramble target sequence (target sequence: 5’-

ACCAGTATTGGAGGTAATACAAC-3’) was purchased [41].  

http://cistrome.org/TIMER
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Wound healing assay 

A controlled artificial wound was made on the cell monolayers with a 10 μL pipette tip 

after culturing the transfected CRC cells SW1116 (1 × 105 cells/well) to complete confluence 

in a 6-well plate. Next, the cells were cultured in serum-free medium at 37°C. The cells were 

photographed at 0 hour (h) and 48 h under an Eclipse Ts2R microscope (Nikon, Tokyo, 

Japan).  

 

Transwell assay 

Matrigel (50 μL, Corning, Inc.) was used to pre-coat the transwell chambers (pore size: 

8 μm, 3422, Corning, Inc., Corning, NY), which were placed on 24-well plates. Next, the 

transfected SW1116 cells in serum-free medium (200μL) were planted into the upper 

chamber at 1 × 105 cells/well, whereas the lower transwell chamber contained 700 μL 

complete medium. After cell culture for 48 h, the cells were fixed by 4% paraformaldehyde 

(P1110, Solarbio Lifesciences) for 30 minutes (min), followed by using 0.1% crystal violet 

solution (G1063, Solarbio Lifesciences) for cell staining another 15 min. Finally, the cells 

were observed and quantified under the microscope used in the previous assay. 

 

QRT-PCR analysis  

Total RNAs from NCM460 and SW1116 cells were extracted using the TriZol kit 

(15596026CN, Invitrogen), followed by reverse transcription into cDNA with a first-strand 

cDNA synthesis kit (1708890, Bio-Rad Laboratories, Hercules, CA). Using a CFX384 qPCR 

System (1855484, Bio-Rad Laboratories), qCR amplification was performed with the use of 

SYBR Green Supermix (1708880, Bio-Rad Laboratories) under the cycling conditions 

starting with initial denaturation at 95°C for 2 min, followed by 40 cycles at 95°C for 15 

seconds (s), at 60°C for 30 s, and at 72°C for 30 s. With GAPDH as a normalization control, 

relative mRNA expression was calculated by the method of 2-ΔΔC [42]. See Table. S1 for the 

primers. 

 

Immunotherapy and drug sensitivity 

Immunotherapy responses were predicted by standardizing the transcriptome data 

applying TIDE (http://tide.dfci.harvard.edu/) to calculate the TIDE scores, with higher TIDE 

http://tide.dfci.harvard.edu/
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scores showing greater possibility of immune escape and less immunotherapy benefit. Next, 

chemotherapy sensitivity in the TCGA-CRC dataset and the differences of patients’ responses 

were analyzed and compared by the pRRophetic software package[43]. Patients’ sensitivity in 

different risk groups to chemotherapy agents was evaluated with IC50. 

 

Statistical analysis 

All the analyses were conducted in R language (version 3.6.0). Data distribution 

normality was verified by Shapiro-Wilk test prior to the test of variance. For comparisons 

between two independent groups of continuous variables, the Wilcoxon rank-sum test was 

employed. Kruskal-Wallis test was used to examine the differences in continuous variables 

among three groups. Chi-square test was used to assess the disparities in categorical variables 

across different groups. Additionally, the log-rank test was adopted to compare the 

differences of survival time among patients in different groups. P < 0.05 denoted a statistical 

significance. For in vitro cellular experiments, the difference between normal and 

experimental group cells and the experimental data were analyzed using Student's t-test and 

GraphPad Prism 8.0 software. Data were expressed by the mean ± standard deviation (SD). 

SangerBox (http://sangerbox.com/) offered this study analytical assistance [44]. 

 

RESULTS 

 

Genomic landscape of the TMGs in CRC 

Using ssGSEA analysis, we first computed the TMG scores in the TCGA-CRC dataset. 

It was found that the tumor tissues demonstrated significantly elevated TMG scores than the 

adjacent non-tumor tissues (Figure. 1A). Further analysis filtered 317 DEGs between the two 

types of tissues (Figure. 1B), among which 28 TMGs showing significant prognostic 

relevance in CRC were determined through univariate Cox regression analysis (Figure. 1C). 

Furthermore, analysis on the mutational status and CNVs on these 28 TMGs in the tumor 

samples revealed that only 23.69% of the samples carried gene mutations linked to telomere 

maintenance (Figure. 1D), with SNAI1 and RBL1 having a comparatively higher frequency 

of copy number amplification (Figure. 1E). 

http://sangerbox.com/
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Identification of CRC molecular subtypes based on TMGs 

Here, we use consistency clustering to cluster the TCGA-CRC samples with a 

combination of CDF curves, Delta Area plots and consistency matrix heatmaps. In this study, 

we use consistency clustering to analyze the data in clusters. The stability and reasonableness 

of different clustering numbers (k) are evaluated by combining CDF curves, Delta Area plots, 

and heatmaps of the consistency matrix. First, the CDF curves showed that as the number of 

clusters increased from k=2 to k=3, the CDF curves shifted to the upper right corner, and the 

clustering consistency improved, but the enhancement was significantly less than after k=3 

(Figure. 2A). Figure. 2B further shows that the increment in CDF area is the largest between 

k=2 and k=3, but the increment flattens out at k≥4, suggesting that there is limited gain from 

continuing to increase the number of clusters. In addition, as shown in Figure. 2C, with k=2, 

the heatmap shows high cluster consistency of samples within clusters, clear separation 

between clusters, and a more robust clustering structure. Therefore, we finally determined k = 

2 as the optimal number of clusters and divided the samples into two clusters (C1 and C2). 

Overall survival was significantly better in C1 than in C2 (Figure. 2D, P = 0.0015). Analysis 

of the clinical features revealed that the two subtypes differed in M.stage and status. 

Comparison on TMG expression profiles between C1 and C2 showed higher expressions of 

multiple genes in C1, including RBL1, CHEK1, BRCA1, HMMR, KPNA2, CCNA2, NCAPG, 

TKT, TRAP1, ORC1, CDC45, CCT2, and CCNB1(Figure. 2E). These data verified a robust 

classification of the CRC samples into two molecular subtypes with significant survival 

differences and heterogeneity of clinical features, providing a solid basis for subsequent study 

of molecular subtyping. 

 

Enrichment analysis results of the DEGs 

Differential expression analysis using limma package[45] identified 538 DEGs between 

C1 and C2 (282 upregulated in C1, 256 upregulated in C2). GO and KEGG enrichment 

analysis showed that C1-associated genes were mainly enriched in proliferation-related 

pathways including DNA replication and cell cycle (Figure. 3A-D), while C2-associated 

genes were mainly enriched in pathways related to cancer metastasis and invasion such as 

focal adhesion, extracellular matrix organization, extracellular matrix (ECM)-receptor 
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interaction (Figure. 3E-H). These results demonstrated significant differences between the 

two subtypes in terms of potential therapeutic response and biological behaviors in CRC. 

 

Development of a risk model based using the seven TMGs 

Through univariate Cox analysis, we identified 101 prognostic DEGs (P < 0.05), which 

were finally refined to seven key genes (CDC25C, CXCL1, RTL8C, FABP4, ITLN1, MUC12, 

and ERI1) by Lasso Cox regression analysis with 10-fold cross-validation (Figure. 4A) and 

stepwise multivariate Cox regression analysis (Figure. 4B). The formula of the RiskScore 

model was as follow: 

RiskScore = (0.155 ∗ RTL8C) + (0.080 ∗ FABP4) + (−0.062 ∗ ITLN1) +

(−0.100 ∗ CXCL1) + (−0.122 ∗ MUC12) + (−0.282 ∗ ERI1) + (−0.285 ∗

CDC25C)Patients were allocated by the median value of RiskScore into low-risk and high-

risk groups. KM survival curve demonstrated that the two risk groups in the TCGA-CRC 

training cohort differed significantly in patients’ survival, with those having a higher 

RiskScore showing shorter overall survival (OS) (Figure. 4C). The timeROC package[38] 

was employed in ROC analysis for further validating the prognosis classification of the 

RiskScore. The AUC values in the training dataset for 1-, 3-, and 5-year survival were 0.63, 

0.68, and 0.72, respectively, which suggested a highly accurate survival evaluation by the 

model (Figure. 4C). Furthermore, PCA results also showed a distinct separation between the 

two risk groups in the TCGA-CRC cohort (Figure. 4D), further supporting the performance 

of the RiskScore in identifying CRC patients with different risks. 

The robustness of the RiskScore was confirmed using the validation dataset of 

GSE17537 (Figure. 4E-F). Consistently, the value of the RiskScore was negatively 

correlated with survival outcomes of the samples in this dataset. Comparison on the 

performance of the low- and high- risk groups across different clinical factor subgroups 

revealed distinct differences (P < 0.05) between the two risk groups, independent of stage 

classification (I + II or III + IV), gender (male or female), or age ( > 67 or ≤ 67). This 

reflected an independent risk classification, which was less likely to be influenced by other 

clinical factors (Figure. 4G-I). 
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Validation of the TMG-related risk model 

Analysis of the TCGA cohort revealed close associations between the risk groups and 

pathological staging, with high-risk group having more patients with C2 subtype and 

metastasis cases. This finding was consistent with our previous research, which showed that 

the C2 cluster was enriched in metastasis-related pathways. Further analysis revealed that the 

RiskScore and more advanced clinical staging (T.stage, N.stage, and stage) were positively 

correlated. Figure. 5A and Figure. 5B show the correlation between clinical features and 

RiskScore and the violin plot, respectively. Both univariate and multivariate Cox regression 

analysis identified M.stage, stage, the RiskScore, and age as significant factors for CRC 

prognosis (Figure. 5C-D). The nomogram was developed combining other clinical 

pathological characteristics and the RiskScore for quantifying the survival and risk for CRC 

patients (Figure. 5E). The findings showed the greatest influence of the RiskScore on the 

survival evaluation. Calibration curves exhibited that the 1-, 3-, and 5-year prediction curves 

closely aligned with the standard curve (Figure. 5F), manifesting a strong prediction 

performance of the nomogram. Additionally, DCA also demonstrated a better clinical 

effectiveness and reliability of the nomogram (Figure. 5G).  

 

In vitro verification of the key genes for CRC prognosis 

The relative expressions of the seven genes (CDC25C, CXCL1, RTL8C, FABP4, ITLN1, 

MUC12, and ERI1) in SW1116 and NCM460 cells were measured. It was found that the 

expressions of ITLN1 and ERI1 were notably downregulated in SW1116 cells, while the 

mRNA expressions of CDC25C, CXCL1, RTL8C, FABP4, and MUC12 were significantly 

higher in SW1116 cells than in control NCM460 cells (Figure. 6A-G, P < 0.05).  

Previous study found the potential of MUC12 as a molecular marker for the prognosis of 

CRC [46, 47]. Therefore, this study performed wound healing and transwell assays to 

evaluate the potential effects of MUC12 knockdown on CRC cells. As shown in Figure. 6H-

I, MUC12 knockdown notably suppressed the migration and invasion abilities of SW1116 

cells (P < 0.01). This result was consistent with the cancer-promoting role of MUC12, which 

further supported the clinical significance of the RiskScore model developed based on TMGs. 
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Differences in the TME between CRC patients with different risks 

The ssGSEA showed that the infiltration of Type 17 T helper cell, Neutrophil, Activated 

B cell, Type 2 T helper cell, Activated CD4 T cell, Activated CD8 T cell,  which typically 

exhibit killing effects on tumor cells [48], was lower in the high-risk group than in the low-

risk group and this may contribute to the protection of tumor cells. Compared to the low-risk 

group, high-expressed Regulatory T cell in the high-risk group could promote tumor 

development (Figure. 7A). The TIMER analysis demonstrated that CD8_Tcell and B_cell 

was low-expressed in the high-risk group (Figure. 7B). The MCPcounter analysis (Figure. 

7C) unveiled significant infiltration differences of some cell types between the two groups. 

Specifically, high-risk group had significantly lower infiltration of NK cells, cytotoxic 

lymphocytes, T cells, Neutrophil, B lineage. This implied that the absence of immune effector 

cells may shape a “cold-immune” TME of the high-risk patients, which may explain their 

poorer prognosis. 

 

Immunotherapy and drug sensitivity analysis for CRC patients in different risk groups 

TIDE analysis revealed significantly lower TIDE scores in the low-risk group (Figure. 

8A), suggesting more active immune response and less immune evasion possibility in those 

patients. Further analysis showed that the low-risk group had a significantly higher 

expression level of the immune checkpoint inhibitor CD274 (PD-L1) than the high-risk group 

(Figure. 8B), indicating a better response of low-risk patients to immune checkpoint 

blockade therapy. Based on the ssGSEA algorithm and an established gene signature [49], the 

responsiveness to treatments including anticancer immunotherapy and chemotherapy was 

analyzed. It was observed that low-risk CRC patients had a higher reactivity across multiple 

treatment-correlated gene sets (Figure. 8C-E), while high-risk CRC patients had higher 

sensitivities to common anti-cancer drugs, for instance, Phenformin, MG.132, Cyclopamine, 

and Sorafenib (Figure. 8F). These findings highlighted that patients in different risk groups 

responded differently to the therapeutic strategies, with low-risk patients benefiting more 

from immunotherapy and high-risk patients benefiting more from conventional anti-tumor 

drug treatments. 
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DISCUSSION 

CRC diagnosis remains challenging due to its asymptomatic symptoms in early stages, 

which also results in a poor prognosis. This highlights the need for effective prognostic 

biomarkers to reduce the mortality of CRC patients [7]. Telomere length in lymphocytes is 

closely involved in tumor development, and telomere shortening is considered as a prognostic 

marker for CRC [50]. While genes like RCN3 have emerged as prognostic markers, their 

specific mechanism still requires in-depth investigation [51]. Hence, this study developed a 

novel TMG-based risk model for the prognostic assessment in CRC to contribute to this filed. 

Clustering analysis identified two distinct CRC subtypes (C1, C2) based on TCGA-CRC 

samples, with C2 subtype having higher copy number and expression of SNAI1 and poorer 

prognosis. SNAI1 has been found to play a pivotal part in maintaining telomere integrity[52] 

and its absence promotes telomerase activity in mesenchymal stem cells, highlighting the 

potential of SNAI1 as a crucial TMG in the process[52]. SNAI1 could also regulate epithelial-

mesenchymal transition (EMT) [53] during which epithelial cells lose connections and 

polarity but acquire mesenchymal properties and invasive ability [54]. Such phenotypic 

changes during EMT contribute to tumorigenesis. The expression level and function of SNAI1 

have been widely studied in many types of cancers including CRC. SNAI1 drives stem cell 

properties, metabolic alterations, cancer invasion and chemoresistance in epithelial ovarian 

cancer,[55], promotes metastasis in breast tumors [56]. Moreover, high-expressed SNAI1 is 

considered as a clinical biomarker in gastric cancer,[57]. In CRC, intestinal epithelial SNAI1 

facilitates CRC development through EMT and Wnt/β-catenin signaling pathway[58]. 

Furthermore, study on both CRC patients and in vitro experiment showed that the expression 

of SNAI1 is predictive of the patients’ response to drug treatment [59]. This study found that 

SNAI1 had a higher CNV, which was consistent with previous finding that CNVs occur 

frequently in the regions containing genes with crucial functions in CRC and therefore could 

be regarded as biomarkers for cancer detection[60]. This study proposed SNAI1 as a 

promising candidate for early CRC detection. 

Recent studies highlight the multifaceted roles of the 7 identified TMGs (CDC25C, 

CXCL1, RTL8C, FABP4, ITLN1, MUC12, and ERI1) in carcinogenesis. For instance, 

CDC25C plays a critical part in regulating the G2/M phase of the cell cycle, and its 
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expression changes are implicated in the growth of cancer [61]. CXCL1, a CXC chemokine 

subfamily member, demonstrates clinical significance in many cancer types[62]. FABP4, 

abundant in adipocytes, shows an upregulated expression in multiple solid tumors and this 

indicates a poor prognosis[63]. RTL8C has the potential to be considered as a promising pan-

cancer biomarker [64]. ERI1 expressed at a high level is linked to an improved OS of CRC 

[65]. ITLN, primarily generated by stromal vascular fraction cells, is crucially involved in 

cancer growth [66]. MUC12 is a type of transmembrane mucin typically expressed in the 

normal colon and less expressed in the pancreas. Study reported a lower mRNA level of 

MUC12 in certain CRC tissues in comparison to that in normal colonic tissues [67, 68]. 

Notably, MUC12 presented functional complexity in this study. On one hand, the results of 

multivariate Cox regression analysis revealed that MUC12 behaved as an independent 

protective prognostic factor, with higher expression associated with longer overall survival. 

On the other hand, in vitro experiments showed that downregulated MUC12 significantly 

suppressed the migration and invasion of CRC cells, suggesting that it may have a metastasis-

promoting effect. The difference between “statistically protective” and “functionally pro-

carcinogenic” potentially indicated a dual role of MUC12 in different pathological stages or 

microenvironmental contexts. In some early stages, MUC12 may play a protective role by 

maintaining the epithelial barrier function, while its overexpression may be involved in EMT 

and microenvironmental remodeling to promote tumor cell metastasis and invasion during 

tumor progression [69, 70]. This suggested that the specific role of MUC12 still needs to be 

elucidated with more in vivo mechanistic studies. 

For cancer pathogenesis, the TME is one of the essential factors whose  compositional 

changes can indicate patients’ responses to immunotherapy [71, 72]. In the current study, 

high-risk CRC group had a worse prognostic outcome, which was consistent with its 

enrichment in the C2 cluster. As we found that the enriched pathways in C2 were largely 

linked to cancer metastasis, this indicated that a worse prognosis of high-risk patients may be 

caused by metastasis. High-risk patients also showed suppressed abilities of immune system 

defense, resulting in an upregulated expression of immune cells, however, low-risk patients 

demonstrated a stronger immune response. The high-risk group also showed higher 

infiltration of endothelial cells and fibroblasts. Endothelial cells is a primary cell type that 
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plays a crucial role in angiogenesis in cancer tumor [59], which is a vital process that 

provides essential oxygen and nutrients for tumors [73]. Fibroblasts are also a type of 

mesenchymal cell that participates in tissue homeostasis and disease processes[74]. Varying 

infiltration of different immune cell types within the TME may contribute to the distinction 

between the two risk groups. The synergistic effects between fibroblasts and endothelial cells 

could cause tumor metastasis and diffusion, resulting a worse prognosis to high-risk CRC 

patients. Notably, the high-risk patients had a “suppressed” immune system and exhibited 

greater sensitivity to conventional anti-tumor agents. This also suggested that in patients with 

significant immunosuppression, small molecule targeted agents therapy could be prioritized 

over the use of immunotherapy alone. 

This study had several limitations to be acknowledged. Firstly, while we utilized clinical 

information and large-scale RNA-seq data from public databases, potential biases may arise 

from inter-sample heterogeneity, differences in sequencing platforms, and incomplete clinical 

annotations, which could all affect the generalizability of the current model. Future 

multicenter prospective studies with larger independent cohorts are needed to validate and 

improve the clinical applicability and robustness of our risk model. Secondly, although we 

revealed significant differences in immune cell infiltration and immune checkpoint 

expressions between the two risk groups, the precise molecular mechanisms through which 

TMGs modulated the TME or immune evasion remained unclear. Subsequent investigations 

should integrate single-cell transcriptomics, multi-omics approaches, and functional 

experiments to systematically elucidate the immunoregulatory roles of the key TMGs and 

their potential as targets for combination immunotherapy. Finally, our in vitro validation 

primarily focused on expression profiling and limited functional characterization, therefore, 

comprehensive studies involving knockout or overexpression of other key genes and animal 

models are required to strengthen the mechanistic evidence to support our findings.  

 

CONCLUSION 

This study was the first to systematically identify TMGs closely linked to the prognosis 

of CRC at the whole genome level and to construct a CRC prognostic risk model consisting 
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of seven key TMGs (CDC25C, CXCL1, RTL8C, FABP4, ITLN1, MUC12, and ERI1). The 

model not only had a strong prediction ability in multiple independent cohorts, but also could 

effective identify immune microenvironment differences and drug sensitivity of CRC 

patients. Our findings supported that TMGs influenced the clinical outcomes of patients with 

CRC by modulating tumor immune escape mechanisms. Combined with in vitro experiments, 

the expressions of the key genes were found to be closely related to the invasive ability of 

CRC cells, further enhancing the biological explanatory power of the model. This study 

innovatively combined the telomere maintenance mechanism with the immunotherapy 

potential, providing candidate targets and a novel theoretical basis for the management and 

development of targeted therapy for CRC.  
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TABLES AND FIGURES WITH LEGENDS 

  

Figure 1. Analysis of the genomic landscape of TMGs in CRC.  

(A) The expression of MG scores in CRC and non-cancerous adjacent control samples. (B) 

The differential genes of tumor tissue and adjacent tissue were intersected with TMG. (C) 28 

TMGs were closely linked to CRC prognosis. (D) Mutation status of TMGs in CRC. (E) 

CNVs of TMGs in CRC. 
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Figure 2. Classification and prognostic differences of TCGA-CRC samples. 

(A) CDF curve was plotted for the TCGA-CRC cohort samples. (B) CDF delta area curve 

was plotted for the TCGA-CRC cohort samples. (C) At consensus k=2, heatmap of sample 

clustering in the TCGA-CRC cohort was generated. (D) KM curve displaying the relationship 

between OS and two subtypes in the TCGA-CRC cohort. (E) Heat maps of clinical features 

(status, stage, M.stage, N.stage, T.stage, age, and gender) and expression between subtypes in 

the TCGA-CRC cohort. 
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Figure 3. Differential gene identification and enrichment analysis. 

(A-D) In TCGA-CRC cohort, DEGs enrichment analysis of C1 subtype. (E-H) In TCGA-

CRC cohort, DEGs enrichment analysis of C2 subtype. 



 

25 

 

   

Figure 4. Development of TMGs-based risk model and verification.  

(A) LASSO Cox regression analysis was performed to analyze the DEGs linked to CRC 

prognosis in the TCGA-CRC training cohort. (B) Risk coefficients of key genes in the 

TCGA-CRC training cohort. (C) KM survival curve and ROC curve for 1-, 3- and 5-year 

prognostic prediction for TCGA-CRC training cohort. (D) PCA comparing low- and high-risk 

groups within the TCGA-CRC training cohort. (E-F) KM survival curves and ROC curves for 

the model based on the GEO testing dataset. (G-I) Prognosis differences between the two risk 

groups across different tumor stages (G), ages (H), and genders (I). 
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Figure 5. Development of a nomogram to assess CRC prognosis.  

(A) Relationship between RiskScore and clinical characteristics (M.stage, N.stage, T.stage, 

stage, status, age, and gender). (B) Violin plots illustrating the distribution of clinical 

characteristics (status, M.stage, N.stage, T.stage, stage, age and gender) between low-risk and 

high-risk groups. (C-D) Univariate and multivariate COX regression analyses were 

performed to determine the effect of RiskScore and clinical characteristics (status, stage, 

M.stage, N.stage, T.stage, age and gender). (E) Nomogram to predict the 1-, 3-, and 5-year 

OS of CRC patients. (F) Calibration curve used to verify established nomogram. (G) DCA of 

nomogram. * P < 0.05; ** P < 0.01; *** P < 0.001. 

 

  

Figure 6. In-vitro validation using CRC cells 

(A-G) Quantified expression levels of 7 biomarkers CDC25C (A), CXCL1 (B), RTL8C (C) 

FABP4 (D), ITLN1 (E), MUC12 (F) and ERI1 (G) in CRC cells SW1116 and human normal 

colonic epithelial cells NCM460 via qRT-PCR. (H) Effects of MUC12 silencing on the 

migration of CRC cells SW1116 tested via wound healing assay. (I) Effects of MUC12 

silencing on the invasion of CRC cells SW1116 tested via transwell assay. All the data from 

three independent experimental sets were shown as mean ± standard deviation. * P < 0.05; ** 

P < 0.01; *** P < 0.001; **** P < 0.0001. 
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Figure 7. Analysis of differences in immune infiltration levels between high- and low- 

risk groups  

(A-C) The method of (A) ssGSEA, (B)TIMER and (C)MCPcounter was used to calculate the 

immune infiltration levels of the two risk groups, respectively. 
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Figure 8. Immunotherapy and drug sensitivity studies between high and low risk 

groups. 

(A) Differences in TIDE scores between high and low risk groups. (B) Variations in common 

immune checkpoint expressions between high and low risk groups. (C-E) Results of 

differences in response to (C) Anticancer immunotherapy，(D) Radiotherapy，(E) 

Anti−EGFR/FGFR3/PPARG_therapy between high and low risk groups. (F) Differences in 

drug sensitivity of Cyclopamine, MG-132, Sorafenib, PHA.665752, Phenformin, XMD8.85 

and Roscovitine were observed between high-risk and low-risk groups. 
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SUPPLEMENTAL DATA 

 

Table S1. Primer sequences used in this study. 

Gene Accession 

No. 

Primers (5’-3’) 

Forward Reverse 

CDC25C NM_001790 AAGGCGGCTACAGAGAC

TTCTT 

AGAGTTGGCTGGCTTGT

GAGA 

CXCL1 NM_001511 TGCTGCTCCTGCTCCTGG

TA 

GCTTTCCGCCCATTCTTG

AGTG 

RTL8C NM_001078

171 

AAGCGAGGAGCAGCGAT

GGA 

TGTGAGGCGGGTGATGA

GGAA 

FABP4 NM_001442 TGCAGCTTCCTTCTCACC

TTGA 

TGACGCATTCCACCACC

AGTT 

ITLN1 NM_017625 AACGCCTTGTGTGCTGG

AATGA 

ATCTCACGGCTGCTGCT

GTAAC 

MUC12 NM_0011644

62 

CCTCAACTCACACGACG

CCTTC 

TGCTGCTGTAGACGGTG

GTAGA 

ERI1 NM_153332 ATCCTCTTGCCTCAGCCT

CCT 

TTCAAGACCAGCCTGAC

CAACA 

GAPDH NM_002046 GTCTCCTCTGACTTCAAC

AGCG 

ACCACCCTGTTGCTGTA

GCCAA 

 


