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R E S E A R C H A R T I C L E

Role of telomere maintenance genes as a predictive
biomarker for colorectal cancer immunotherapy
response and prognosis
Zhikai Wang 1#, Chunyan Zhao 2#, Yifen Huang 3∗, and Chong Li 2∗

Colorectal cancer (CRC) represents a significant global health challenge. Although telomere maintenance plays a crucial role in
tumorigenesis, the prognostic value and immunotherapeutic relevance of telomere maintenance genes (TMGs) in CRC remain poorly
understood. In this study, relevant data were retrieved from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO)
databases. TMG scores were calculated using the single-sample gene set enrichment analysis (ssGSEA) method, and TMGs associated
with prognosis were subsequently identified. TCGA-CRC samples were classified into subtypes via consensus clustering
(ConsensusClusterPlus). A risk prediction model was then constructed using univariate and Lasso Cox regression analyses. Survival
analysis was performed using Kaplan–Meier curves generated with the survival package. Key genes were validated in vitro using
cellular models. Immune cell infiltration was evaluated through ssGSEA, TIMER, and MCP-Counter tools, and chemotherapy responses
were predicted using the pRRophetic package. Based on the results, 28 prognosis-related TMGs, two distinct CRC subtypes were
established, with subtype C1 demonstrating more favorable clinical outcomes. Additionally, a risk model incorporating seven
TMG-related genes (CDC25C, CXCL1, RTL8C, FABP4, ITLN1, MUC12, and ERI1) was developed for CRC prognosis. Differential mRNA
expression levels of these genes were confirmed between CRC cell lines and normal control cells. Furthermore, silencing
MUC12 suppressed CRC cell migration and invasion in vitro. Importantly, CRC patients classified as low-risk exhibited superior
responses to immunotherapy, whereas high-risk patients showed increased sensitivity to conventional anti-cancer treatments. This
study represents the first systematic evaluation of TMGs in CRC prognosis and immunotherapy, providing novel insights that could
inform personalized therapeutic strategies.
Keywords: Immunotherapy, risk model, prognostic signature, telomere maintenance gene, TMG, colorectal cancer, CRC.

Introduction
Colorectal cancer (CRC) ranks among the most prevalent malig-
nancies of the digestive system [1, 2], with projections sug-
gesting it will affect approximately 2.5 million individuals by
2035 [3]. Globally, CRC accounts for 9.6% of all cancer cases,
making it the third most frequently diagnosed cancer [4].
It is also the second leading cause of cancer-related death,
responsible for 9.3% of deaths, which translates to approxi-
mately 900,000 deaths worldwide each year [4, 5]. Due to its
asymptomatic nature in the early stages, timely diagnosis and
treatment remain challenging, underscoring the need for more
advanced screening methods [6, 7]. While studies have iden-
tified transcription factors (e.g., Nrf2) and ferroptosis-related
genes (such as GSH, GPX4, and P53) as potential therapeutic
targets for CRC [8], the lack of reliable biomarkers continues
to hinder the accuracy of prognostic predictions [9]. There-
fore, identifying biomarkers specific to CRC and developing

robust prognostic models are crucial for the early detection and
prognosis of the disease [10].

Telomeres, which consist of protective proteins and
TTAGGG repeats [11, 12], are nucleoprotein complexes located
at the ends of human chromosomes. Studies have shown that
telomeres play essential roles in maintaining chromosomal and
genomic stability [13]. However, during certain cell divisions
or disease states, telomere length gradually shortens [14, 15].
To maintain their length, telomerase adds TTAGGG sequences
to the chromosomal ends [16, 17]. Increasing evidence links the
shortening of telomere length to the development of various
diseases, including tumors [13, 18, 19]. It has been observed
that telomere maintenance genes (TMGs) influence cancer
occurrence by regulating mutations in the telomerase reverse
transcriptase (TERT) promoter, suggesting their potential as
cancer biomarkers [20, 21]. Two mechanisms for telomere
elongation [22] have been identified in cancers: telomerase
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activation [23] and alternative lengthening of telomeres
(ALT) [24]. Telomerase overexpression is commonly observed
in many tumor cells [25, 26], while abnormal activation of ALT
has been detected in telomerase-negative tumors, such as those
in thyroid cancer [27]. Despite these findings, the prognostic
value of TMGs in CRC remains unclear and warrants further
investigation to enhance current therapeutic strategies.

This study was designed to systematically evaluate the
expression patterns, molecular subtypes, and prognostic sig-
nificance of TMGs in CRC, along with their interactions with
the immune microenvironment and correlations with treat-
ment responses. Using transcriptomic data from public CRC
databases, the single-sample gene set enrichment analysis
(ssGSEA) method was employed to compute TMG expres-
sion scores, and key survival-related genes were identified.
Molecular subtypes were classified based on prognostically
correlated TMGs using a consensus clustering method. Dif-
ferential expression and functional enrichment analyses were
then performed to explore the potential biological mechanisms.
A RiskScore model was developed to assess the performance
of TMGs in evaluating immune cell infiltration, immunother-
apy response, chemotherapy sensitivity, and survival out-
comes in CRC patients. Finally, in vitro experiments were
conducted to validate the expression and biological functions
of key genes. Collectively, our findings highlight the critical
role of TMGs in immune regulation and CRC development,
providing new insights for personalized treatment and risk
assessment.

Materials and methods
Acquisition and preprocessing of data
CRC data, including clinical information for both colon and
rectum adenocarcinomas, copy number variations (CNVs), and
somatic mutations, were retrieved from The Cancer Genome
Atlas (TCGA) database (https://portal.gdc.cancer.gov/) and
termed as “TCGA-CRC” cohort. After excluding samples with-
out survival data, 589 tumor samples with survival times
greater than 0 days were retained. The RNA-seq expression
profiles were converted to TPM format and log2-transformed.
Additionally, we downloaded GSE17537 microarray data from
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo) and converted the probes to gene symbols based on
the annotation file. After excluding samples without clinical
follow-up or survival data, 55 tumor samples from GSE17537
were retained. Finally, 2093 TMGs were extracted from a pre-
vious study [28].

Identification of CRC-related TMGs and analysis of their
mutations and CNVs
Using the ssGSEA method, TMG scores for the TCGA-CRC
dataset were computed. DEGs between tumor and adjacent
tissues were identified and intersected with TMG signatures.
Prognosis-correlated TMGs were then selected through uni-
variate Cox regression analysis. CNV and mutation data from
the TCGA database were collected. Briefly, MuTect2 [29]
was used to analyze the mutational landscape of TMG in

primary CRC samples from the TCGA-CRC cohort, followed by
visualization of the mutational status in a waterfall plot with the
maftools R package [30]. The CNV status of the TMGs in primary
CRC samples was then assessed using ADTEx [31].

Molecular clustering
Consensus clustering was performed on the tumor samples
using the ConsensusClusterPlus package [32], with hierarchical
clustering (clusterAlg = “hc”) and Pearson correlation distance
(distance = “pearson”) as the clustering parameters. The analy-
sis was conducted over 500 iterations with a resampling rate of
80%. The optimal number of clusters (k) was determined based
on the stabilized cumulative distribution function (CDF) curve,
minimal incremental gains in the delta area plots, and high
intra-cluster consensus with clear inter-cluster separation in
the consensus matrices. Finally, the clinical features (M.stage,
N.stage, T.stage, stage, status, age, and gender) and prognosis
across the different molecular subtypes were systematically
assessed.

Enrichment analysis
DEGs between C1 and C2 were identified using the limma pack-
age (false discovery rate < 0.05 & |log2FC| >log2(1.5)) [33] to
select common genes for enrichment analysis. The TCGA-CRC
cohort was then subdivided into two molecular subtypes based
on the DEGs. Next, the clusterProfiler R package [34] was used
to conduct GO and KEGG enrichment analysis [35].

Establishment of a risk model
The prognosis-correlated DEGs were screened using univari-
ate Cox regression analysis, followed by refinement of the risk
model with Lasso Cox regression from the glmnet package [36]
and 10-fold cross-validation. A RiskScore model was then for-
mulated through stepwise multivariate Cox regression analysis
as follows:

RiskScore =
∑

βi × Expi

Where βi represents the coefficient of a gene in the Cox
regression model, and Expi represents the gene expression.
The samples were divided into low- and high-risk groups
based on the median RiskScore as the threshold. Survival dif-
ferences between the two groups were then analyzed using
Kaplan–Meier (KM) curves with the survival package [37]. The
prognostic classification of the RiskScore model was validated
through receiver operating characteristic (ROC) analysis using
the timeROC R package [38] and principal component analysis
(PCA). Additionally, the prognostic differences between the two
risk groups across gender, age, and stage were compared by
calculating the RiskScores for all patients. Independent clini-
cal and pathological factors (stage, M.stage, N.stage, T.stage,
status, age, and gender) for CRC prognosis were selected using
univariate and multivariate Cox regression analyses, along with
the RiskScore model. To predict 1-, 3-, and 5-year survival for
CRC patients, a prognostic nomogram was developed using the
rms package [39]. Finally, the clinical reliability of the nomo-
gram was assessed by calibration curve analysis and decision
curve analysis (DCA).
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Tumor microenvironment (TME) differences across the risk
groups
Immune cell infiltration in each risk groups was comprehen-
sively examined using the ssGSEA algorithm, the MCPcounter
package [40], and the TIMER online tool (http://cistrome.org/
TIMER). Specifically, the TIMER offer six main analysis mod-
ules to enable the correlation analysis between a range of factors
and immune infiltration.

Culture and transfection of cells
Human colon adenocarcinoma cells (SW1116, BNCC100262) and
normal human colon epithelial cells (NCM460, BNCC339288),
both obtained from the BeiNa Culture Collection (Xinyang,
China), were cultured in either RPMI Medium 1640 (31800,
Solarbio Lifesciences, Beijing, China) or Leibovitz’s L-15
Cell Culture Medium (LA9510, Solarbio Lifesciences). Both
media were supplemented with 10% FBS (S9020, Solarbio
Lifesciences). The cultures were maintained at 37 °C to
ensure optimal growth conditions. For NCM460 cells, the
culture was performed in an incubator with 5% CO2. The
siRNA was synthesized by GenePharma (Suzhou, China)
and transfected into SW1116 cells using Lipofectamine 2000
(11668027, Invitrogen, Carlsbad, CA, USA). The negative
control, which contained a scrambled target sequence (5′-
ACCAGTATTGGAGGTAATACAAC-3′), was purchased [41].

Wound healing assay
A controlled artificial wound was created on the cell monolayers
using a 10 μL pipette tip after culturing the transfected CRC cells
SW1116 (1 × 105 cells/well) to full confluence in a 6-well plate.
The cells were then cultured in serum-free medium at 37 °C.
Photographs were taken at 0 hour and 48 hours (h) using an
Eclipse Ts2R microscope (Nikon, Tokyo, Japan).

Transwell assay
Matrigel (50 μL, Corning, Inc., Corning, NY, USA) was used
to pre-coat the transwell chambers (pore size: 8 μm, 3422,
Corning, Inc.), which were placed on 24-well plates. Next,
the transfected SW1116 cells in serum-free medium (200 μL)
were planted into the upper chamber at 1 × 105 cells/well,
whereas the lower transwell chamber contained 700 μL com-
plete medium. After cell culture for 48 h, the cells were
fixed by 4% paraformaldehyde (P1110, Solarbio Lifesciences) for
30 minutes (min), followed by using 0.1% crystal violet solution
(G1063, Solarbio Lifesciences) for cell staining another 15 min.
Finally, the cells were observed and quantified under the micro-
scope used in the previous assay.

QRT-PCR analysis
Total RNA was extracted from NCM460 and SW1116 cells using
the TriZol kit (15596026CN, Invitrogen, Carlsbad, CA, USA) and
then reverse transcribed into cDNA with a first-strand cDNA
synthesis kit (1708890, Bio-Rad Laboratories, Hercules, CA,
USA). Quantitative PCR (qPCR) amplification was performed
using a CFX384 qPCR System (1855484, Bio-Rad Laboratories)
with SYBR Green Supermix (1708880, Bio-Rad Laboratories),
under the following cycling conditions: initial denaturation at
95 °C for 2 min, followed by 40 cycles of denaturation at 95 °C

for 15 s, annealing at 60 °C for 30 s, and extension at 72 °C for
30 s. GAPDH was used as the normalization control, and relative
mRNA expression was calculated using the 2-ΔΔct method [42].
Primers are listed in Table S1.

Immunotherapy and drug sensitivity
Immunotherapy responses were predicted by standardiz-
ing the transcriptome data applying TIDE (http://tide.dfci.
harvard.edu/) to calculate the TIDE scores, with higher TIDE
scores showing greater possibility of immune escape and less
immunotherapy benefit. Next, chemotherapy sensitivity in the
TCGA-CRC dataset and the differences of patients’ responses
were analyzed and compared by the pRRophetic software
package [43]. Patients’ sensitivity in different risk groups to
chemotherapy agents was evaluated with IC50.

Statistical analysis
All computational analyses were conducted using R (version
3.6.0). The normality of data distribution was assessed with the
Shapiro–Wilk test prior to testing for variance. For comparisons
between two independent groups of continuous variables, the
Wilcoxon rank-sum test was applied. The Kruskal–Wallis test
was used to examine differences in continuous variables among
three groups. The chi-square test was employed to assess dis-
parities in categorical variables across different groups. Addi-
tionally, the log-rank test was used to compare survival times
between patients in different groups. P < 0.05 denoted a statis-
tical significance. For in vitro cellular experiments, differences
between the normal and experimental groups were analyzed
using Student’s t-test with GraphPad Prism software (version
8.0.2). Data are presented as the mean ± standard deviation
(SD). Analytical support for this study was provided by Sanger-
Box (http://sangerbox.com/) [44].

Results
Genomic landscape of the TMGs in CRC
Using ssGSEA analysis, we first computed the TMG scores in
the TCGA-CRC dataset. The results showed that tumor tis-
sues exhibited significantly higher TMG scores than adjacent
non-tumor tissues (Figure 1A). Further analysis identified 317
DEGs between the two tissue types (Figure 1B), among which
28 TMGs were found to have significant prognostic relevance
in CRC based on univariate Cox regression analysis (Figure 1C).
Additionally, an analysis of the mutational status and CNVs of
these 28 TMGs in the tumor samples revealed that only 23.69%
of the samples carried gene mutations associated with telomere
maintenance (Figure 1D). Among these, SNAI1 and RBL1 showed
relatively higher frequencies of copy number amplification
(Figure 1E).

Identification of CRC molecular subtypes based on TMGs
In this study, we use consistency clustering to analyze
TCGA-CRC samples, utilizing a combination of CDF curves,
Delta Area plots, and consistency matrix heatmaps. The
stability and reasonableness of different clustering numbers (k)
are evaluated by examining these plots. First, the CDF curves
(Figure 2A) show that as the number of clusters increases
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Figure 1. Genomic landscape analysis of TMGs in CRC. (A) Expression of TMG scores in CRC and adjacent non-cancerous control samples; (B) Differential
genes from tumor and adjacent tissues intersected with TMG; (C) Identification of 28 TMGs closely associated with CRC prognosis; (D) Mutation status of
TMGs in CRC; (E) CNVs of TMGs in CRC. ****P < 0.0001. CRC: Colorectal cancer; TMG: Telomere maintenance genes; CNVs: Copy number variations.

from k = 2 to k = 3, the curves shift toward the upper right
corner, indicating improved clustering consistency. However,
the improvement is significantly smaller after k = 3. Figure 2B
further demonstrates that the largest increment in CDF area
occurs between k = 2 and k = 3, with diminishing returns at k ≥
4, suggesting limited benefits to increasing the number of clus-
ters beyond k = 3. Additionally, Figure 2C shows that with k = 2,
the heatmap reveals high consistency within clusters, clear
separation between clusters, and a robust clustering structure.

Based on these analyses, we determined that k = 2 is the optimal
number of clusters, dividing the samples into two groups: C1
and C2. Survival analysis indicated significantly better overall
survival (OS) in C1 compared to C2 (Figure 2D, P = 0.0015).
Clinical feature analysis revealed differences in M.stage and
status between the two subtypes. Comparison of TMG expres-
sion profiles showed that C1 had higher expression levels of
multiple genes, including RBL1, CHEK1, BRCA1, HMMR, KPNA2,
CCNA2, NCAPG, TKT, TRAP1, ORC1, CDC45, CCT2, and CCNB1
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Figure 2. Classification and prognostic variations amongTCGA-CRC samples. (A) CDF curve plotted for TCGA-CRC cohort samples; (B) CDF delta area
curve generated for the TCGA-CRC cohort; (C) Heatmap of sample clustering at consensus k = 2 in the TCGA-CRC cohort; (D) KM curve illustrating the
relationship between OS and two subtypes in the TCGA-CRC cohort; (E) Heatmaps of clinical features (status, stage, M stage, N stage, T stage, age, and
gender) and expression levels between subtypes in the TCGA-CRC cohort. TCGA: The Cancer Genome Atlas; CRC: Colorectal cancer; CDF: Cumulative
distribution function; KM: Kaplan–Meier; OS: Overall survival.

(Figure 2E). These findings confirm the robust classification
of CRC samples into two molecular subtypes with significant
survival differences and clinical heterogeneity, providing a
strong foundation for future molecular subtyping studies.

Enrichment analysis results of the DEGs
Differential expression analysis using limma package [45] iden-
tified 538 DEGs between C1 and C2 (282 upregulated in C1,
256 upregulated in C2). GO and KEGG enrichment analy-
sis showed that C1-associated genes were mainly enriched
in proliferation-related pathways including DNA replication
and cell cycle (Figure 3A–3D), while C2-associated genes were
mainly enriched in pathways related to cancer metastasis and
invasion such as focal adhesion, extracellular matrix (ECM)
organization, ECM–receptor interaction (Figure 3E–3H). These
results demonstrated significant differences between the two
subtypes in terms of potential therapeutic response and biolog-
ical behaviors in CRC.

Development of a risk model based using the seven TMGs
Through univariate Cox analysis, we identified 101 prognos-
tic DEGs (P < 0.05), which were finally refined to seven key

genes (CDC25C, CXCL1, RTL8C, FABP4, ITLN1, MUC12, and ERI1)
by Lasso Cox regression analysis with 10-fold cross-validation
(Figure 4A) and stepwise multivariate Cox regression analy-
sis (Figure 4B). The formula of the RiskScore model was as
follows:

RiskScore = (0.155 ∗ RTL8C) + (0.080 ∗ FABP4)

+ (−0.062 ∗ ITLN1) + (−0.100 ∗ CXCL1)

+ (−0.122 ∗ MUC12) + (−0.282 ∗ ERI1)

+ (−0.285 ∗ CDC25C) .

Patients were allocated by the median value of RiskScore
into low-risk and high-risk groups. KM survival curve demon-
strated that the two risk groups in the TCGA-CRC training
cohort differed significantly in patients’ survival, with those
having a higher RiskScore showing shorter OS (Figure 4C).
The timeROC package [38] was employed in ROC analy-
sis for further validating the prognosis classification of the
RiskScore. The AUC values in the training dataset for 1-, 3-,
and 5-year survival were 0.63, 0.68, and 0.72, respectively,
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Figure 3. Differential gene identification and enrichment analysis. (A–D) DEGs enrichment analysis for the C1 subtype in the TCGA-CRC cohort;
(E–H) DEGs enrichment analysis for the C2 subtype in the TCGA-CRC cohort. DEGs: Differentially expressed genes; TCGA: The Cancer Genome Atlas;
CRC: Colorectal cancer.

which suggested a highly accurate survival evaluation by the
model (Figure 4C). Furthermore, PCA results also showed a dis-
tinct separation between the two risk groups in the TCGA-CRC
cohort (Figure 4D), further supporting the performance of the
RiskScore in identifying CRC patients with different risks.

The robustness of the RiskScore was confirmed using the
validation dataset GSE17537 (Figure 4E and 4F). Consistently,
the RiskScore value showed a negative correlation with survival
outcomes in this dataset. A comparison of the performance
between the low- and high-risk groups across different clinical
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Figure 4. Development and validation of a TMGs-based risk model. (A) LASSO Cox regression analysis performed to evaluate DEGs associated with CRC
prognosis in the TCGA-CRC training cohort; (B) Risk coefficients of key genes in the TCGA-CRC training cohort; (C) KM survival curve and ROC curve for
1-, 3-, and 5-year prognostic predictions for the TCGA-CRC training cohort; (D) PCA comparing low- and high-risk groups within the TCGA-CRC training
cohort; (E and F) KM survival curves and ROC curves for the model based on the GEO testing dataset; (G–I) Prognostic differences between the two risk
groups across various tumor stages (G), ages (H), and genders (I). DEGs: Differentially expressed genes; CRC: Colorectal cancer; TCGA: The Cancer Genome
Atlas; KM: Kaplan–Meier; ROC: Receiver operating characteristic; PCA: Principal component analysis; TMGs: Telomere maintenance genes.

factor subgroups revealed significant differences (P < 0.05),
independent of stage classification (I + II vs. III + IV), gender
(male vs. female), or age (> 67 or ≤ 67). This suggests that
the RiskScore provides an independent risk classification, less
likely to be influenced by other clinical factors (Figure 4G–4I).

Validation of the TMG-related risk model
Analysis of the TCGA-CRC cohort revealed strong associ-
ations between risk groups and pathological staging, with
the high-risk group showing a higher prevalence of the
C2 subtype and metastasis cases. This finding aligns with our
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Figure 5. Continued on next page
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Figure 5. (Continued) Nomogram development for CRC prognosis assessment. (A) Relationship between RiskScore and clinical characteristics (M stage,
N stage, T stage, overall stage, status, age, and gender); (B) Violin plots illustrating the distribution of clinical characteristics (status, M stage, N stage, T stage,
overall stage, age, and gender) between low-risk and high-risk groups; (C and D) Univariate and multivariate Cox regression analyses conducted to assess
the impact of RiskScore and clinical characteristics (status, stage, M stage, N stage, T stage, age, and gender); (E) Nomogram to predict 1-, 3-, and 5-year OS
for CRC patients; (F) Calibration curve validating the established nomogram; (G) DCA of the nomogram. **P < 0.01; ***P < 0.001. CRC: Colorectal cancer;
DCA: Decision curve analysis; OS: Overall survival.

previous research, which demonstrated that the C2 cluster
is enriched in metastasis-related pathways. Further analysis
indicated that the RiskScore correlated positively with more
advanced clinical stages (T.stage, N.stage, and overall stage).
Figure 5A and 5B illustrates the relationship between clinical
features and RiskScore, along with a violin plot, respectively.
Both univariate and multivariate Cox regression analyses iden-
tified M.stage, stage, RiskScore, and age as significant prog-
nostic factors for CRC (Figure 5C and 5D). A nomogram was
developed by integrating other clinical and pathological charac-
teristics with the RiskScore to estimate survival and risk for CRC
patients (Figure 5E). The results highlighted the RiskScore as
the most influential factor for survival prediction. Calibration
curves revealed that the 1-, 3-, and 5-year prediction curves
closely aligned with the reference curve (Figure 5F), indicating
strong predictive performance of the nomogram. Additionally,

DCA demonstrated superior clinical effectiveness and reliabil-
ity of the nomogram (Figure 5G).

In vitro verification of the key genes for CRC prognosis
The relative expressions of the seven genes (CDC25C, CXCL1,
RTL8C, FABP4, ITLN1, MUC12, and ERI1) in SW1116 and NCM460
cells were measured. It was found that the expressions of ITLN1
and ERI1 were notably downregulated in SW1116 cells, while
the mRNA expressions of CDC25C, CXCL1, RTL8C, FABP4, and
MUC12 were significantly higher in SW1116 cells than in control
NCM460 cells (Figure 6A–6G, P < 0.05).

Previous study found the potential of MUC12 as a molecular
marker for the prognosis of CRC [46, 47]. Therefore, this study
performed wound healing and transwell assays to evaluate the
potential effects of MUC12 knockdown on CRC cells. As shown
in Figure 6H and 6I, MUC12 knockdown notably suppressed the
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Figure 6. In vitro validation using CRC cells. (A–G) Quantified expression levels of seven biomarkers: CDC25C (A), CXCL1 (B), RTL8C (C), FABP4 (D), ITLN1
(E), MUC12 (F), and ERI1 (G) in CRC cells (SW1116) and human normal colonic epithelial cells (NCM460) via qRT-PCR. (H) Impact of MUC12 silencing on
the migration of CRC cells SW1116 assessed through a wound healing assay. (I) Effects of MUC12 silencing on the invasion of CRC cells SW1116 evaluated
via a transwell assay. Data from three independent experimental sets are presented as mean ± standard deviation. *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001. CRC: Colorectal cancer; qRT-PCR: Real-time quantitative reverse transcription PCR.

migration and invasion abilities of SW1116 cells (P < 0.01).
This result was consistent with the cancer-promoting role of
MUC12, which further supported the clinical significance of the
RiskScore model developed based on TMGs.

Differences in the TME between CRC patients with different
risks
The ssGSEA analysis showed that the infiltration of Type 17
T helper cells, neutrophils, activated B cells, Type 2 T helper
cells, activated CD4 T cells, and activated CD8 T cells—
immune cells typically involved in killing tumor cells [48]—
was lower in the high-risk group compared to the low-risk
group. This reduced infiltration may contribute to the protec-
tion of tumor cells. Additionally, regulatory T cells, which are
highly expressed in the high-risk group, could promote tumor
development (Figure 7A). TIMER analysis further revealed that
CD8+ T cells and B cells were less expressed in the high-risk
group (Figure 7B). MCPcounter analysis (Figure 7C) identified
significant differences in the infiltration of several cell types
between the two groups. Specifically, the high-risk group
exhibited significantly lower infiltration of NK cells, cytotoxic
lymphocytes, T cells, neutrophils, and B lineage cells. These
findings suggest that the absence of immune effector cells
may contribute to a “cold-immune” TME in high-risk patients,
which could explain their poorer prognosis.

Immunotherapy and drug sensitivity analysis for CRC patients
in different risk groups
TIDE analysis revealed significantly lower TIDE scores in the
low-risk group (Figure 8A), suggesting more active immune
response and less immune evasion possibility in those patients.

Further analysis showed that the low-risk group had a sig-
nificantly higher expression level of the immune checkpoint
inhibitor CD274 (PD-L1) than the high-risk group (Figure 8B),
indicating a better response of low-risk patients to immune
checkpoint blockade therapy. Based on the ssGSEA algorithm
and an established gene signature [49], the responsiveness
to treatments including anticancer immunotherapy and
chemotherapy was analyzed. It was observed that low-risk
CRC patients had a higher reactivity across multiple
treatment-correlated gene sets (Figure 8C–8E), while high-risk
CRC patients had higher sensitivities to common anti-cancer
drugs, for instance, Phenformin, MG.132, Cyclopamine, and
Sorafenib (Figure 8F). These findings highlighted that patients
in different risk groups responded differently to the thera-
peutic strategies, with low-risk patients benefiting more from
immunotherapy and high-risk patients benefiting more from
conventional anti-tumor drug treatments.

Discussion
CRC diagnosis remains challenging due to its asymptomatic
nature in the early stages, which results in a poor prognosis.
This underscores the need for effective prognostic biomark-
ers to reduce the mortality rate in CRC patients [7]. Telomere
length in lymphocytes is closely linked to tumor development,
and telomere shortening is considered a prognostic marker for
CRC [50]. While genes like RCN3 have emerged as potential
prognostic markers, their specific mechanisms still require fur-
ther investigation [51]. Therefore, this study developed a novel
TMG-based risk model for prognostic assessment in CRC to con-
tribute to the field. Clustering analysis identified two distinct
CRC subtypes (C1, C2) based on TCGA-CRC samples, with the
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Figure 7. Analysis of immune infiltration levels between high- and low-risk groups. (A–C) Immune infiltration levels for the two risk groups were
calculated using (A) ssGSEA, (B) TIMER, and (C) MCPcounter methods, respectively. nsP < 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

C2 subtype exhibiting higher copy number and expression of
SNAI1 and a poorer prognosis. SNAI1 has been found to play
a pivotal role in maintaining telomere integrity [52], and its
absence promotes telomerase activity in mesenchymal stem
cells, highlighting the potential of SNAI1 as a crucial TMG in
this process [52]. SNAI1 also regulates epithelial–mesenchymal
transition (EMT) [53], a process during which epithelial cells
lose their connections and polarity but acquire mesenchymal
properties and invasive abilities [54]. Such phenotypic changes
during EMT contribute to tumorigenesis. The expression level
and function of SNAI1 have been widely studied in many types
of cancer, including CRC. SNAI1 drives stem cell properties,
metabolic alterations, cancer invasion, and chemoresistance in
epithelial ovarian cancer [55], promotes metastasis in breast
tumors [56], and high expression of SNAI1 is considered a
clinical biomarker in gastric cancer [57]. In CRC, intestinal
epithelial SNAI1 facilitates tumor development through EMT
and the Wnt/β-catenin signaling pathway [58]. Furthermore,
studies on both CRC patients and in vitro experiments have
shown that SNAI1 expression predicts patient response to drug
treatment [59]. This study found that SNAI1 had a higher
CNV, consistent with previous findings that CNVs frequently
occur in regions containing genes crucial for CRC, making

them potential biomarkers for cancer detection [60]. Thus, this
study proposed SNAI1 as a promising candidate for early CRC
detection. Recent studies highlight the multifaceted roles of the
seven identified TMGs (CDC25C, CXCL1, RTL8C, FABP4, ITLN1,
MUC12, and ERI1) in carcinogenesis. For instance, CDC25C plays
a critical role in regulating the G2/M phase of the cell cycle,
and its expression changes are implicated in cancer growth [61].
CXCL1, a member of the CXC chemokine subfamily, demon-
strates clinical significance in various cancer types [62]. FABP4,
abundant in adipocytes, is upregulated in multiple solid tumors,
indicating a poor prognosis [63]. RTL8C has potential as a
promising pan-cancer biomarker [64]. High expression of ERI1
is linked to improved OS in CRC [65]. ITLN, primarily gener-
ated by stromal vascular fraction cells, plays a crucial role in
cancer growth [66]. MUC12 is a type of transmembrane mucin
typically expressed in the normal colon but less so in the pan-
creas. Studies have reported lower MUC12 mRNA levels in cer-
tain CRC tissues compared to normal colonic tissues [67, 68].
Notably, MUC12 exhibited functional complexity in this study.
On one hand, multivariate Cox regression analysis revealed
that MUC12 acts as an independent protective prognostic fac-
tor, with higher expression associated with longer OS. On the
other hand, in vitro experiments showed that downregulation
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Figure 8. Immunotherapy and drug sensitivity studies between high- and low-risk groups. (A) Differences in TIDE scores between high-risk and low-risk
groups; (B) Variations in common immune checkpoint expressions between high-risk and low-risk groups; (C–E) Responses to (C) anticancer immunotherapy,
(D) radiotherapy, and (E) anti-EGFR/FGFR3/PPARG therapy between high-risk and low-risk groups; (F) Differences in drug sensitivity to Cyclopamine,
MG-132, Sorafenib, PHA-665752, Phenformin, XMD8.85, and Roscovitine observed between high-risk and low-risk groups. nsP < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001.
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of MUC12 significantly suppressed CRC cell migration and inva-
sion, suggesting a metastasis-promoting effect. The discrep-
ancy between “statistically protective” and “functionally pro-
carcinogenic” roles potentially indicates a dual function of
MUC12 in different pathological stages or microenvironmental
contexts. In early stages, MUC12 may play a protective role by
maintaining epithelial barrier function, while its overexpres-
sion may contribute to EMT and microenvironmental remod-
eling, promoting tumor cell metastasis and invasion during
tumor progression [69, 70]. These findings suggest that the spe-
cific role of MUC12 requires further elucidation through more in
vivo mechanistic studies.

For cancer pathogenesis, the TME is a crucial factor, and
its compositional changes can provide insights into patient
responses to immunotherapy [71, 72]. In the present study,
the high-risk CRC group showed a poorer prognostic outcome,
which was consistent with its enrichment in the C2 cluster.
We observed that the pathways enriched in C2 were primarily
linked to cancer metastasis, suggesting that the worse prog-
nosis in high-risk patients may be attributed to metastasis.
High-risk patients also exhibited suppressed immune defense
capabilities, leading to an upregulation of immune cell expres-
sion. In contrast, low-risk patients demonstrated a more robust
immune response. Additionally, the high-risk group showed
higher infiltration of endothelial cells and fibroblasts. Endothe-
lial cells are key players in angiogenesis within cancerous
tumors [59], a vital process that supplies oxygen and nutri-
ents to tumors [73]. Fibroblasts, a type of mesenchymal cell,
are involved in tissue homeostasis and disease processes [74].
The varying infiltration of different immune cell types within
the TME may explain the distinctions between the two risk
groups. The synergistic effects of fibroblasts and endothelial
cells could contribute to tumor metastasis and spread, leading
to a worse prognosis for high-risk CRC patients. Interestingly,
high-risk patients exhibited an immune system that appeared
“suppressed,” but they showed greater sensitivity to conven-
tional anti-tumor agents. This suggests that in patients with
significant immunosuppression, small molecule targeted ther-
apies might be prioritized over immunotherapy alone.

There are several limitations in this study that should
be acknowledged. First, while we utilized clinical data and
large-scale RNA-seq data from public databases, potential
biases could arise from inter-sample heterogeneity, differences
in sequencing platforms, and incomplete clinical annotations.
These factors may affect the generalizability of our model.
Future multicenter prospective studies with larger, indepen-
dent cohorts are needed to validate and enhance the clinical
applicability and robustness of our risk model. Second, while
we observed significant differences in immune cell infiltra-
tion and immune checkpoint expression between the two risk
groups, the precise molecular mechanisms by which TMGs
modulate the TME or contribute to immune evasion remain
unclear. Future investigations should integrate single-cell tran-
scriptomics, multi-omics approaches, and functional experi-
ments to systematically explore the immunoregulatory roles
of key TMGs and their potential as targets for combina-
tion immunotherapy. Lastly, our in vitro validation primarily

focused on expression profiling, with limited functional char-
acterization. Therefore, more comprehensive studies involving
gene knockout or overexpression, as well as animal models, are
necessary to strengthen the mechanistic evidence supporting
our findings.

Conclusion
This study is the first to systematically identify TMGs closely
linked to the prognosis of CRC at the whole-genome level and
to construct a CRC prognostic risk model consisting of seven
key TMGs (CDC25C, CXCL1, RTL8C, FABP4, ITLN1, MUC12,
and ERI1). The model demonstrated strong predictive ability
across multiple independent cohorts and was also effective in
identifying differences in the immune microenvironment and
drug sensitivity of CRC patients. Our findings suggest that
TMGs influence clinical outcomes in CRC patients by modulat-
ing tumor immune escape mechanisms. Combined with in vitro
experiments, the expression of these key genes was found to
be closely related to the invasive ability of CRC cells, further
enhancing the biological relevance of the model. This study
innovatively integrates the telomere maintenance mechanism
with the potential for immunotherapy, providing candidate tar-
gets and a novel theoretical foundation for the management and
development of targeted therapies for CRC.
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Supplemental data

Table S1. Primer sequences used in the study

Gene Accession no. Primers (5′-3′)
Forward Reverse

CDC25C NM_001790 AAGGCGGCTACAGAGACTTCTT AGAGTTGGCTGGCTTGTGAGA

CXCL1 NM_001511 TGCTGCTCCTGCTCCTGGTA GCTTTCCGCCCATTCTTGAGTG

RTL8C NM_001078171 AAGCGAGGAGCAGCGATGGA TGTGAGGCGGGTGATGAGGAA

FABP4 NM_001442 TGCAGCTTCCTTCTCACCTTGA TGACGCATTCCACCACCAGTT

ITLN1 NM_017625 AACGCCTTGTGTGCTGGAATGA ATCTCACGGCTGCTGCTGTAAC

MUC12 NM_001164462 CCTCAACTCACACGACGCCTTC TGCTGCTGTAGACGGTGGTAGA

ERI1 NM_153332 ATCCTCTTGCCTCAGCCTCCT TTCAAGACCAGCCTGACCAACA

GAPDH NM_002046 GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA
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