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ABSTRACT  

Colorectal cancer (CRC) represents a significant global health challenge. Although telomere 

maintenance plays a crucial role in tumorigenesis, the prognostic value and 

immunotherapeutic relevance of telomere maintenance genes (TMGs) in CRC remain poorly 

understood. In this study, relevant data were retrieved from The Cancer Genome Atlas 

(TCGA) and the Gene Expression Omnibus (GEO) databases. TMG scores were calculated 

using the single-sample gene set enrichment analysis (ssGSEA) method, and TMGs 

associated with prognosis were subsequently identified. TCGA-CRC samples were classified 

into subtypes via consensus clustering (ConsensusClusterPlus). A risk prediction model was 

then constructed using univariate and Lasso Cox regression analyses. Survival analysis was 

performed using Kaplan–Meier curves generated with the survival package. Key genes were 

validated in vitro using cellular models. Immune cell infiltration was evaluated through 

ssGSEA, TIMER, and MCP-Counter tools, and chemotherapy responses were predicted 

using the pRRophetic package. From 28 prognosis-related TMGs, two distinct CRC subtypes 

were established, with subtype C1 demonstrating more favorable clinical outcomes. 

Additionally, a risk model incorporating seven TMG-related genes (CDC25C, CXCL1, 

RTL8C, FABP4, ITLN1, MUC12, and ERI1) was developed for CRC prognosis. Differential 

mRNA expression levels of these genes were confirmed between CRC cell lines and normal 

control cells. Furthermore, silencing MUC12 suppressed CRC cell migration and invasion in 

vitro. Importantly, CRC patients classified as low-risk exhibited superior responses to 

immunotherapy, whereas high-risk patients showed increased sensitivity to conventional anti-

cancer treatments. This study represents the first systematic evaluation of TMGs in CRC 

prognosis and immunotherapy, providing novel insights that could inform personalized 

therapeutic strategies. 

 

Keywords: Immunotherapy; Risk model; Prognostic signature; Telomere maintenance gene; 

Colorectal cancer. 
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INTRODUCTION 

Colorectal cancer (CRC) ranks among the most prevalent malignancies of the digestive system 

[1, 2], with projections suggesting it will affect approximately 2.5 million individuals by 2035 

[3]. Globally, CRC accounts for 9.6% of all cancer cases, making it the third most frequently 

diagnosed cancer [4]. It is also the second leading cause of cancer-related death, responsible 

for 9.3% of deaths, which translates to approximately 900,000 deaths worldwide each year [4, 

5]. Due to its asymptomatic nature in the early stages, timely diagnosis and treatment remain 

challenging, underscoring the need for more advanced screening methods [6, 7]. While studies 

have identified transcription factors (e.g., Nrf2) and ferroptosis-related genes (such as GSH, 

GPX4, and P53) as potential therapeutic targets for CRC [8], the lack of reliable biomarkers 

continues to hinder the accuracy of prognostic predictions [9]. Therefore, identifying 

biomarkers specific to CRC and developing robust prognostic models are crucial for the early 

detection and prognosis of the disease [10]. Telomeres, which consist of protective proteins 

and TTAGGG repeats [11, 12], are nucleoprotein complexes located at the ends of human 

chromosomes. Studies have shown that telomeres play essential roles in maintaining 

chromosomal and genomic stability [13]. However, during certain cell divisions or disease 

states, telomere length gradually shortens [14, 15]. To maintain their length, telomerase adds 

TTAGGG sequences to the chromosomal ends [16, 17]. Increasing evidence links the 

shortening of telomere length to the development of various diseases, including tumors [13, 18, 

19]. It has been observed that telomere maintenance genes (TMGs) influence cancer occurrence 

by regulating mutations in the telomerase reverse transcriptase (TERT) promoter, suggesting 

their potential as cancer biomarkers [20, 21]. Two mechanisms for telomere elongation [22] 

have been identified in cancers: telomerase activation [23] and alternative lengthening of 

telomeres (ALT) [24]. Telomerase overexpression is commonly observed in many tumor cells 

[25, 26], while abnormal activation of ALT has been detected in telomerase-negative tumors, 

such as those in thyroid cancer [27]. Despite these findings, the prognostic value of TMGs in 

CRC remains unclear and warrants further investigation to enhance current therapeutic 

strategies. This study was designed to systematically evaluate the expression patterns, 

molecular subtypes, and prognostic significance of TMGs in CRC, along with their interactions 

with the immune microenvironment and correlations with treatment responses. Using 
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transcriptomic data from public CRC databases, the ssGSEA method was employed to compute 

TMG expression scores, and key survival-related genes were identified. Molecular subtypes 

were classified based on prognostically correlated TMGs using a consensus clustering method. 

Differential expression and functional enrichment analyses were then performed to explore the 

potential biological mechanisms. A RiskScore model was developed to assess the performance 

of TMGs in evaluating immune cell infiltration, immunotherapy response, chemotherapy 

sensitivity, and survival outcomes in CRC patients. Finally, in vitro experiments were 

conducted to validate the expression and biological functions of key genes. Collectively, our 

findings highlight the critical role of TMGs in immune regulation and CRC development, 

providing new insights for personalized treatment and risk assessment. 

MATERIAL AND METHODS 

 

Acquisition and preprocessing of data 

CRC data, including clinical information for both colon and rectum adenocarcinomas, copy 

number variations (CNVs), and somatic mutations, were retrieved from the TCGA database 

(https://portal.gdc.cancer.gov/). After excluding samples without survival data, 589 tumor 

samples with survival times greater than 0 days were retained. The RNA-seq expression 

profiles were converted to TPM format and log2-transformed. Additionally, we downloaded 

GSE17537 microarray data from GEO (https://www.ncbi.nlm.nih.gov/geo) and converted the 

probes to gene symbols based on the annotation file. After excluding samples without clinical 

follow-up or survival data, 55 tumor samples from GSE17537 were retained. Finally, 2093 

TMGs were extracted from a previous study [28]. 

Identification of CRC-related TMGs and analysis of their mutations and CNVs  

Using the ssGSEA method, TMG scores for the TCGA-CRC dataset were computed. DEGs 

between tumor and adjacent tissues were identified and intersected with TMG signatures. 

Prognosis-correlated TMGs were then selected through univariate Cox regression analysis. 

CNV and mutation data from the TCGA database were collected. Briefly, MuTect2 [29] was 

used to analyze the mutational landscape of TMG in primary CRC samples from the TCGA-

CRC cohort, followed by visualization of the mutational status in a waterfall plot with the 

maftools R package [30]. The CNV status of the TMGs in primary CRC samples was then 
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assessed using ADTEx [31]. 

Molecular clustering 

Consensus clustering was performed on the tumor samples using the ConsensusClusterPlus 

package [32], with hierarchical clustering (clusterAlg = "hc") and Pearson correlation distance 

(distance = "pearson") as the clustering parameters. The analysis was conducted over 500 

iterations with a resampling rate of 80%. The optimal number of clusters (k) was determined 

based on the stabilized cumulative distribution function (CDF) curve, minimal incremental 

gains in the delta area plots, and high intra-cluster consensus with clear inter-cluster separation 

in the consensus matrices. Finally, the clinical features (M.stage, N.stage, T.stage, stage, status, 

age, and gender) and prognosis across the different molecular subtypes were systematically 

assessed. 

Enrichment analysis 

DEGs between C1 and C2 were identified using the limma package (false discovery rate < 0.05 

& |log2FC| >log2(1.5)) [33] to select common genes for enrichment analysis. The TCGA-CRC 

cohort was then subdivided into two molecular subtypes based on the DEGs. Next, the 

clusterProfiler R package [34] was used to conduct GO and KEGG enrichment analysis [35]. 

 

Establishment of a risk model 

The prognosis-correlated DEGs were screened using univariate Cox regression analysis, 

followed by refinement of the risk model with Lasso Cox regression from the glmnet package 

[36] and 10-fold cross-validation. A RiskScore model was then formulated through stepwise 

multivariate Cox regression analysis as follows: 

 

𝑹𝒊𝒔𝒌𝑺𝒄𝒐𝒓𝒆 = ∑ 𝜷𝒊 × 𝑬𝒙𝒑𝒊 

 

Where βi represents the coefficient of a gene in the Cox regression model, and Expi represents 

the gene expression. The samples were divided into low- and high-risk groups based on the 

median RiskScore as the threshold. Survival differences between the two groups were then 

analyzed using Kaplan-Meier (KM) curves with the survival package [37]. The prognostic 

classification of the RiskScore model was validated through receiver operating characteristic 
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(ROC) analysis using the timeROC R package [38] and principal component analysis (PCA). 

Additionally, the prognostic differences between the two risk groups across gender, age, and 

stage were compared by calculating the RiskScores for all patients. 

Independent clinical and pathological factors (stage, M.stage, N.stage, T.stage, status, age, and 

gender) for CRC prognosis were selected using univariate and multivariate Cox regression 

analyses, along with the RiskScore model. To predict 1-, 3-, and 5-year survival for CRC 

patients, a prognostic nomogram was developed using the rms package [39]. Finally, the 

clinical reliability of the nomogram was assessed by calibration curve analysis and decision 

curve analysis (DCA). 

Tumor microenvironment (TME) differences across the risk groups 

Immune cell infiltration in each risk groups was comprehensively examined using  the 

ssGSEA algorithm, the MCPcounter package [40], and the TIMER online tool 

(http://cistrome.org/TIMER). Specifically, the TIMER offer six main analysis modules to 

enable the correlation analysis between a range of factors and immune infiltration. 

 

Culture and transfection of cells 

Human colon adenocarcinoma cells (SW1116, BNCC100262) and normal human colon 

epithelial cells (NCM460, BNCC339288), both obtained from the BeiNa Culture Collection 

(Beijing, China), were cultured in either RPMI Medium 1640 (31800, Solarbio Lifesciences, 

Beijing, China) or Leibovitz's L-15 Cell Culture Medium (LA9510, Solarbio Lifesciences). 

Both media were supplemented with 10% FBS (S9020, Solarbio Lifesciences). The cultures 

were maintained at 37°C to ensure optimal growth conditions. For NCM460 cells, the culture 

was performed in an incubator with 5% CO₂. The siRNA was synthesized by GenePharma 

(Suzhou, China) and transfected into MUC12 cells using Lipofectamine 2000 (11668027, 

Invitrogen, Carlsbad, CA). The negative control, which contained a scrambled target sequence 

(5’-ACCAGTATTGGAGGTAATACAAC-3’), was purchased [41]. 

  

Wound healing assay 

A controlled artificial wound was created on the cell monolayers using a 10 μL pipette tip after 

culturing the transfected CRC cells SW1116 (1 × 10⁵ cells/well) to full confluence in a 6-well 

http://cistrome.org/TIMER
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plate. The cells were then cultured in serum-free medium at 37°C. Photographs were taken at 

0 hours (h) and 48 hours (h) using an Eclipse Ts2R microscope (Nikon, Tokyo, Japan). 

Transwell assay 

Matrigel (50 μL, Corning, Inc.) was used to pre-coat the transwell chambers (pore size: 

8 μm, 3422, Corning, Inc., Corning, NY), which were placed on 24-well plates. Next, the 

transfected SW1116 cells in serum-free medium (200μL) were planted into the upper 

chamber at 1 × 105 cells/well, whereas the lower transwell chamber contained 700 μL 

complete medium. After cell culture for 48 h, the cells were fixed by 4% paraformaldehyde 

(P1110, Solarbio Lifesciences) for 30 minutes (min), followed by using 0.1% crystal violet 

solution (G1063, Solarbio Lifesciences) for cell staining another 15 min. Finally, the cells 

were observed and quantified under the microscope used in the previous assay. 

 

QRT-PCR analysis  

Total RNA was extracted from NCM460 and SW1116 cells using the TriZol kit (15596026CN, 

Invitrogen) and then reverse transcribed into cDNA with a first-strand cDNA synthesis kit 

(1708890, Bio-Rad Laboratories, Hercules, CA). Quantitative PCR (qPCR) amplification was 

performed using a CFX384 qPCR System (1855484, Bio-Rad Laboratories) with SYBR Green 

Supermix (1708880, Bio-Rad Laboratories), under the following cycling conditions: initial 

denaturation at 95°C for 2 minutes, followed by 40 cycles of denaturation at 95°C for 15 

seconds, annealing at 60°C for 30 seconds, and extension at 72°C for 30 seconds. GAPDH was 

used as the normalization control, and relative mRNA expression was calculated using the 2-

ΔΔC method [42]. Primers are listed in Table S1. 

Immunotherapy and drug sensitivity 

Immunotherapy responses were predicted by standardizing the transcriptome data 

applying TIDE (http://tide.dfci.harvard.edu/) to calculate the TIDE scores, with higher TIDE 

scores showing greater possibility of immune escape and less immunotherapy benefit. Next, 

chemotherapy sensitivity in the TCGA-CRC dataset and the differences of patients’ responses 

were analyzed and compared by the pRRophetic software package [43]. Patients’ sensitivity 

in different risk groups to chemotherapy agents was evaluated with IC50. 

 

http://tide.dfci.harvard.edu/
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Statistical analysis 

All analyses were conducted using R (version 3.6.0). The normality of data distribution was 

assessed with the Shapiro-Wilk test prior to testing for variance. For comparisons between two 

independent groups of continuous variables, the Wilcoxon rank-sum test was applied. The 

Kruskal-Wallis test was used to examine differences in continuous variables among three 

groups. The Chi-square test was employed to assess disparities in categorical variables across 

different groups. Additionally, the log-rank test was used to compare survival times between 

patients in different groups. P < 0.05 denoted a statistical significance. For in vitro cellular 

experiments, differences between the normal and experimental groups were analyzed using 

Student's t-test with GraphPad Prism 8.0 software. Data are presented as the mean ± standard 

deviation (SD). Analytical support for this study was provided by SangerBox 

(http://sangerbox.com/) [44]. 

RESULTS 

 

Genomic landscape of the TMGs in CRC 

Using ssGSEA analysis, we first computed the TMG scores in the TCGA-CRC dataset. The 

results showed that tumor tissues exhibited significantly higher TMG scores than adjacent non-

tumor tissues (Figure 1A). Further analysis identified 317 DEGs between the two tissue types 

(Figure 1B), among which 28 TMGs were found to have significant prognostic relevance in 

CRC based on univariate Cox regression analysis (Figure 1C). Additionally, an analysis of the 

mutational status and CNVs of these 28 TMGs in the tumor samples revealed that only 23.69% 

of the samples carried gene mutations associated with telomere maintenance (Figure 1D). 

Among these, SNAI1 and RBL1 showed relatively higher frequencies of copy number 

amplification (Figure 1E). 

Identification of CRC molecular subtypes based on TMGs 

In this study, we use consistency clustering to analyze TCGA-CRC samples, utilizing a 

combination of CDF curves, Delta Area plots, and consistency matrix heatmaps. The stability 

and reasonableness of different clustering numbers (k) are evaluated by examining these plots. 

First, the CDF curves (Figure 2A) show that as the number of clusters increases from k=2 to 

k=3, the curves shift toward the upper right corner, indicating improved clustering consistency. 

However, the improvement is significantly smaller after k=3. Figure 2B further demonstrates 
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that the largest increment in CDF area occurs between k=2 and k=3, with diminishing returns 

at k≥4, suggesting limited benefits to increasing the number of clusters beyond k=3. 

Additionally, Figure 2C shows that with k=2, the heatmap reveals high consistency within 

clusters, clear separation between clusters, and a robust clustering structure. Based on these 

analyses, we determined that k=2 is the optimal number of clusters, dividing the samples into 

two groups: C1 and C2. Survival analysis indicated significantly better overall survival in C1 

compared to C2 (Figure 2D, P = 0.0015). Clinical feature analysis revealed differences in 

M.stage and status between the two subtypes. Comparison of TMG expression profiles showed 

that C1 had higher expression levels of multiple genes, including RBL1, CHEK1, BRCA1, 

HMMR, KPNA2, CCNA2, NCAPG, TKT, TRAP1, ORC1, CDC45, CCT2, and CCNB1 

(Figure 2E). These findings confirm the robust classification of CRC samples into two 

molecular subtypes with significant survival differences and clinical heterogeneity, providing 

a strong foundation for future molecular subtyping studies. 

Enrichment analysis results of the DEGs 

Differential expression analysis using limma package [45] identified 538 DEGs between 

C1 and C2 (282 upregulated in C1, 256 upregulated in C2). GO and KEGG enrichment 

analysis showed that C1-associated genes were mainly enriched in proliferation-related 

pathways including DNA replication and cell cycle (Figure. 3A-D), while C2-associated 

genes were mainly enriched in pathways related to cancer metastasis and invasion such as 

focal adhesion, extracellular matrix organization, extracellular matrix (ECM)-receptor 

interaction (Figure. 3E-H). These results demonstrated significant differences between the 

two subtypes in terms of potential therapeutic response and biological behaviors in CRC. 

 

Development of a risk model based using the seven TMGs 

Through univariate Cox analysis, we identified 101 prognostic DEGs (P < 0.05), which 

were finally refined to seven key genes (CDC25C, CXCL1, RTL8C, FABP4, ITLN1, MUC12, 

and ERI1) by Lasso Cox regression analysis with 10-fold cross-validation (Figure. 4A) and 

stepwise multivariate Cox regression analysis (Figure. 4B). The formula of the RiskScore 

model was as follow: 

RiskScore = (0.155 ∗ RTL8C) + (0.080 ∗ FABP4) + (−0.062 ∗ ITLN1) +
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(−0.100 ∗ CXCL1) + (−0.122 ∗ MUC12) + (−0.282 ∗ ERI1) + (−0.285 ∗

CDC25C). Patients were allocated by the median value of RiskScore into low-risk and high-

risk groups. KM survival curve demonstrated that the two risk groups in the TCGA-CRC 

training cohort differed significantly in patients’ survival, with those having a higher 

RiskScore showing shorter overall survival (OS) (Figure. 4C). The timeROC package [38] 

was employed in ROC analysis for further validating the prognosis classification of the 

RiskScore. The AUC values in the training dataset for 1-, 3-, and 5-year survival were 0.63, 

0.68, and 0.72, respectively, which suggested a highly accurate survival evaluation by the 

model (Figure. 4C). Furthermore, PCA results also showed a distinct separation between the 

two risk groups in the TCGA-CRC cohort (Figure. 4D), further supporting the performance 

of the RiskScore in identifying CRC patients with different risks. 

The robustness of the RiskScore was confirmed using the validation dataset GSE17537 

(Figures 4E-F). Consistently, the RiskScore value showed a negative correlation with survival 

outcomes in this dataset. A comparison of the performance between the low- and high-risk 

groups across different clinical factor subgroups revealed significant differences (P < 0.05), 

independent of stage classification (I + II vs. III + IV), gender (male vs. female), or age ( > 67 

or ≤ 67). This suggests that the RiskScore provides an independent risk classification, less 

likely to be influenced by other clinical factors (Figures 4G-I). 

Validation of the TMG-related risk model 

 

Analysis of the TCGA cohort revealed strong associations between risk groups and 

pathological staging, with the high-risk group showing a higher prevalence of the C2 subtype 

and metastasis cases. This finding aligns with our previous research, which demonstrated that 

the C2 cluster is enriched in metastasis-related pathways. Further analysis indicated that the 

RiskScore correlated positively with more advanced clinical stages (T.stage, N.stage, and 

overall stage). Figures 5A and 5B illustrate the relationship between clinical features and 

RiskScore, along with a violin plot, respectively. Both univariate and multivariate Cox 

regression analyses identified M.stage, stage, RiskScore, and age as significant prognostic 

factors for CRC (Figures 5C-D). A nomogram was developed by integrating other clinical and 

pathological characteristics with the RiskScore to estimate survival and risk for CRC patients 
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(Figure 5E). The results highlighted the RiskScore as the most influential factor for survival 

prediction. Calibration curves revealed that the 1-, 3-, and 5-year prediction curves closely 

aligned with the reference curve (Figure 5F), indicating strong predictive performance of the 

nomogram. Additionally, Decision Curve Analysis (DCA) demonstrated superior clinical 

effectiveness and reliability of the nomogram (Figure 5G). 

In vitro verification of the key genes for CRC prognosis 

The relative expressions of the seven genes (CDC25C, CXCL1, RTL8C, FABP4, ITLN1, 

MUC12, and ERI1) in SW1116 and NCM460 cells were measured. It was found that the 

expressions of ITLN1 and ERI1 were notably downregulated in SW1116 cells, while the 

mRNA expressions of CDC25C, CXCL1, RTL8C, FABP4, and MUC12 were significantly 

higher in SW1116 cells than in control NCM460 cells (Figure. 6A-G, P < 0.05).  

Previous study found the potential of MUC12 as a molecular marker for the prognosis of 

CRC [46, 47]. Therefore, this study performed wound healing and transwell assays to 

evaluate the potential effects of MUC12 knockdown on CRC cells. As shown in Figure. 6H-

I, MUC12 knockdown notably suppressed the migration and invasion abilities of SW1116 

cells (P < 0.01). This result was consistent with the cancer-promoting role of MUC12, which 

further supported the clinical significance of the RiskScore model developed based on TMGs. 

 

Differences in the TME between CRC patients with different risks 

The ssGSEA analysis showed that the infiltration of Type 17 T helper cells, neutrophils, 

activated B cells, Type 2 T helper cells, activated CD4 T cells, and activated CD8 T cells—

immune cells typically involved in killing tumor cells [48]—was lower in the high-risk group 

compared to the low-risk group. This reduced infiltration may contribute to the protection of 

tumor cells. Additionally, regulatory T cells, which are highly expressed in the high-risk group, 

could promote tumor development (Figure 7A). TIMER analysis further revealed that CD8+ T 

cells and B cells were less expressed in the high-risk group (Figure 7B). MCPcounter analysis 

(Figure 7C) identified significant differences in the infiltration of several cell types between 

the two groups. Specifically, the high-risk group exhibited significantly lower infiltration of 

NK cells, cytotoxic lymphocytes, T cells, neutrophils, and B lineage cells. These findings 

suggest that the absence of immune effector cells may contribute to a "cold-immune" tumor 
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microenvironment (TME) in high-risk patients, which could explain their poorer prognosis. 

 

Immunotherapy and drug sensitivity analysis for CRC patients in different risk groups 

TIDE analysis revealed significantly lower TIDE scores in the low-risk group (Figure. 

8A), suggesting more active immune response and less immune evasion possibility in those 

patients. Further analysis showed that the low-risk group had a significantly higher 

expression level of the immune checkpoint inhibitor CD274 (PD-L1) than the high-risk group 

(Figure. 8B), indicating a better response of low-risk patients to immune checkpoint 

blockade therapy. Based on the ssGSEA algorithm and an established gene signature [49], the 

responsiveness to treatments including anticancer immunotherapy and chemotherapy was 

analyzed. It was observed that low-risk CRC patients had a higher reactivity across multiple 

treatment-correlated gene sets (Figure. 8C-E), while high-risk CRC patients had higher 

sensitivities to common anti-cancer drugs, for instance, Phenformin, MG.132, Cyclopamine, 

and Sorafenib (Figure. 8F). These findings highlighted that patients in different risk groups 

responded differently to the therapeutic strategies, with low-risk patients benefiting more 

from immunotherapy and high-risk patients benefiting more from conventional anti-tumor 

drug treatments. 

 

DISCUSSION 

CRC diagnosis remains challenging due to its asymptomatic nature in the early stages, which 

results in a poor prognosis. This underscores the need for effective prognostic biomarkers to 

reduce the mortality rate in CRC patients [7]. Telomere length in lymphocytes is closely linked 

to tumor development, and telomere shortening is considered a prognostic marker for CRC 

[50]. While genes like RCN3 have emerged as potential prognostic markers, their specific 

mechanisms still require further investigation [51]. Therefore, this study developed a novel 

TMG-based risk model for prognostic assessment in CRC to contribute to the field. Clustering 

analysis identified two distinct CRC subtypes (C1, C2) based on TCGA-CRC samples, with 

the C2 subtype exhibiting higher copy number and expression of SNAI1 and a poorer prognosis. 

SNAI1 has been found to play a pivotal role in maintaining telomere integrity [52], and its 

absence promotes telomerase activity in mesenchymal stem cells, highlighting the potential of 
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SNAI1 as a crucial TMG in this process [52]. SNAI1 also regulates epithelial-mesenchymal 

transition (EMT) [53], a process during which epithelial cells lose their connections and 

polarity but acquire mesenchymal properties and invasive abilities [54]. Such phenotypic 

changes during EMT contribute to tumorigenesis. The expression level and function of SNAI1 

have been widely studied in many types of cancer, including CRC. SNAI1 drives stem cell 

properties, metabolic alterations, cancer invasion, and chemoresistance in epithelial ovarian 

cancer [55], promotes metastasis in breast tumors [56], and high expression of SNAI1 is 

considered a clinical biomarker in gastric cancer [57]. In CRC, intestinal epithelial SNAI1 

facilitates tumor development through EMT and the Wnt/β-catenin signaling pathway [58]. 

Furthermore, studies on both CRC patients and in vitro experiments have shown that SNAI1 

expression predicts patient response to drug treatment [59]. This study found that SNAI1 had 

a higher CNV, consistent with previous findings that CNVs frequently occur in regions 

containing genes crucial for CRC, making them potential biomarkers for cancer detection [60]. 

Thus, this study proposed SNAI1 as a promising candidate for early CRC detection. Recent 

studies highlight the multifaceted roles of the seven identified TMGs (CDC25C, CXCL1, 

RTL8C, FABP4, ITLN1, MUC12, and ERI1) in carcinogenesis. For instance, CDC25C plays 

a critical role in regulating the G2/M phase of the cell cycle, and its expression changes are 

implicated in cancer growth [61]. CXCL1, a member of the CXC chemokine subfamily, 

demonstrates clinical significance in various cancer types [62]. FABP4, abundant in adipocytes, 

is upregulated in multiple solid tumors, indicating a poor prognosis [63]. RTL8C has potential 

as a promising pan-cancer biomarker [64]. High expression of ERI1 is linked to improved 

overall survival in CRC [65]. ITLN, primarily generated by stromal vascular fraction cells, 

plays a crucial role in cancer growth [66]. MUC12 is a type of transmembrane mucin typically 

expressed in the normal colon but less so in the pancreas. Studies have reported lower MUC12 

mRNA levels in certain CRC tissues compared to normal colonic tissues [67, 68]. Notably, 

MUC12 exhibited functional complexity in this study. On one hand, multivariate Cox 

regression analysis revealed that MUC12 acts as an independent protective prognostic factor, 

with higher expression associated with longer overall survival. On the other hand, in vitro 

experiments showed that downregulation of MUC12 significantly suppressed CRC cell 

migration and invasion, suggesting a metastasis-promoting effect. The discrepancy between 
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"statistically protective" and "functionally pro-carcinogenic" roles potentially indicates a dual 

function of MUC12 in different pathological stages or microenvironmental contexts. In early 

stages, MUC12 may play a protective role by maintaining epithelial barrier function, while its 

overexpression may contribute to EMT and microenvironmental remodeling, promoting tumor 

cell metastasis and invasion during tumor progression [69, 70]. These findings suggest that the 

specific role of MUC12 requires further elucidation through more in vivo mechanistic studies. 

For cancer pathogenesis, the tumor microenvironment (TME) is a crucial factor, and its 

compositional changes can provide insights into patient responses to immunotherapy [71, 72]. 

In the present study, the high-risk CRC group showed a poorer prognostic outcome, which was 

consistent with its enrichment in the C2 cluster. We observed that the pathways enriched in C2 

were primarily linked to cancer metastasis, suggesting that the worse prognosis in high-risk 

patients may be attributed to metastasis. High-risk patients also exhibited suppressed immune 

defense capabilities, leading to an upregulation of immune cell expression. In contrast, low-

risk patients demonstrated a more robust immune response. Additionally, the high-risk group 

showed higher infiltration of endothelial cells and fibroblasts. Endothelial cells are key players 

in angiogenesis within cancerous tumors [59], a vital process that supplies oxygen and nutrients 

to tumors [73]. Fibroblasts, a type of mesenchymal cell, are involved in tissue homeostasis and 

disease processes [74]. The varying infiltration of different immune cell types within the TME 

may explain the distinctions between the two risk groups. The synergistic effects of fibroblasts 

and endothelial cells could contribute to tumor metastasis and spread, leading to a worse 

prognosis for high-risk CRC patients. Interestingly, high-risk patients exhibited an immune 

system that appeared "suppressed," but they showed greater sensitivity to conventional anti-

tumor agents. This suggests that in patients with significant immunosuppression, small 

molecule targeted therapies might be prioritized over immunotherapy alone. There are several 

limitations in this study that should be acknowledged. First, while we utilized clinical data and 

large-scale RNA-seq data from public databases, potential biases could arise from inter-sample 

heterogeneity, differences in sequencing platforms, and incomplete clinical annotations. These 

factors may affect the generalizability of our model. Future multicenter prospective studies 

with larger, independent cohorts are needed to validate and enhance the clinical applicability 

and robustness of our risk model. Second, while we observed significant differences in immune 
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cell infiltration and immune checkpoint expression between the two risk groups, the precise 

molecular mechanisms by which TMGs modulate the TME or contribute to immune evasion 

remain unclear. Future investigations should integrate single-cell transcriptomics, multi-omics 

approaches, and functional experiments to systematically explore the immunoregulatory roles 

of key TMGs and their potential as targets for combination immunotherapy. Lastly, our in vitro 

validation primarily focused on expression profiling, with limited functional characterization. 

Therefore, more comprehensive studies involving gene knockout or overexpression, as well as 

animal models, are necessary to strengthen the mechanistic evidence supporting our findings. 

CONCLUSION 

This study is the first to systematically identify TMGs closely linked to the prognosis of CRC 

at the whole-genome level and to construct a CRC prognostic risk model consisting of seven 

key TMGs (CDC25C, CXCL1, RTL8C, FABP4, ITLN1, MUC12, and ERI1). The model 

demonstrated strong predictive ability across multiple independent cohorts and was also 

effective in identifying differences in the immune microenvironment and drug sensitivity of 

CRC patients. Our findings suggest that TMGs influence clinical outcomes in CRC patients by 

modulating tumor immune escape mechanisms. Combined with in vitro experiments, the 

expression of these key genes was found to be closely related to the invasive ability of CRC 

cells, further enhancing the biological relevance of the model. This study innovatively 

integrates the telomere maintenance mechanism with the potential for immunotherapy, 

providing candidate targets and a novel theoretical foundation for the management and 

development of targeted therapies for CRC. 
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TABLES AND FIGURES WITH LEGENDS 

 

Figure 1. Analysis of the genomic landscape of TMGs in CRC.  

(A) The expression of MG scores in CRC and non-cancerous adjacent control samples. (B) 

The differential genes of tumor tissue and adjacent tissue were intersected with TMG. (C) 28 

TMGs were closely linked to CRC prognosis. (D) Mutation status of TMGs in CRC. (E) 

CNVs of TMGs in CRC. 
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Figure 2. Classification and prognostic differences of TCGA-CRC samples. 

(A) CDF curve was plotted for the TCGA-CRC cohort samples. (B) CDF delta area curve 

was plotted for the TCGA-CRC cohort samples. (C) At consensus k=2, heatmap of sample 

clustering in the TCGA-CRC cohort was generated. (D) KM curve displaying the relationship 

between OS and two subtypes in the TCGA-CRC cohort. (E) Heat maps of clinical features 

(status, stage, M.stage, N.stage, T.stage, age, and gender) and expression between subtypes in 

the TCGA-CRC cohort. 
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Figure 3. Differential gene identification and enrichment analysis. 

(A-D) In TCGA-CRC cohort, DEGs enrichment analysis of C1 subtype. (E-H) In TCGA-

CRC cohort, DEGs enrichment analysis of C2 subtype. 
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Figure 4. Development of TMGs-based risk model and verification.  

(A) LASSO Cox regression analysis was performed to analyze the DEGs linked to CRC 

prognosis in the TCGA-CRC training cohort. (B) Risk coefficients of key genes in the 

TCGA-CRC training cohort. (C) KM survival curve and ROC curve for 1-, 3- and 5-year 

prognostic prediction for TCGA-CRC training cohort. (D) PCA comparing low- and high-risk 

groups within the TCGA-CRC training cohort. (E-F) KM survival curves and ROC curves for 

the model based on the GEO testing dataset. (G-I) Prognosis differences between the two risk 

groups across different tumor stages (G), ages (H), and genders (I). 
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Figure 5. Development of a nomogram to assess CRC prognosis.  

(A) Relationship between RiskScore and clinical characteristics (M.stage, N.stage, T.stage, 

stage, status, age, and gender). (B) Violin plots illustrating the distribution of clinical 

characteristics (status, M.stage, N.stage, T.stage, stage, age and gender) between low-risk and 

high-risk groups. (C-D) Univariate and multivariate COX regression analyses were 

performed to determine the effect of RiskScore and clinical characteristics (status, stage, 

M.stage, N.stage, T.stage, age and gender). (E) Nomogram to predict the 1-, 3-, and 5-year 

OS of CRC patients. (F) Calibration curve used to verify established nomogram. (G) DCA of 

nomogram. * P < 0.05; ** P < 0.01; *** P < 0.001. 

 

 

 

Figure 6. In-vitro validation using CRC cells 

(A-G) Quantified expression levels of 7 biomarkers CDC25C (A), CXCL1 (B), RTL8C (C) 

FABP4 (D), ITLN1 (E), MUC12 (F) and ERI1 (G) in CRC cells SW1116 and human normal 

colonic epithelial cells NCM460 via qRT-PCR. (H) Effects of MUC12 silencing on the 

migration of CRC cells SW1116 tested via wound healing assay. (I) Effects of MUC12 

silencing on the invasion of CRC cells SW1116 tested via transwell assay. All the data from 

three independent experimental sets were shown as mean ± standard deviation. * P < 0.05; ** 

P < 0.01; *** P < 0.001; **** P < 0.0001. 
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Figure 7. Analysis of differences in immune infiltration levels between high- and low- 

risk groups  

(A-C) The method of (A) ssGSEA, (B)TIMER and (C)MCPcounter was used to calculate the 

immune infiltration levels of the two risk groups, respectively. 
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Figure 8. Immunotherapy and drug sensitivity studies between high and low risk 

groups. 

(A) Differences in TIDE scores between high and low risk groups. (B) Variations in common 

immune checkpoint expressions between high and low risk groups. (C-E) Results of 

differences in response to (C) Anticancer immunotherapy，(D) Radiotherapy，(E) 

Anti−EGFR/FGFR3/PPARG_therapy between high and low risk groups. (F) Differences in 
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drug sensitivity of Cyclopamine, MG-132, Sorafenib, PHA.665752, Phenformin, XMD8.85 

and Roscovitine were observed between high-risk and low-risk groups. 

SUPPLEMENTAL DATA 

 

Table S1. Primer sequences used in this study. 

Gene Accession 

No. 

Primers (5’-3’) 

Forward Reverse 

CDC25C NM_001790 AAGGCGGCTACAGAGAC

TTCTT 

AGAGTTGGCTGGCTTGT

GAGA 

CXCL1 NM_001511 TGCTGCTCCTGCTCCTGG

TA 

GCTTTCCGCCCATTCTTG

AGTG 

RTL8C NM_001078

171 

AAGCGAGGAGCAGCGAT

GGA 

TGTGAGGCGGGTGATGA

GGAA 

FABP4 NM_001442 TGCAGCTTCCTTCTCACC

TTGA 

TGACGCATTCCACCACC

AGTT 

ITLN1 NM_017625 AACGCCTTGTGTGCTGG

AATGA 

ATCTCACGGCTGCTGCT

GTAAC 

MUC12 NM_0011644

62 

CCTCAACTCACACGACG

CCTTC 

TGCTGCTGTAGACGGTG

GTAGA 

ERI1 NM_153332 ATCCTCTTGCCTCAGCCT

CCT 

TTCAAGACCAGCCTGAC

CAACA 

GAPDH NM_002046 GTCTCCTCTGACTTCAAC

AGCG 

ACCACCCTGTTGCTGTA

GCCAA 
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