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R E S E A R C H A R T I C L E

A novel deep learning framework for automatic scoring of
PD-L1 expression in non-small cell lung cancer
Saidul Kabir 1, Muhammad E. H. Chowdhury 2∗ , Rusab Sarmun 1, Semir Vranic 3, Rafif Mahmood Al Saady3,
Inga Rose4, and Zoran Gatalica4

A critical predictive marker for anti-PD-1/PD-L1 therapy is programmed death-ligand 1 (PD-L1) expression, assessed by
immunohistochemistry (IHC). This paper explores a novel automated framework using deep learning to accurately evaluate PD-L1
expression from whole slide images (WSIs) of non-small cell lung cancer (NSCLC), aiming to improve the precision and consistency of
tumor proportion score (TPS) evaluation, which is essential for determining patient eligibility for immunotherapy. Automating TPS
evaluation can enhance accuracy and consistency while reducing pathologists’ workload. The proposed automated framework
encompasses three stages: identifying tumor patches, segmenting tumor areas, and detecting cell nuclei within these areas, followed
by estimating the TPS based on the ratio of positively stained to total viable tumor cells. This study utilized a Reference Medicine
(Phoenix, Arizona) dataset containing 66 NSCLC tissue samples, adopting a hybrid human–machine approach for annotating extensive
WSIs. Patches of size 1000 × 1000 pixels were generated to train classification models, such as EfficientNet, Inception, and Vision
Transformer models. Additionally, segmentation performance was evaluated across various UNet and DeepLabV3 architectures,
and the pre-trained StarDist model was employed for nuclei detection, replacing traditional watershed techniques. PD-L1 expression
was categorized into three levels based on TPS: negative expression (TPS < 1%), low expression (TPS 1%–49%), and high expression
(TPS ≥ 50%). The Vision Transformer-based model excelled in classification, achieving an F1-score of 97.54%, while the modified
DeepLabV3+ model led in segmentation, attaining a Dice Similarity Coefficient of 83.47%. The TPS predicted by the framework closely
correlated with the pathologist’s TPS at 0.9635, and the framework’s three-level classification F1-score was 93.89%. The proposed
deep learning framework for automatically evaluating the TPS of PD-L1 expression in NSCLC demonstrated promising performance.
This framework presents a potential tool that could produce clinically significant results more efficiently and cost-effectively.
Keywords: Programmed death-ligand 1, PD-L1, non-small cell lung cancer, NSCLC, artificial intelligence, AI, deep learning,
classification, segmentation.

Introduction
Lung cancer, with nearly two million new cases each year, is
the most prevalent cancer globally [1]. Patients with stage IV
non-small cell lung cancer (NSCLC) have a survival rate of only
5% [2, 3].

The PD-1 receptor and its ligands, PD-L1 and PD-L2, belong
to a family of immune checkpoint proteins. These molecules
function as co-inhibitory factors for T cells, effectively dampen-
ing immune responses. The interaction between PD-1 and PD-L1
plays a crucial role in regulating the timing of immune system
activation [4]. Expression of PD-L1 on tumor cells (TCs) allows
them to bind to PD-1 receptors on activated T cells, enabling
TCs to evade anticancer immunity [5, 6]. Monoclonal antibodies
that block this interaction between PD-1 and PD-L1 can restore
the immune system’s ability to recognize and destroy cancer
cells [7, 8].

Researchers have developed several inhibitors based
on this mechanism of action. Existing ICIs, including
anti-PD-1 and anti-PD-L1 inhibitors, have shown promis-
ing results in clinical trials [9, 10]. Immune checkpoint
inhibitors (ICIs) targeting the programmed cell death-1 (PD-1)/
programmed death-ligand 1 (PD-L1) pathway have signifi-
cantly improved survival rates for patients diagnosed with
NSCLC [11–13].

The Food and Drug Administration (FDA) has approved
DAKO PD-L1 22C3 PharmDx as a companion diagnostic test
for the immunotherapeutic drug pembrolizumab in patients
with NSCLC [14]. Evaluating PD-L1 expression is crucial in
managing patients, as it helps identify those who are more
likely to respond to pembrolizumab. This applies to its use
as a first- or second-line monotherapy or alongside standard
chemotherapy [15].
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The tumor proportion score (TPS) is calculated as the per-
centage of TCs showing at least partial membranous stain-
ing for PD-L1, relative to the total number of TCs [16].
This calculation excludes tumor-associated immune cells (ICs),
normal, necrotic, and non-neoplastic cells. The TPS can be
defined using the formula

TPS (%) = Number of PD − L1 positive TCs
Total number of viable TCs

× 100.

Pathologists usually estimate TPS through microscopic
examination. For specimens with heterogeneous tumor regions
exhibiting varying PD-L1 expression, TPS is determined by cal-
culating the average percentage of stained TCs across multiple
divided tumor regions. This approach accounts for the spatial
heterogeneity of PD-L1 expression often encountered in tumor
samples, providing a more representative assessment of overall
PD-L1 status [17].

PD-L1 expression is commonly observed in NSCLC [18–21]
and is predictive of response to ICI. However, scoring PD-L1
expression in NSCLC specimens presents significant chal-
lenges, particularly in advanced-stage patients [22, 23]. This
process requires experienced evaluation to ensure accurate
tumor classification. Inter-observer variability among pathol-
ogists during manual scoring has been reported (kappa score
as low as 0.45), potentially leading to inconsistent results.
Pathologist-dependent scoring introduces an inherent source of
error, as noted in multiple studies, which becomes particularly
pronounced in cases of low PD-L1 expression [24, 25]. More-
over, manually evaluating PD-L1 expression can be a tedious
process susceptible to subjectivity [16]. This subjectivity arises
from the difficulties associated with accurately quantifying cel-
lular elements across entire slide sections. The process is fur-
ther complicated by the subjective nature of stain intensity
assessment, introducing additional variability. These factors
collectively contribute to challenges in maintaining repro-
ducibility and inter-observer consistency in PD-L1 scoring. The
complexity of this assessment underscores the need for poten-
tially automated solutions to enhance the accuracy and repro-
ducibility of PD-L1 expression evaluation in NSCLC specimens.

Deep learning (DL) has been widely integrated into the
healthcare sector in recent years, demonstrating its potential
to address diagnostic inconsistencies. By leveraging deep learn-
ing techniques, medicine can benefit from these models’ abil-
ity to identify complex patterns and features within extensive
datasets, leading to precise and consistent evaluations [26–28].
This technological advancement can mitigate reliance on indi-
vidual medical practitioners and reduce variability in subjective
interpretations among different observers. The extensive appli-
cation of deep learning in healthcare underscores its transfor-
mative impact on medical diagnostics and treatment [29].

Digital image analysis techniques offer a promising approach
to addressing the limitations in PD-L1 scoring, especially
in the scoring of whole tissue sections. Artificial intelli-
gence (AI) methodologies, particularly those employing deep
learning,algorithms, have demonstrated the potential to aug-
ment pathologists’ capabilities, enhancing diagnostic accuracy,
inter-observer concordance, and overall efficiency [30–34].

Previous investigations have primarily focused on evalu-
ating the correlation between pathologist-derived and auto-
mated PD-L1 scores. Findings from these studies indicate
that automated systems demonstrate accuracy comparable
to that of experienced pathologists in PD-L1 expression
assessment [35–40]

In the studies by Taylor et al. [38] and Sha et al. [41], PD-L1
TPS was calculated at the field-of-view level by measuring
tumor region areas. However, this regional area ratio-based
method lacks precision, as it does not align with clinical
guidelines, which mandate that TPS be determined based on
TC counts. Methods that calculate at the cellular level have
demonstrated superior results, as TPS calculations are derived
from individual TCs [42]. Subsequent research has shown that
the open-source program QuPath, used for scoring PD-L1 in
NSCLC, has produced promising results [43, 44]. Notably, most
studies have utilized watershed-based image processing tech-
niques to identify cell nuclei [36, 39]. While this approach may
be effective in clear-cut cases, it tends to struggle in chal-
lenging scenarios involving variations in stain intensity and
coloring.

Huang et al. [45] tested an AI-assisted scoring system for
assessing PD-L1 expression in NSCLC using the UNet segmenta-
tion model, which was trained, validated, and tested on whole
slide images (WSIs). The results showed that the model’s out-
put correlated strongly with the gold standard TPS and per-
formed comparably to experienced pathologists, though it was
less effective in high TPS groups due to false positives. Never-
theless, it demonstrated potential for aiding routine diagnosis
by pathologists. This study employed a basic UNet architec-
ture to segment positive and negative nuclei. However, this
straightforward approach may lead to inaccuracies in more
complex cases involving color intensity. Wu et al. [39] pro-
posed developing an AI-based system using WSIs from the 22C3
assay, incorporating a UNet architecture with residual blocks
to segment tumor areas and automatically calculate the TPS of
PD-L1 expression. The system showed strong consistency with
trained pathologists and improved the efficiency and work-
load of untrained pathologists, demonstrating high precision
in both the 22C3 and SP263 assays. Cheng et al. [46] devel-
oped a YOLO-based AI model for assessing PD-L1 expression in
lung cancer patients, including 1288 participants. The model
used a detection algorithm to identify positive and negative
nuclei in TCs. Its diagnostic results were consistent with those
of pathologists, demonstrating similar performance across dif-
ferent lung cancer subtypes and suggesting that AI-assisted
diagnostic methods are promising tools for enhancing clinical
pathologist efficiency.

Liu et al. [36] developed a novel Automated Tumor Propor-
tion Scoring System (ATPSS) to compare image analysis results
with pathologist scores. The ATPSS employs a three-stage
process that integrates ResNet-UNet-based architectures for
detecting tumor regions and nuclei, alongside image processing
techniques to identify positive staining. The ATPSS demon-
strated a high correlation with pathologist scores, achieving a
mean absolute error (MAE) of 8.65 and a Pearson correlation
coefficient (PCC) of 0.9436. However, image-processing-based
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detection of positive regions may erroneously classify artifacts
and stained ICs as positive cancer cells.

Ito et al. [47] developed a model to calculate the TPS of the
PD-L1 22C3 assay and evaluate its effectiveness in assisting
pathologists. They used a UNet architecture to segment nuclei
and a DeepLab architecture to segment tumor areas. The find-
ings highlight the AI-assisted system’s potential to enhance
pathologists’ accuracy, particularly in challenging cases where
their judgments were inconsistent.

In this study, a comparative analysis of the segmentation
performance of various UNet architectures with different
encoders was conducted alongside a modified DeepLabV3+
architecture. Additionally, we developed an end-to-end
framework for calculating TPS from WSIs, incorporating a
classification stage to enhance resilience against artifacts and
misidentified positive ICs. For nuclei detection, we employed
a deep learning-based approach complemented by image
processing techniques, addressing the limitations of the
commonly used watershed method, which often fails in cases of
overstaining and low intensity.

The major contributions of this study are as follows.

• Development of a novel end-to-end framework for the auto-
mated assessment of PD-L1 expression TPS using WSIs from
surgical resections.

• Annotation of entire surgical resection WSIs through a
combined human–machine approach.

• Comparative analysis of various segmentation networks,
including UNet with different encoders and a modified
DeepLabV3+ architecture, for tumor region segmentation.

• Deep learning-based cancer cell nuclei detection ensures
robust and precise TPS calculation.

Materials and methods
Dataset
This study examined 66 surgically obtained tissue samples from
patients with confirmed NSCLC. The specimens were collected
at Reference Medicine (Phoenix, AZ, USA) between January
2020 and October 2022. For each case in the dataset, PD-L1
immunohistochemistry (IHC) slides were prepared using the
Dako Autostainer Link 48 platform, following the automated
staining protocol with the PD-L1 22C3 antibody. TPS was used
for PD-L1 assessment following the PD-L1 IHC 22C3 pharmDx
Interpretation Manual NSCLC [17]. All slides were digitized
using the Motic EasyScan Pro slide scanner. Table 1 presents the
baseline characteristics of the NSCLC cohort.

Data processing
In this study, we employed a hybrid machine–human approach
for case annotation. From each WSI, a representative tumor
area was selected for manual annotation. This approach was
adopted to mitigate the considerable challenges associated with
annotating entire WSIs, including annotator fatigue and the
time-intensive nature of the task. Two independent patholo-
gists conducted annotations on the selected regions from each
WSI using QuPath software (Version 0.2.2) [43]. The annota-
tion process involved categorizing the tissue into three distinct

Table 1. Baseline characteristics of the NSCLC patient cohort

Characteristic Dataset (N = 66)

Age, years Mean
Range

66
50–82

Sex Men
Women

36 (54.5%)
30 (45.5%)

Specimen site Primary (lung)
Metastatic (lymph nodes)

64 (97%)
2 (3%)

Tumor type Adenocarcinoma
Squamous cell carcinoma
Other subtypes of NSCLC

46 (69.7%)
13 (19.7%)
7 (10.6%)

TPS <1%
1%–49%
≥50%

30 (45.5%)
22 (33.3%)
14 (21.2%)

TPS: Tumor proportion score; NSCLC: Non-small cell lung cancer.

classes: class 0 (non-TC regions), class 1 (TC regions with PD-L1
expression), and class 2 (TC regions without PD-L1 expression).
A segmentation model was initially trained on these manually
annotated tumor regions obtained from the WSIs. Once trained,
the model was utilized to predict tumor regions throughout the
entire WSIs. This preliminary machine-generated segmenta-
tion provided a basis for the initial annotation of tumor areas,
thereby streamlining the subsequent review and annotation
process, allowing for the annotation of large WSIs with ease.
The two pathologists then conducted a comprehensive review
of the automated annotations to adjust and refine them. This
process enhanced the reliability of the training data for fur-
ther segmentation model training. This iterative refinement
was crucial for training robust models capable of precise tumor
segmentation in the WSIs, thereby supporting more effective
and efficient pathological assessments. Figure 1 visualizes the
annotation approach undertaken in this study.

Patches of size 1000 × 1000 pixels were generated from the
WSIs at the highest magnification (40× optical magnification,
0.267 μm/pixel). The WSIs were divided into five folds for
cross-validation, with the patches from each image assigned to
their respective fold. Two distinct datasets were created from
the extracted image patches. The first dataset was designed to
facilitate the classification of each patch based on the presence
of tumor tissue, while the second was intended for segmenting
regions into positive and negative tumor areas. For the classi-
fication dataset, patches devoid of TCs were labeled as “non-
tumor” whereas patches containing any TCs were labeled as
“tumor.” For the segmentation dataset, both the patches and
their corresponding masks were generated based on annota-
tions provided by pathologists. Figure 2 shows an example of a
classification and segmentation dataset.

Proposed method
We propose a novel end-to-end automated framework for deter-
mining TPS in DAB-stained NSCLC WSI. It consists of three key
stages: tumor patch classification, tumor area segmentation,
and nuclei detection. Initially, a deep learning model identifies
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Figure 1. Annotation procedure based on human–machine collaborative approach. WSI: Whole slide image.

Figure 2. Example of patches in classification and segmentation dataset.

and excludes non-tumor patches by discarding patch images
containing artifacts or lacking TCs. In the subsequent stage, seg-
mentation networks predict pixel-wise classifications (negative
or positive) within the tumor patches, delineating the negative
and positive regions. Finally, we employ a secondary neural net-
work that utilizes the pre-trained “StarDist” model to facilitate
cell detection within the annotated tumor regions [48]. Figure 3
illustrates the flow of the proposed framework.

Tumor patch classification
The first stage for automated tumor patch identification in
WSIs of tumor regions was developed using convolutional
neural network (CNN)-based classification models. CNN-based
architectures are highly popular in image classification due to
their ability to capture spatial patterns in local regions and
learn abstract features at multiple levels. Their hierarchical
structure and shared weights have enabled them to achieve
state-of-the-art results on standard classification datasets and

benchmarks [29, 49]. Vision Transformer models leverage
self-attention mechanisms, which can capture global depen-
dencies and interactions over long distances, effectively repre-
senting contexts at both local and global scales and surpassing
the limitations of traditional CNN architectures in image clas-
sification. In image classification tasks, pre-trained models ini-
tialized with ImageNet weights undergo fine-tuning on smaller,
task-specific datasets. This fine-tuning process involves replac-
ing the model’s final layers and adjusting the weights at a lower
learning rate, thereby significantly reducing training time and
costs by utilizing previously learned generic features.

In this study, we conducted an extensive evaluation of var-
ious deep-learning models for classification tasks. The perfor-
mance of the top three performing models—Inception v3 [50],
EfficientNet [51], and a Vision Transformer-based model [52]—
was reported based on their classification performance.

EfficientNet-B0 [51], the foundational model in the Efficient-
Net series, employs compound scaling to enhance CNNs by
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Figure 3. A proposed automated framework for TPS calculation of PD-L1 expression. TPS: Tumor proportion score; PD-L1: Programmed
death-ligand 1.

adjusting their width, depth, and resolution. Developed via neu-
ral architecture search, this method optimizes both accuracy
and computational efficiency by uniformly scaling network
dimensions with fixed coefficients, ensuring balanced growth
and effectiveness.

Inception v3 [50], developed by Google, is an advanced CNN
that improves on its predecessors by employing factorized con-
volutions and expanded inception modules to reduce parame-
ters without sacrificing depth or width. It also introduces label
smoothing to prevent overfitting, enhancing its performance
in complex image classification tasks. This architecture opti-
mally balances computational efficiency with robust capabil-
ities, making it highly effective for various image-processing
applications.

The Vision Transformer (ViT) [52] adapts the transformer
architecture, originally designed for natural language process-
ing, to image classification tasks. ViT splits the input image
into fixed-size patches, transforms them into token embed-
dings with added positional embeddings for spatial context, and
processes these through several transformer encoder layers.
These layers equipped with self-attention mechanisms, allow
the model to capture complex relationships across the image,
and feed-forward networks that apply nonlinear transforma-
tions to the data. The token embeddings are then processed by
a classifier head.

Tumor area segmentation
This stage of the framework identifies negative and positive
regions in the patches using a segmentation network trained
on pathologist annotations. The UNet architecture [53], devel-
oped for precise image segmentation in the biological domain,
features a U-shaped design with an encoder that compresses
and a decoder that decompresses. The encoder consists of

convolutional layers with ReLU activation and max pool-
ing, which reduce spatial dimensions while increasing fea-
ture depth. The decoder then restores the feature maps to
their original spatial dimensions. UNet’s skip connections link
encoder and decoder layers, merging high-level and detailed
information in the output. A common approach to improving
the architecture’s performance involves integrating advanced
encoder architectures. Specifically, the UNet framework for
image segmentation is enhanced by incorporating encoders
such as DenseNet [54], which utilizes dense connections, and
EfficientNet [51], known for its optimized performance in
resource-limited settings. These enhancements facilitate fea-
ture reuse, alleviate the issue of vanishing gradients, and
promote feature propagation, thereby achieving more pre-
cise segmentation outcomes. This study presents compara-
tive results between the conventional U-Net and the modi-
fied U-Net frameworks employing DenseNet and EfficientNet
encoders. DeepLabV3 [55] and DeepLabV3+ [56] are advanced
models designed for semantic segmentation, aiming to enhance
object segmentation at various scales and achieve more pre-
cise boundaries. These models are significant enhancements of
the DeepLab series, leveraging deep CNNs for high-resolution
image segmentation. DeepLabV3, introduced by Chen et al.,
integrates an atrous convolution technique to expand filter
ranges and capture context at multiple scales without losing
resolution. It features an atrous spatial pyramid pooling (ASPP)
module that analyzes a convolutional feature layer using filters
with varying sampling rates and effective fields of view, effec-
tively capturing objects and context at various scales.

We enhanced the DeepLabV3+ network by incorporating
Self-Organized Operational Neural Networks (Self-ONN) [57],
which have been shown to outperform traditional CNNs.
CNNs, with their homogeneous, linear structures, do not fully
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Figure 4. Architecture of modified DeepLabV3+ network. ONN: Operational neural network; ASPP: Atrous spatial pyramid pooling.

replicate the complexity of biological neural systems. Address-
ing these limitations, Generalized Operational Perceptrons
(GOPs) and Operational Neural Networks (ONNs) introduce
heterogeneous and non-linear architectures. GOPs, drawing
inspiration from biological mechanisms, are adept at handling
complex tasks where traditional models falter. ONNs extend
these advancements by incorporating a variety of operational
units per neuron, such as nodal and pool operators, which
transcend standard linear convolutions. This approach retains
fundamental CNN principles like weight sharing and localized
connectivity while expanding the functional capabilities of the
network layers. In our modified architecture, all CNN layers
in the DeepLabV3+ network were replaced with Self-ONN
layers. Figure 4 presents the architecture of the Self-ONN-
based DeepLabV3+ model. Additionally, we conducted com-
parative analyses between the original and modified networks
to highlight the improved performance of our Self-ONN-based
architecture.

Nuclei detection and TPS calculation
The objective of this stage of the framework was to accurately
identify the nuclei within both positive and negative tumor
regions. For this purpose, we employed a pre-trained network,
StarDist [48], a deep learning-based method designed for object
detection and segmentation in biological images. It distin-
guishes itself from conventional object detection techniques by
employing star-convex polygons for object representation, as
opposed to the traditional use of axis-aligned bounding boxes.
This technique involves regressing distances from each pixel
within an object to its boundary along a set of predefined radial
directions. These distance calculations are relevant only for
pixels that have been definitively identified as parts of an object,
where object probabilities are determined through a predictive
model.

To further refine object representations, non-maximum
suppression is utilized to select the polygons that most

accurately represent objects based on the highest computed
object probabilities. These probabilities are determined by the
normalized Euclidean distances to the nearest background
pixel, focusing on polygons nearer to the object’s center for
more accurate depictions. The framework employs the UNet
architecture, augmented with an additional convolutional
layer designed to enhance feature discrimination before
the output phases. Object probabilities are derived from
a sigmoid-activated convolutional layer, whereas polygon
distances are produced directly, scaled by the number of
radial directions without subsequent activation. Collectively,
this approach offers a refined and computationally efficient
alternative to traditional object detection methods, significantly
improving the accuracy of complex image segmentation,
especially in medical imaging scenarios where precise object
delineation is crucial.

This innovative approach facilitates precise and adapt-
able modeling of the typically irregular and complex shapes
observed in biological microscopy images. A pre-trained model
was used in this work, which required some image prepro-
cessing. Initially, the patch image was deconvoluted to sep-
arate stain channels, specifically to isolate the hematoxylin
channel. This channel was then converted to grayscale, and a
blurring filter was applied to reduce noise. Subsequently, the
StarDist model was utilized to detect nuclei within both the
positive and negative tumor regions. The procedure is demon-
strated in Figure 5. Any cell detected within the region iden-
tified as positive during the segmentation stage was classified
as a PD-L1-positive cancer cell. Conversely, any nucleus located
within the negative region was classified as negative. Following
this, the TPS was calculated as the ratio of the total number of
stained positive TCs to the total number of viable TCs.

Training and testing methodology
A five-fold cross-validation approach was utilized to ensure a
comprehensive and accurate evaluation of the deep learning
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Figure 5. Detection of cell nuclei using the StarDist network.

models’ performance, dividing the 66 WSIs into five folds. In
this approach, performance evaluation is conducted on the
entire dataset, with each fold used as the test set once, while
the remaining folds are used for training and validation. This
fold split was consistently applied to both classification and
segmentation training. From the WSI, patches measuring 1000
by 1000 pixels at 40× magnification were created, resulting in
a total of 120,360 patches.

Classification and segmentation networks were trained sep-
arately on the patches. Training for both classification and seg-
mentation was conducted over 100 epochs, with the best epoch’s
result saved based on validation set performance. To prepare
the input for the models, all patch images were resized to
224 × 224 pixels for classification and 256 × 256 for segmen-
tation, as these are the image dimensions required for using the
ImageNet weights. Preliminary training involved experiment-
ing with various learning rates, ultimately selecting 0.0001
with the Adam optimizer for its optimal results.

All experiments were conducted on a hardware setup con-
sisting of an NVIDIA GeForce RTX 3090 with 32 GB of GPU
memory, a 36-core Intel Xeon(R) CPU @ 2.30 GHz, 64 GB of
system memory, Python 3.9.16, and PyTorch version 1.13.

Results
Performance metrics
The performance of classification and segmentation tasks was
evaluated using a comprehensive set of metrics. For the classifi-
cation task, we utilized precision, recall, F1-score, and accuracy
as the primary evaluation metrics. In the segmentation task, the
assessment was conducted using Intersection over Union (IoU),
Dice Similarity Coefficient (DSC), True Positive Rate (TPR),
False Positive Rate (FPR), and specificity. The mathematical
formulations of these metrics are detailed below:

Precision = Tp

Tp + Fp
(1)

Recall/Sensitivity = Tp

Tp + Fn
(2)

Specificity = Tn
Tn + Fp

(3)

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

Accuracy =
∑N

c=1 TPc
NT

(5)

IoU = TP
TP + FP + FN

(6)

DSC = 2TP
2TP + FP + FN

(7)

FNR = FN
TP + FN

(8)

FPR = FP
FP + TN

(9)

where Tp/TP is True Positive, Fp/FP is False Positive, Fn/FN is
False Negative, Tn/TN is True Negative, and NT is the number
of classes.

Tumor patch classifier performance
This section presents a performance comparison of three dif-
ferent deep learning architectures: EfficientNet, Inception v3,
and the Vision Transformer model, in the tumor patch clas-
sification stage. EfficientNet displayed consistent performance
across tumor and non-tumor classes, achieving an overall accu-
racy of 97.5%. For the non-tumor class, the model recorded an
accuracy of 97.5%, precision of 99.02%, sensitivity of 97.16%,
F1 score of 98.08%, and specificity of 98.15%. Similarly, for
the tumor class, it achieved an accuracy of 97.5%, precision
of 94.71%, sensitivity of 98.15%, F1 score of 96.4%, and speci-
ficity of 97.16%. The weighted average metrics were 97.5% for
accuracy, 97.55% for precision, 97.5% for sensitivity, 97.51% for
the F1 score, and 97.81% for specificity. Inception v3 demon-
strated a slightly lower overall accuracy of 96.32% compared
to EfficientNet. The non-tumor classification results showed an
accuracy of 96.32%, precision of 95.91%, sensitivity of 98.63%,
F1 score of 97.25%, and specificity of 91.87%. For tumor detec-
tion, the model recorded an accuracy of 96.32%, precision of
97.19%, sensitivity of 91.87%, F1 score of 94.46%, and specificity
of 98.63%. The weighted average figures for Inception v3 were
96.32% for accuracy, 96.35% for precision, 96.32% for sensi-
tivity, 96.3% for the F1 score, and 94.18% for specificity. The
Vision Transformer model achieved an overall accuracy equal
to EfficientNet, at 97.53%. For the non-tumor class, it recorded
an accuracy of 97.53%, precision of 99.12%, sensitivity of 97.12%,
F1 score of 98.11%, and specificity of 98.33%. In tumor classifica-
tion, it achieved an accuracy of 97.53%, precision of 94.64%, sen-
sitivity of 98.33%, F1 score of 96.45%, and specificity of 97.12%.
The weighted averages were 97.53% for accuracy, 97.59% for
precision, 97.53% for sensitivity, 97.54% for the F1 score, and
97.92% for specificity. The Vision Transformer model matched
the overall accuracy of EfficientNet at 97.53% and exhibited
superior sensitivity in tumor detection. This model’s perfor-
mance highlights its potential for applications requiring high
sensitivity to avoid missing tumor cases. The confusion matri-
ces of the models are shown in Figure 6.

Tumor area segmentation performance
A comparative evaluation of five segmentation models, includ-
ing UNet, EfficientNet UNet, DenseNet UNet, DeepLabV3+, and
SelfONN-based DeepLabV3+, is shown in this section. The DSC
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Figure 6. Confusion matrix of (A) EfficientnetB0; (B) Inception v3; and (C) Vision transformer model.

values for various models were analyzed to evaluate their seg-
mentation performance for positive and negative tumors. UNet
achieved an overall DSC of 76.28%, demonstrating consistent
performance with DSC values of 76.31% for positive tumors
and 76.24% for negative tumors. EfficientNet UNet significantly
improved the overall DSC to 82.33%, with a remarkable 87.566%
for positive tumors and 77.092% for negative tumors, indicat-
ing strong positive tumor segmentation capabilities. DenseNet
UNet showed similar robustness, with an overall DSC of 81.89%,
achieving 86.57% for positive tumors and 77.21% for negative
tumors. DeepLabV3+ exhibited excellent performance in pos-
itive tumor segmentation with a DSC of 89.62%, though its
performance in negative tumor segmentation was lower, with
a DSC of 73.62%, resulting in an overall DSC of 81.62%. The
SelfONN-enhanced DeepLabV3+ achieved the highest overall
DSC of 83.47%, maintaining high performance in both positive
(DSC of 89.58%) and negative tumors (DSC of 77.36%). These
results indicate that the SelfONN enhancement particularly
improves the model’s robustness, providing the most balanced
and effective segmentation performance among the models
evaluated. Table 2 shows the segmentation performance of the
different models. Figure 7 shows segmentation predictions on
patch images.

Automated PD-L1 scoring performance
After the segmentation stage, to calculate the TPS of a WSI,
the nuclei within the positive and negative areas need to be
identified. The pre-trained model StarDist was used for this
purpose.

Figure 8 shows examples of detected cell nuclei in patch
images. The TPS of a WSI was calculated as:

TPS = # of nuclei in positive region
# of nuclei in positive region and negative region

(10)

Automated PD-L1 expression was assessed based on the TPS,
categorized into three levels: negative (TPS < 1%), low expres-
sion (TPS 1%–49%), and high expression (TPS ≥ 50%). Accord-
ing to the ground truth data provided in the dataset, there
were 30 cases with negative expression, 22 with low expres-
sion, and 14 with high expression. The automated framework
achieved an accuracy of 96.67% for negative cases, 86.36% for
low-expression cases, and 100% for high-expression cases. An
overall accuracy of 93.94% was attained, with an F1 score of
93.89%. Figure 9 shows the confusion matrix. The correlation
between the ground truth TPS and the TPS predicted by the
framework was 0.9635.

Discussion
This study aimed to develop an automated framework for
assessing PD-L1 expression in NSCLC using WSIs from surgical
resections. The objective was to automate the evaluation of
TPS to enhance clinical decision-making for ICI. Our approach
comprised three key stages: tumor patch classification, tumor
area segmentation, and nuclei detection.
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Table 2. Segmentation performance comparison of different architectures

Model Accuracy (%) IoU (%) DSC (%)
IoU (positive
tumor) (%)

DSC (positive
tumor) (%)

IoU (negative
tumor) (%)

DSC (negative
tumor) (%)

UNet 67.97 69.07 76.28 71.12 76.31 67.02 76.24

EfficientNet UNet 70.782 76.73 82.33 84.72 87.56 68.74 77.09

DenseNet UNet 70.88 76.44 81.89 83.6 86.57 69.28 77.21

DeepLabV3+ 71.58 75.27 81.62 86.89 89.62 63.66 73.62

DeepLabV3+ (SelfONN) 71.25 77.69 83.47 86.79 89.58 68.59 77.36

IoU: Intersection over union; DSC: Dice similarity coefficient.

Figure 7. Visualization of the segmentation model performance.

Figure 8. Example of cell nuclei detection using the StarDist model.

Initially, the framework identified patches containing TCs
while discarding those with artifacts or non-TCs through a clas-
sification stage. This stage demonstrated robust performance
across three deep learning models: EfficientNet, Inception
v3, and Vision Transformer. Both EfficientNet and Vision
Transformer achieved an overall accuracy of 97.5%, surpassing
Inception v3, which attained an accuracy of 96.32%. Notably,

the Vision Transformer model exhibited superior sensitivity
in tumor detection, underscoring its potential for applications
requiring high sensitivity to avoid missing tumor cases. This
may be particularly important in small biopsy samples or in
cytology (e.g., cell blocks). Most existing methodologies do not
employ artifact filtering, which can result in false predictions
and failures in real-world scenarios. The automated framework
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Figure 9. Confusion matrix of the classification of TPS level. TPS: Tumor
proportion score.

proposed in this study processed entire slide images, account-
ing for artifacts and positive ICs, which should be discarded
for more accurate predictions. This consideration is crucial for
enhancing prediction accuracy and reliability.

The subsequent stage of the framework involved a seg-
mentation network designed to predict positive and negative
tumor regions within a patch. The segmentation perfor-
mance of the models varied, with the SelfONN-enhanced
DeepLabV3+ achieving the highest overall DSC of 83.47%.
This model exhibited superior performance in both positive
(DSC of 89.58%) and negative tumor areas (DSC of 77.36%),
demonstrating its robustness and effectiveness in segmenting
complex tumor regions. The incorporation of Self-ONN into
the DeepLabV3+ architecture significantly enhanced perfor-
mance. Previous studies primarily reported the performance
of single models, particularly basic UNet models. In con-
trast, this work presents a comparative analysis of segmen-
tation performance across various networks, including UNet
with high-level encoders capable of capturing diverse and
deeper features efficiently, as well as the modified DeepLabV3+
architecture, which represents a state-of-the-art segmentation
network.

The final stage of the framework involved a deep learn-
ing network called StarDist, pre-trained to detect cell nuclei
in WSIs. The number of nuclei in both positive and negative
regions was determined, and the TPS was subsequently cal-
culated for the WSI. The most common method for calculat-
ing the number of nuclei, employed by most studies, is the
watershed algorithm, which relies solely on image processing.
Consequently, it is susceptible to issues, such as hard stains and
low-intensity cells. The StarDist model overcame these limita-
tions and performed better across various scenarios, making
it a more practical and reliable method. The automated frame-
work’s performance in calculating the TPS from WSIs showed a
strong correlation with ground truth data, achieving an overall
accuracy of 93.94% and an F1 score of 93.89%. The framework
performed exceptionally well in identifying high-expression

cases (TPS ≥ 50%) with 100% accuracy, though it exhib-
ited slightly lower accuracy (86.36%) in low-expression cases
(TPS 1%–49%). This discrepancy highlights the ongoing chal-
lenge of accurately quantifying low PD-L1 expression lev-
els, which is crucial for patient management and treatment
planning.

Although the study achieved promising results, it has cer-
tain limitations. While it performed well in negative cases,
it encountered difficulties in detecting unusually shaped TC
nuclei, which are uncommon. Additionally, cases with high
PD-L1 expression exhibited heterogeneous staining, leading to
some inaccuracies. The study was conducted with only 66 spec-
imens; although these were large surgical specimens, increas-
ing the number of cases could introduce greater variability
in cell morphology and stain patterns, enhancing the model’s
generalizability. Moreover, while the human–machine collab-
orative annotation was effective in this study, more extensive
and detailed human annotations could further improve model
performance due to the subjective nature of the problem.

Scopes of future work can focus on further refining the seg-
mentation and classification models, particularly on improv-
ing the accuracy of low-expression PD-L1 cases. Additionally,
including a more diverse range of NSCLC subtypes to expand
the dataset and PD-L1 staining patterns will be essential for gen-
eralizing the model’s applicability. The incorporation of multi-
modal data, such as genomic and clinical information, could also
enhance the framework’s predictive power.

Conclusion
The automated framework developed in this study shows
significant promise in the field of digital pathology, offer-
ing a valuable tool for the accurate and efficient assessment
of PD-L1 expression in NSCLC. By harnessing the power of
deep learning, this framework provides a reliable and scalable
method for automating PD-L1 TPS evaluation, a critical fac-
tor in determining eligibility for ICI. This study developed a
robust deep learning-based model that achieved high accuracy
across several essential tasks, including tumor patch classi-
fication, segmentation, and cancer cell nuclei detection. The
framework demonstrated impressive performance in distin-
guishing between tumor and non-tumor regions and accurately
identifying PD-L1-positive cancer cell nuclei, a key component
in TPS calculation. The ability of this automated system to
consistently and accurately quantify PD-L1 expression high-
lights its potential as a powerful tool for pathologists, helping
to reduce the subjectivity and variability that often arise in
manual assessments. The findings of this research underscore
the broader potential of AI-driven solutions in improving diag-
nostic accuracy, streamlining workflows in pathology labs, and
facilitating more precise patient selection for treatment with
ICI. By integrating such automated systems into clinical prac-
tice, there is a significant opportunity to enhance both the speed
and consistency of cancer diagnosis and treatment decisions. As
the healthcare sector continues to adopt AI-based technologies,
this framework could play a critical role in optimizing person-
alized treatment strategies, improving patient outcomes, and
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potentially reducing the overall cost and burden of cancer care.
Future work could further refine the model, extend its applica-
bility to other cancer types, and integrate it into routine clinical
workflows, reinforcing the growing role of AI in advancing
precision medicine.
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