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R E V I E W

The regulatory role of exercise in heart failure and
myocardial energy metabolism: A review
Yuanhao Li 1, Dongli Gao 1, Peixia Li 1, Xulei Duan 1, Youli Liu 1, Chengyan Wu 2, Libo Wang 1∗ , and Xuehui Wang 1∗

Myocardial energy metabolism is crucial for maintaining optimal heart function. The heart, having limited energy storage capacity, is
dependent on a continuous energy supply; any disruptions or alterations in energy metabolism pathways can lead to insufficient
myocardial energy, potentially triggering heart failure (HF). Exercise, as a safe and economical non-pharmacological intervention, is
widely recognized to enhance cardiovascular health and modify myocardial energy metabolism patterns. However, the specific
mechanisms by which exercise regulates myocardial metabolism to prevent and treat HF remain unclear. This review aims to detail the
characteristics of myocardial metabolism under normal physiological and HF conditions, to further explore the impact of different
exercise modalities on myocardial metabolism, and to summarize the molecular mechanisms by which exercise protects the heart by
optimizing myocardial energy metabolism. Ultimately, this article aims to provide an in-depth understanding and evidence for the
application of exercise interventions in cardiac rehabilitation.
Keywords: Exercise, heart failure, HF, metabolism, mitochondria, cardiac remodeling, cardiac rehabilitation.

Introduction
The heart, which beats billions of times over a lifetime
and consumes substantial amounts of adenosine triphosphate
(ATP) daily, depends on flexible metabolic pathways due to
its limited immediate energy reserves. This metabolic adapt-
ability is crucial for maintaining cardiac function [1]. As a
high-energy-demanding organ, any disruption or alteration
in myocardial energy metabolism can have severe conse-
quences on heart function. Consequently, an imbalance in
energy metabolism is recognized as a key factor in the pro-
gression of heart failure (HF) [2]. Exercise, widely regarded
as a safe and cost-effective non-pharmacological intervention,
offers significant cardiovascular benefits by promoting phys-
iological ventricular remodeling and influencing myocardial
energy metabolism. While exercise is known to affect myocar-
dial metabolism, its precise protective role against HF remains
unclear, likely due to the complexity of myocardial metabolic
networks [3].

This review synthesizes recent research on myocardial
energy metabolism in both physiological and pathological con-
ditions, with a focus on the effects of exercise on myocardial
metabolism and mitochondrial function. Ultimately, the goal is
to provide insights that may guide the clinical application of
exercise in cardiac rehabilitation. The key points of this review
are summarized in Figure 1.

Heart and myocardial metabolism
Myocardial metabolism under physiological conditions
The heart continuously generates ATP to meet its high energy
demands, primarily through mitochondrial oxidative phospho-
rylation. Under normal conditions, approximately 60%–70%
of ATP comes from fatty acid (FA) oxidation, 10%–30% from
glucose metabolism, with smaller contributions from ketone
bodies, lactate, and amino acids [2, 4].

FA metabolism

FAs serve as the heart’s primary energy source under physiolog-
ical conditions. The heart acquires FAs from two main sources:
free FAs (FFAs) released through triglyceride (TG) hydrolysis
by lipoprotein lipase and non-esterified FAs (NEFAs) bound to
albumin [2, 5]. These FAs are transported into cardiomyocytes
via proteins such as CD36, where they undergo β-oxidation to
generate acetyl-CoA. Acetyl-CoA then enters the TCA cycle to
produce ATP [2, 5, 6].

Glucose metabolism

Glucose is absorbed via GLUT1 and GLUT4 transporters, with
GLUT4 being the predominant transporter in adults [7–9]. After
uptake, glucose primarily undergoes glycolysis, yielding pyru-
vate or lactate. Additionally, auxiliary pathways, such as the
hexosamine and pentose phosphate pathways contribute to
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Figure 1. Exercise regulates myocardial metabolic imbalance to improve cardiac function. Pathological factors, such as hypertension, increased
afterload, diabetes, obesity, MI, ACM, and RIHD, can lead to an imbalance in myocardial energy metabolism supply and demand, ultimately resulting in heart
failure. However, exercise can help optimize this condition by improving cardiac function. MI: Myocardial infarction; ACM: Arrhythmogenic cardiomyopathy;
RIHD: Radiation-induced heart disease.

redox balance and biosynthesis, providing key intermediates
for cellular functions [2, 6].

Ketone body metabolism

Ketone bodies in the body are primarily synthesized from CoA,
which is generated through the oxidation of FAs in the liver.
Among these, β-hydroxybutyrate (βOHB) is the predominant
ketone body oxidized in the heart.

βOHB enters cardiac cells via the monocarboxylate
transporter 1 (MCT1) and is subsequently oxidized in the
mitochondria [2, 8]. There, βOHB dehydrogenase 1 (BDH1)
converts βOHB into acetoacetate, which is then activated
into acetoacetyl-CoA by succinyl-CoA transferase (SCOT).
Acetoacetyl-CoA undergoes thiolysis to produce acetyl-CoA,
which enters the TCA cycle to generate ATP [2, 10].

Branched chain amino acid metabolism

Branched-chain amino acids (BCAAs)—including leucine,
isoleucine, and valine—are essential amino acids primarily
obtained through the diet and, to a lesser extent, synthesized
de novo by gut microbiota [11]. BCAAs undergo reversible trans-
amination, mediated by mitochondrial BCAA transaminase
(BCAT2), to produce branched-chain α-keto acids (BCKAs) and

glutamate. BCKAs then undergo irreversible decarboxylation,
catalyzed by the BCKA dehydrogenase (BCKDH) complex, ulti-
mately leading to their catabolism into acetyl-CoA and succinyl-
CoA. These metabolites enter the TCA cycle or contribute to
cellular biosynthetic pathways through anaplerosis [11]. The
activity of BCKDH is regulated through inhibitory phosphoryla-
tion by BCKDH kinase (BCKDK) and activating dephosphoryla-
tion by mitochondrial protein phosphatase 2C family (PP2Cm),
while BCKAs can also allosterically inhibit BCKDK [12].

Although BCAA oxidation contributes less than 2% of
the heart’s total energy supply [8], BCAAs play significant
metabolic roles in other physiological contexts. Notably, the
mammalian target of rapamycin (mTOR) signaling pathway—
a key regulator of protein synthesis and cellular growth—is
influenced by BCAAs, particularly leucine. Activation of the
mTOR pathway can also trigger metabolic processes that reduce
insulin sensitivity [13]. As a result, BCAAs are closely linked to
insulin resistance.

Substrate interactions under physiological conditions

Myocardial energy production relies on glucose and FA
oxidation, which interact competitively through the Ran-
dle cycle [14, 15]. Under normal conditions, FA oxidation
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predominates, inhibiting glucose metabolism [16]. Conversely,
increased glucose oxidation can suppress FA oxidation, a
process regulated by hormonal signals like insulin [17]. This
competition enables the heart to adjust its substrate use based
on availability and physiological demands. Additionally, ketone
bodies and BCAAs serve as alternative substrates, further influ-
encing the balance between glucose and FA metabolism [17, 18].

Myocardial metabolism during HF
HF is a clinical syndrome characterized by shortness of breath
and limited physical activity due to impaired ventricular filling
or ejection [2]. It is classified based on left ventricular ejection
fraction (LVEF) as follows: HFrEF (LVEF < 40%), HFmrEF (LVEF
40%–49%), and HFpEF (LVEF ≥ 50%) [19].

This classification provides a framework for understand-
ing variations in pathophysiology and treatment responses. In
HF, the heart adapts its energy pathways based on workload,
substrate availability, and hormonal status [20, 21]. Research
suggests that during HF onset and progression, adaptive or
maladaptive changes in myocardial metabolism typically pre-
cede alterations in cardiac function [10, 22, 23]. Notably, during
the decompensated phase, ATP production declines by 30%,
creating an energy supply–demand imbalance that ultimately
contributes to HF progression [23, 24]. This underscores the
critical role of energy metabolism in HF. In the following sec-
tion, we summarize the specific metabolic changes occurring in
the myocardium during HF.

FA metabolism

As HF progresses, the overall energy metabolism of the
myocardium gradually declines. Impaired FA oxidation
has been observed in both human and animal models of
HFrEF [2, 25, 26]. In animal models, this decline in FA
oxidation may be linked to the downregulation of peroxi-
some proliferator-activated receptor-α (PPAR-α) and perox-
isome proliferator-activated receptor-γ coactivator 1 (PGC-1)
signaling [6, 27]. However, whether these mechanisms also
apply to humans remains unknown.

The phenomenon of reduced FA oxidation is not always con-
sistent. During the compensation phase of HF, FA uptake and
oxidation do not decrease [28], and in congestive HF, cardiac
FA uptake actually increases [29]. These variations in FA uti-
lization may depend on the type, severity, and progression of
the disease. Additionally, myocardial FA oxidation is elevated
in obesity and type 2 diabetes, likely due to glucose utilization
disorders, insulin resistance, and other factors [30, 31]. The FA
transporter protein CD36, a downstream target of PPAR-α, can
be upregulated by PPAR-α overexpression [32]. Interestingly,
CD36 knockout accelerates HF progression in cases of pressure
overload but delays it in diabetic cardiomyopathy. These find-
ings underscore the complexity of FA metabolism in different
pathological states, highlighting the need for further in-depth
research.

Increased FFA concentrations are strongly correlated with
a higher risk of HF [33, 34]. Disruptions in myocardial FA
metabolism can lead to lipid accumulation within cardiomy-
ocytes, impairing their function and metabolism [35–37].

Specifically, palmitic acid accumulation alters cardiomy-
ocyte membranes, increases oxidative stress, and disrupts
homeostasis, ultimately causing mitochondrial dysfunction,
apoptosis, and insulin resistance—hallmarks of cardiac
lipotoxicity [38–41]. Additionally, acyl-CoA, a key molecule in
lipid metabolism, is found to be reduced in failing human hearts
and pressure-overloaded animal models. LVAD treatment
can restore acyl-CoA levels through mechanical unloading,
benefiting cardiac function. Similarly, in pressure-overload
animal models, overexpression of acyl-CoA synthetase-
1 (ACSL1) replenishes acyl-CoA levels, reduces lipotoxic
ceramide species like palmitoyl-ceramide, and shifts the
ceramide profile, thereby mitigating cardiac lipotoxicity [42].
Although some studies suggest that ACSL1 overexpression can
promote lipid accumulation and exacerbate heart lipotoxicity,
in pressure-overloaded hearts, ACSL1-mediated restoration
of acyl-CoA levels significantly counteracts maladaptive lipid
profile changes. This protective effect outweighs potential
baseline risks under oxidative stress [43].

Glucose metabolism

To compensate for reduced FA oxidation, cardiomyocytes
typically enhance glucose metabolism. However, even with
increased glucose uptake and utilization, glucose metabolism
may still be insufficient to fully offset the decline in FA oxi-
dation, leading to an overall reduction in energy output. This
energy deficit underpins the metabolic vulnerability of the
failing heart. A decline in mitochondrial function is an early
hallmark of cardiac hypertrophy, which accelerates the pro-
gression of HF [44]. In failing hearts, the uncoupling of glycol-
ysis from glucose oxidation reduces energy efficiency, leading
to increased proton production and the accumulation of gly-
colytic intermediates, particularly phosphoglycerate, which is
strongly associated with HF risk [45–47]. Interestingly, a study
using a canine pacing-induced HF model observed an increase
in glucose oxidation [48], suggesting that myocardial glucose
metabolism may vary depending on the experimental model
or disease context. This discrepancy could be related to dif-
ferences in disease severity or shifts in myocardial metabolic
pathways.

GLUT1 upregulation in ischemic hearts disrupts energy
homeostasis and exacerbates HF [49]. This upregulation has
also been observed in pressure-overload models, where pres-
sure overload activates the nuclear effector Yes-associated pro-
tein 1 (YAP). In cardiomyocytes, YAP interacts with TEAD1
and HIF-1α to upregulate GLUT1 and activates glycolysis, ulti-
mately disrupting energy homeostasis. The accumulation of
glycolytic intermediates promotes ventricular remodeling [50].
Conversely, pressure overload suppresses GLUT4 expression,
impairing glucose uptake and potentially accelerating HF
progression [51]. GLUT4 downregulation also increases endo-
plasmic reticulum stress and extracellular matrix (ECM) depo-
sition, worsening ventricular remodeling after myocardial
infarction. Moreover, glucose metabolism dysregulation can
lead to the accumulation of advanced glycation end prod-
ucts (AGEs), which generate excessive reactive oxygen species
(ROS), inducing oxidative stress [52]. This oxidative stress
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further damages cardiomyocytes and compromises cardiac
function.

Interestingly, in diabetic cardiomyopathy, increased
GLUT4 expression—intended to sustain myocardial glu-
cose utilization—paradoxically accelerates mitochondrial
dysfunction [53]. Thus, GLUT4’s role varies across pathological
conditions and must be considered in context.

Under pathological conditions, glucose participates in non-
energy-related signaling pathways such as the hexosamine
biosynthetic pathway, pentose phosphate pathway, and carbon
cycling, generating metabolites that disrupt metabolic balance.
These pathways may contribute to cardiac hypertrophy and
remodeling [54, 55]. Targeting these dysregulated pathways
could help restore energy homeostasis and mitigate myocardial
remodeling [56].

Ketone body metabolism

Ketone body metabolism in failing hearts is generally consid-
ered a compensatory mechanism for the reduced oxidation of
other metabolic substrates. A substantial body of high-quality
research has shown that circulating ketone body levels are
elevated in HF patients and that ketone body utilization in
the heart is also enhanced. This finding has been consistently
demonstrated in animal models [57–61]. This phenomenon
occurs because ketone body utilization in the heart is directly
proportional to its delivery [62].

Notably, circulating ketone body levels are not elevated in
HFpEF patients [63]. In recent years, numerous studies have
indicated that higher circulating ketone body levels are strongly
correlated with worsening HF or adverse outcomes in HFrEF.
Consequently, its potential as a clinical predictive biomarker is
gaining increasing attention [64–68].

In BDH1−/− or SCOT−/− animal models, impaired myocar-
dial ketone utilization exacerbates oxidative stress, induces
mitochondrial dysfunction, and disrupts myofibril ultrastruc-
ture, ultimately rendering the heart incapable of handling
stress overload or ischemia. Consequently, this accelerates the
progression of cardiac decline. However, exogenous βOHB sup-
plementation has been shown to mitigate pathological ventric-
ular remodeling and slow disease progression [69, 70].

βOHB supplementation within physiological concentration
ranges in chronic HFrEF patients has been shown to enhance
cardiac output [71]. Increasing circulating ketone levels as a
potential HF therapy is an active area of translational research,
with approaches including ketone infusion, ketone ester (KE)
administration, and ketogenic diets, as detailed in Table 1.
While exogenous ketone therapy benefits the heart, prolonged
exposure to a ketone-rich environment may have adverse
effects, such as v-ATPase proton pump degradation, contractile
dysfunction, and insulin resistance [72]. Similarly, excessive
βOHB accumulation may disrupt metabolic balance, exacerbat-
ing cardiac dysfunction over time. An ex vivo study on low-flow
perfused hearts also found that increased βOHB accumula-
tion impaired cardiac contractile recovery [73]. These findings
underscore the complexity of ketone body roles in different
pathological states, with unclear long-term effects and a poten-
tial risk of impaired cardiac function.

BCAA metabolism

Recent studies have identified elevated circulating BCAA levels
as an independent predictor of cardiovascular events, including
HF onset, plaque rupture, and thrombus formation—factors
that can contribute to ischemic cardiomyopathy and poor clin-
ical outcomes [74–79]. This correlation highlights the critical
role of BCAA dysregulation in cardiovascular pathology. In ani-
mal models of pressure overload and myocardial infarction,
BCAA metabolism was found to be downregulated in both the
compensated and decompensated phases of HF. Interestingly,
while BCAA levels increased in heart tissue, they did not rise in
plasma, suggesting localized metabolic alterations [80, 81].

To better understand how BCAAs influence HF, vari-
ous experimental models have been used to examine their
effects on cardiac metabolism and function. In one study,
pressure-overloaded mice fed a BCAA-rich diet exhibited
increased histone H3K23 propionylation (H3K23Pr) at pro-
moters, downregulation of electron transport chain com-
plexes (ETC I–V), reduced mitochondrial respiration, increased
myocardial fibrosis, and worsened cardiac function. Con-
versely, a BCAA-deficient diet produced the opposite, beneficial
effects [82]. These findings suggest that excess BCAAs disrupt
mitochondrial energy metabolism and contribute to cardiac
dysfunction under pathological conditions.

Meanwhile, a multi-omics study found that the downreg-
ulation of BCAA metabolism does not occur in endurance
exercise-induced physiological cardiac hypertrophy, indi-
cating that it is a distinct feature of pathological cardiac
hypertrophy [83]. Interestingly, another study showed that
while BCAA metabolic defects do not drive HF progression,
BT2—a potent inhibitor of BCKDK—enhances systemic BCAA
metabolism, leading to reduced vascular tension, lower blood
pressure, and ultimately cardioprotective effects by preventing
adverse cardiac remodeling [84].

On the other hand, as mentioned earlier, activation
of the mTOR pathway can reduce insulin sensitivity and
contribute to insulin resistance. BCAAs can also impair
insulin-stimulated glucose uptake in skeletal muscle and
inhibit insulin-induced phosphatidylinositol 3-kinase activity,
leading to impaired glucose uptake, insulin resistance, and
subsequent metabolic disorders [85]. However, paradoxical
effects of BCAA metabolism have been observed in different
contexts. In BCATm−/− animal models, elevated circulating
BCAA levels were associated with beneficial phenotypes, such
as reduced obesity and increased insulin sensitivity [86].
Furthermore, studies suggest that BCKA, rather than BCAA,
is the key mediator of cardiac insulin resistance and could
serve as a target for modifying cardiac insulin sensitivity [87].
In a study on pressure-overloaded PP2Cm−/− mouse models,
Krüppel-like factor 15 (KLF15) was identified as a key upstream
regulator of reduced cardiac BCAA catabolism. Its loss or
inhibition led to defective BCAA catabolism, resulting in ele-
vated BCKA levels, increased superoxide production, oxidative
stress damage, and worsened cardiac function [88]. Another
study on BCKDH knockout/overexpression mice found that
BCKDH knockout caused increased BCKA levels, suppressed
insulin-induced AKT phosphorylation, and reduced glucose
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Table 1. Evidence supporting the cardiovascular advantages of supplementing ketones

Form Disease Object Key discoveries Reference

KE (0.5 g/kg) CS Human CO↑; Tissue oxygenation↑; Glycemic↓ [204]

KE (395 mg/kg) COVID-19 Human GLS↑ [205]

KE (0.38 g/mL) TAC Mice Cardiomyocyte hypertrophy↓;
Elevated cardiac periostin↓; CO↑;
Fibrosis↓

[206]

KE (20%) DCM Mice SCOT↑; BDH1↑; ACAT1↑; ROS↓;
Complex-II↑;
Complex-IV↑Complex-V↑

[207]

KE (550 mg/Kg, 2 occ/d) AMI Pig Inflammation↓; Apoptosis↓; Oxidative
stress↓

[208]

KE (10%/15%) TAC/MI post-MI HF Mice
Rat

LVEF↓; Fibrosis↓; Cardiomyocyte
hypertrophy↓; SCOT↑

[209]

KE (25 g/occ, 4 occ/d, 14 d) HFrEF Human CO↑; LVEF↑; FP↓; NT-proBNP↓;
Cardiac volumes↓

[210]

TRF BDH1−/− Mice Ventricular remodeling↓;
Mitochondrial bioenergetics↑

[211]

Ketogenic diet (10% protein, 90% fat, 5d) Trx1 KD PCMs
Mice

Trx1↑; Oxidative stress↓; Ventricular
remodeling↓

[212]

Ketogenic diet (10.4 kcal protein,
0.1 kcal carbohydrates, 89.5 kcal fat)

TAC Mice
MCEC

Angiogenesis↑ [213]

SCOT−/− in skeletal muscle TAC Mice NLPR3↓; Inflammation↓ [214]

D-βOHB/L-βOHB (0.36 mg/kg) Normal Pig Coronary artery dilation↑;
Afterload↓; CO↑

[215]

βOHB (10 mmol/kg, 1 occ/w, 15 w) HFpEF Mice NOX2/GSK-3β ↓; Treg cell↑;
Inflammation↓; Ventricular
remodeling↓

[216]

βOHB (483 mg/kg, 4 occ/h) Normal Human CO↑ [217]

βOHB (160, 200, 240 mg/kg/d; 10 w) Diabetes Rat
HCMECs

COL4↓; Cu/Zn-SOD↑; NT↓;
Microvascular fibrosis↓

[218]

βOHB (10 mmol/kg) I/R Mice mTOR pathway(−); Mitophagy↑;
Infarct size↓; Oxidative stress↓

[219]

βOHB (10 mmol/kg/d, 5 occ/d, 5 d) DOX cardiotoxicity C57BL/6
H9C2

Fibrosis↓; apoptosis↓; Oxidative
stress↓; Mitochondrial membrane
integrity↑

[220]

βOHB (360 mg/kg/h) Heart transplantation Pig SV↑; Arterial elastance↓; CO↑;
dP/dt↑

[221]

D-βOHB (3 mg/g, 1 occ/d) Septic cardiomyopathy Mice
H9C2 cell

FoxO3a/MT2↑; Mitochondrial
dysfunction↓; ROS↓

[222]

Cardiac perfusion βOHB (3/10 mM) Normal Rat CO↑; LVEF↑; SV↑; dP/dtmax ↑;
Vascular resistance↓

[223]

CS: Cardiogenic shock; CO: Cardiac output; KE: Ketone ester; TRF: Time-restricted feeding; AMI: Acute myocardial infarction; I/R: Ischemia/reperfusion;
CHFrEF: Chronic heart failure with reduced ejection fraction; HFrEF: Heart failure with reduced ejection fraction; HFpEF: Heart failure with preserved
ejection fraction; SV: Stroke volume; HR: Heart rate; LVEF: Left ventricular ejection fraction; FP: Filling pressure; GLS: Global longitudinal strain; TRF:
Time-restricted feeding; PCMs: Primary cardiomyocytes; TAC: Transverse aortic constriction; DCM: Diabetic cardiomyopathy; CS: Citrate synthase; EMPA:
Empagliflozin; DAPA: Dapagliflozin; SOTA: Sotagliflozin; LVDF: Left ventricular diastolic function; LVV: Left ventricular volume; LVM: Left ventricular mass;
LVSF: Left ventricular systolic function; DBP: Diastolic blood pressure; SBP: Systolic blood pressure.

uptake. In contrast, BCKDH overexpression led to beneficial
cardiac outcomes, reversing the detrimental effects observed in
knockout models [89, 90]. Collectively, these animal studies
demonstrate that BCKA, rather than BCAA, plays a central

role in mediating cardiac insulin resistance. Human studies
have also identified elevated serum BCAA levels as a metabolic
hallmark of insulin resistance, with gut microbial species, such
as Prevotella copri and Bacteroides vulgatus emerging as key
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drivers of the link between BCAA biosynthesis and insulin
resistance [91].

Effects of exercise on myocardial energy
metabolism
Physical activity encompasses any bodily movement that
increases energy expenditure due to skeletal muscle contrac-
tion, typically exceeding a resting metabolic rate of 3.5 mL
O2/min/kg or one metabolic equivalent (MET) [92]. Exer-
cise, a specific subset of physical activity, consists of planned,
structured, and repetitive movements designed to maintain or
enhance physical health [93]. Based on skeletal muscle involve-
ment, exercise can be classified as either dynamic or static.
Dynamic exercise includes endurance activities that involve
continuous muscle contractions, such as swimming, jogging,
and walking. A key characteristic of dynamic exercise is the
proportion of maximal oxygen uptake it requires, which can
contribute to eccentric ventricular remodeling. In contrast,
static exercise involves sustained muscle contractions to over-
come resistance, as seen in weightlifting and deadlifts. Its
primary defining factor is the percentage of maximum vol-
untary contraction, which may lead to concentric ventricular
remodeling [92, 94].

Exercise and myocardial metabolism
During physical activity, a physiological stimulant, the heart’s
contractility and oxygen consumption can rise up to ten times
their resting levels [95]. The increased cardiac workload during
exercise promotes metabolic flexibility in substrate utilization,
particularly affecting FA and lactate metabolism [95–97].
Specifically, exercise stimulates catecholamine-driven fat
metabolism, elevating circulating FFAs to approximately
2.4 mM—6–10 times their resting levels [95, 98]. At this stage,
FA metabolism is primarily driven by oxidative processes
for energy supply rather than biosynthesis, reducing lipid
accumulation and, consequently, the risk of lipotoxicity [99].
Additionally, the increase in FA oxidation, along with enhanced
mitochondrial cristae density during exercise, contributes
to beneficial physiological cardiac hypertrophy, further
strengthening the protective effects of exercise on cardiac
function [100].

During exercise, the extensive contraction of skeletal mus-
cles significantly increases circulating lactate concentrations,
approaching 10 mM [101, 102]. Meanwhile, the heart is a major
consumer of lactate, with its utilization rate positively corre-
lated with circulating lactate levels [3]. Interestingly, elevated
lactate levels are also associated with increased FA oxida-
tion, suggesting a synergistic effect that enhances the heart’s
overall energy supply under high-load conditions. Additionally,
the reduction in glucose utilization appears to coincide with
increased FA and lactate use, likely due to substrate competition
and the heart’s adaptation to sustained physical demand [103].
Studies further indicate that while acute exercise boosts lactate
utilization in the heart, long-term exercise has little effect on
lactate oxidation capacity or lactate dehydrogenase content.
However, it does enhance FA oxidation and transport [104, 105].

Additionally, long-term exercise can enhance cardiovas-
cular health by reducing the activity of 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphatase 2 (PFKB2), an enzyme that
suppresses glycolysis and decreases glucose utilization, thereby
promoting physiological ventricular remodeling [106]. Further-
more, a study on female rats fed a high-fat, high-sugar (HFHS)
diet found that, even eight weeks after exercise cessation, prior
exercise corrected the redox imbalance caused by the HFHS
diet and restored mitochondrial efficiency [107]. This suggests
that the benefits of exercise persist even after training ends.
Understanding these general metabolic adaptations provides
a foundation for exploring how different exercise types and
intensities uniquely affect myocardial energy metabolism.

The effect of exercise type and intensity on myocardial
metabolism
Different exercise intensities lead to varying cardiac metabolic
responses. During low- to moderate-intensity exercise, both
male and female mice exhibit increased circulating levels of
ketones and lactate. However, during high-intensity exercise,
male mice show elevated lactate levels without a corresponding
rise in ketones, whereas female mice experience an increase in
both metabolites [108]. This suggests that female mice have a
more adaptable myocardial metabolism in response to physio-
logical stressors like exercise.

A 12-week exercise program study involving 52 healthy par-
ticipants found that high-intensity interval training (HIIT) and
combined training (CT) increased cardiolipin levels and tri-
carboxylic acid cycle metabolites, indicating enhanced mito-
chondrial activity from aerobic training. In contrast, resistance
training (RT) increased plasma membrane phospholipids, high-
lighting its role in preserving cellular integrity. Notably, all
three exercise types improved insulin sensitivity and cardiac
metabolic markers [109].

These findings underscore the heart’s remarkable ability
to adapt its energy substrate selection based on various fac-
tors, including the type, frequency, intensity, duration, and
form of exercise, as well as gender differences. Additionally,
genotypes that regulate myocardial metabolism may serve as
markers to differentiate physiological ventricular remodeling
due to exercise from pathological remodeling caused by disease
stimuli [110]. This emphasizes the potential clinical value of
exercise as a non-pharmacological strategy for protecting car-
diovascular health.

The harmful effects of exhaustive exercise (EE) on myocardial
metabolism
EE refers to prolonged, high-intensity physical activity that sur-
passes the body’s tolerance [111]. It has been extensively studied
in both human and animal models, with evidence showing that
EE can lead to adverse cardiovascular remodeling, including
myocardial ultrastructural damage, myocardial fibrosis, malig-
nant arrhythmias, arterial stiffening (aortic and carotid), and
elastic lamina rupture [112–115].

Increasing evidence suggests that inflammation and oxida-
tive stress are key mechanisms through which EE induces
harmful cardiovascular remodeling [116–119]. For example, EE
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can elevate inflammatory factors, such as IL-6, IL-10, and TNF-
α, activate inflammatory signaling pathways like NF-κB [120],
and significantly increase ROS levels by disrupting cellular
redox balance [121]. Elevated ROS damages mitochondria by
breaking mtRNA and causing genome mismatches. It also dis-
rupts mitochondrial membranes, leading to Ca2+ overload and
further redox imbalance [121]. These changes collectively con-
tribute to the progressive deterioration of mitochondrial struc-
ture and function.

EE also downregulates the calcium-binding protein S100A1,
weakening its regulatory effect on PGC-1α. This suppression
reduces the expression of key proteins involved in mito-
chondrial biogenesis and energy metabolism, such as Ant1
and Tfam, ultimately leading to mitochondrial dysfunction
and metabolic imbalance [122]. Additionally, by inhibiting the
PGC-1α/Complex I/II pathway, EE decreases mtRNA expres-
sion, upregulates mitochondrial fission-related proteins (e.g.,
Drp1 and Fis1), and suppresses mitochondrial fusion-related
proteins (e.g., Mfn2 and OPA1), disrupting mitochondrial
fission–fusion dynamics [123]. This imbalance further exac-
erbates oxidative stress, activates inflammatory pathways,
and inhibits the Nrf2/HO-1 antioxidant mechanism, creating
a vicious cycle that ultimately results in cardiac metabolic
dysregulation [118, 124, 125].

As previously mentioned, GLUT4 is the most abundant
glucose transporter in the myocardium. Under physiologi-
cal conditions, it is primarily localized within intracellular
vesicular structures (e.g., the Golgi apparatus and micro-
somes). However, in response to ischemia-hypoxia, insulin, or
muscle contraction, GLUT4 translocates to the plasma mem-
brane to facilitate glucose transport. Studies have shown that
exhaustive exercise (EE) negatively correlates with GLUT4
translocation, disrupting the balance between glucose supply
and demand in myocardial cells and exacerbating myocar-
dial injury [126]. AMPK plays a key role in exercise-induced
mechanotransduction, promoting myocardial cell autophagy,
enhancing mitochondrial biogenesis, and exerting cardiopro-
tective effects [127]. However, the same study found that EE
has limited effects on AMPK activation, and its associated car-
dioprotective mechanisms are insufficient to counteract the
cardiac damage caused by EE. In contrast, moderate aerobic
exercise can mitigate these adverse effects. Notably, in an obese
animal model, EE was found to inhibit AMPK activation [128],
whereas moderate aerobic exercise provided beneficial cardio-
protective effects [129]. This suggests that EE may contribute
to AMPK dysregulation, reducing its ability to maintain energy
homeostasis, impairing GLUT4 translocation, and exacerbating
metabolic stress.

Additionally, metabolomics studies have shown that EE
induces significant changes in lipid and amino acid metabolism,
including a marked increase in metabolites, such as glutamate,
glutamine, arachidonic acid, and myostatin. The accumulation
of these substances may upregulate the PTGS2/MAOB pathway,
further promoting myocardial cell inflammation and exacerbat-
ing myocardial damage [130].

Despite these findings, the effects of EE across different age
groups and exercise intensities remain unclear. Future studies

should establish exercise guidelines for various populations to
optimize cardiac rehabilitation and safeguard cardiovascular
health.

The connection between myocardial energy
metabolism, exercise, and HF
In HF, cardiac metabolic adaptability declines, and energy
production becomes restricted, further exacerbating
metabolic disturbances and mitochondrial dysfunction in
cardiomyocytes [5]. These impairments are a hallmark of HF
progression, highlighting the need for targeted therapeutic
strategies. Exercise, a safe and cost-effective intervention,
has been shown to enhance myocardial metabolism, regulate
metabolic protein expression, and reduce cardiovascular risks
across various physiological conditions [131, 132]. Additionally,
exercise improves energy efficiency and restores mitochondrial
health, making it a promising therapeutic approach. Numerous
animal and human studies have explored the effects of different
types of exercise on heart health. Table 2 summarizes the latest
evidence on the cardiovascular benefits of exercise.

In a rat model of high-fat coronary artery disease, four weeks
of treadmill exercise alleviated myocardial fibrosis, inflamma-
tion, and apoptosis by inhibiting NF-κB signaling. These effects
collectively mitigated pathological remodeling and improved
overall heart function [133]. In contrast, in a myocardial infarc-
tion model, 12 weeks of RT did not improve survival rates,
myocardial structure, or function [134]. However, six weeks
of moderate- or high-intensity endurance training in the same
model significantly enhanced ATP production capacity and
myocardial contractility [135]. Overall, these findings suggest
that while exercise benefits the failing heart, its effective-
ness depends on the type, duration, and intensity of training.
As previously discussed, an imbalance in myocardial energy
metabolism is a central contributor to HF. This section provides
an overview of recent studies exploring how exercise modulates
myocardial metabolism to support heart health.

The influence of exercise on myocardial metabolism
Investigating how exercise-induced metabolic alterations in
cardiomyocytes contribute to cardiovascular benefits remains
a key area of research. In a study involving 50 patients with
HFpEF (NYHA class II and III), a four-week cardiac reha-
bilitation program increased Sirt1 activity and βOHB lev-
els while reducing oxidative stress. These changes correlated
with higher NAD levels, an improved NAD/NADH ratio, and
lower Ox-LDL [136]. Similarly, in a mouse model of coronary
heart disease induced by a high-fat diet, an eight-week swim-
ming regimen (55-min sessions, five days a week) downreg-
ulated miR-344g-5p, which targets HMGCS2. This inhibition
of ketogenesis reduced lipid accumulation, thereby attenu-
ating lipotoxicity-induced myocardial fibrosis, cardiomyocyte
apoptosis, and subsequent cardiac dysfunction [137]. Build-
ing on these findings, another study explored whether dif-
ferent forms of exercise activate distinct molecular pathways
to achieve similar cardiovascular protection. Voluntary wheel
running (60 min per day for eight weeks) was shown to
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Table 2. Evidence for the cardiovascular benefits of exercise

Form of exercise Rate and strength Disease Key discoveries Reference

Voluntary wheel
running (8 w)

– HFD Bodyweight↓; Insulin resistance↓;
Mitochondrial dysfunction↓; White fat
browning↑

[224]

Treadmill exercise
(5 d/w, 4 w)

10–15 m/min, 60 min/d T1D Glucose transport↓; Ketone body
metabolism↓; FA metabolism↑; Insulin
resistance↑

[225]

Swimming exercise
(5 d/w, 12w)

80% of the critical load intensity, 30min/d OVX CD36↑; GLUT4↑; TG↓ [226]

Treadmill exercise
(5 d/w, 4 w)

60%–75% Vmax, 60 min/d OVX+MI Decreased pro-inflammatory cytokines↓;
Inflammation↓; IL-10↑; Dimethylamine↓

[227]

Treadmill exercise
(5 d/w, 12w)

50%–60% Vmax, 60min/d OVX Nox4↓; SERCA2↑; Mitochondrial
dysfunction↓; Myocardial contractility↑

[228]

Treadmill exercise
(5 d/w, 9 w)

30 min/d, 15 m/min LPS model NO↓; TNF-α ↓; IL-1β ↓; CRP↓;
CAT↑; Apoptosis↓

[229]

Treadmill exercise
(4 d/w, 8 w)

50%–75% Vmax, 60 min/d HFrD model p-p70S6K↑; p-ERK↑; IRβ-PI3K-AKT
pathway activation

[230]

Treadmill exercise
(5 d/w, 8w)

HIIT: (6–12)×2min, 2–6 m/min T2DCM B-catenin↓; c-Myc↓; GSK3B↑;
Apoptosis↓; Fibrosis↓

[231]

Treadmill exercise
(3-5 d/w, 8 w)

MICT: 60% VO2max, 60 min/d; 40%–50%
VO2max 10min
HIIT: 90% VO2max, 4×4 min; 60% VO2max
3min

Advanced
HFpEF

Ca2+ leak↓; SV↑ [232]

Treadmill exercise
(5 d/w, 20 w)

30–50 min/d, 10–15 m/min HFpEF H2S↑; Apoptosis↓; Insulin resistance↓;
Diastolic function↑; BGC↓

[233]

Treadmill exercise
(3 d/w, 8 w)

65% Vmax, 60 min/d AICM Nrf2/Keap1/HO1 pathway activation;
Apoptosis↓

[234]

Cycling exercise
(12 w, 3 d/w)

MICT and HIIT: 4w−400kJ+8w−300kJ
MICT: 60% VO2max, 61 min
HIIT: 90% VO2max, 9×4 min/occ
SIT: 100% VO2max, 80×6 s/occ

Overweight
women

VO2max ↑; Body weight↓; Insulin
sensitivity↑

[235]

Exercise
(12 w, 3 d/w)

50%–70%VO2max, 35–40 min Postmenopausal
women

LDL↓; TG↓; HgbA1c↓; IGF-1↑ [236]

Exercise
(16 w, 3 d/w)

43 min MetS Body weight↓; Waist circumference↓;
MAP↓

[237]

Running exercise
(8 w, 3 d/w)

MICT: 60%–75% VO2max, 3500–5000 m
HIIT: 85%–100% VO2max, 7×200–10×200 m

Obesity BMI↓; Visceral fat↓; SBP↓; TC↓; BGC↓;
TG↓s

[238]

Running exercise
(3 d/w, 12 w)

AIT: Warm-up 50%–60% VO2max 10min;
Exercise: 90%–95% VO2max 4 min, 4 occ;
50%–70% VO2max 3 min, 4 occ; 38 min/occ
MIT: 70%–75% VO2max, 47 min/occ

post-MI
heart
failure

BNP↓; LVEDV↓; LVESV↓; BNP↓;
Vasodilation

[239]

Cycling exercise
(3 d/w, 12 w)

MICT: 60%–75% HRmax, 45 min/occ;
HIIT: 90%–100%
HRmax, ex 1 min, 12 occ, 2 occ/w; 90%–95%
HRmax, 4 min, 8 occ, 1 occ/w

PCOS VO2max ↑; Insulin sensitivity↑; Aerobic
capacity↑

[240]

Running exercise
(3 d/w, 10 w)

70% HRmax, 40 min/occ; PMW Body weight↓; Fat mass↓; Resting
glucose↓; HbA1c↓; VO2max ↑

[241]

Running exercise
(3 d/w, 12 w)

MICT: 30% HRmax, 5 min/occ; 65%–75%
HRmax, 35 min/occ
HIIT: 50%–60% HRmax, 10 min; 85%–95%
HRmax, exercise 1 min, 10 occ

T2D HbA1c↓; BDNF↑; Blood lipids↓; Blood
glucose↓

[242]

Running exercise
/Cycling exercise
(3 d/w, 12 w)

RPE12-14, ≥ 20 min, 1 w;
HIIT: RPE15-17, 2–4 min/occ, 5–8 occ;
MICT: RPE12-14, 20–45 min/occ

MI+MetS Waist circumference↓; Blood glucose↓;
TG↓; DBP↓

[243]

(Continued)
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Table 2. Continued

Form of exercise Rate and strength Disease Key discoveries Reference

Running exercise
(12–16 w, 2 d/w)

MICT: 35%–50% HRmax, 10 min/occ;
Low-HIIT: 35%–50% HRmax, 19 min/occ;
80%–90% HRmax, 4 min/occ; High-HIIT;
35%–50% HRmax, 40 min/occ; 80%–90%
HRmax, 4 min/occ, 4 occ;

MetS Leukocyte counts↓; TG↓; VO2max ↑ [244]

Cycling exercise
(3 w, 5 d/w)

30 min, 2 occ/d HFrEF MECKI↑; CVE incidence↓ [245]

MI: Myocardial infarction; OVX: Ovariectomy; LPS: Lipopolysaccharide; HF: Heart failure; PDC: Pyruvate dehydrogenase complex; GLUT: Glucose trans-
porter; PGC-1: Peroxisome proliferator-activated receptor γ coactivator-1; CRP: C-reactive protein; BNP: Brain natriuretic; PAH: Pulmonary arterial
hypertension; HFD: High-fat diet; T1D: Type 1 diabetes; HFrD: High-fructose diet; T2DCM: Type 2 diabetic cardiomyopathy; SV: Stroke volume; BGC:
Blood glucose concentration; AICM: Alcohol-induced cardiomyopathy; MetS: Metabolic syndrome; MAP: Mean arterial pressure; TC: Total cholesterol;
SBP: Systolic blood pressure; CVE incidence: Cardiovascular events incidence; PCOS: Polycystic ovary syndrome; PMW: Postmenopausal women; HRmax:
Peak heart rate; DBP: Diastolic blood pressure; TG: Triglycerides.

activate the AMPK/PGC1α pathway, enhance mitochondrial
phosphorylation, reduce oxidative stress, shift metabolism
from FA to glucose oxidation, correct metabolic disturbances
in diabetic cardiomyopathy, and ultimately improve cardiac
function while mitigating the disease’s adverse effects [138].
Microsomal TG transfer protein (MTP) plays a crucial role
in lipid metabolism by facilitating lipid transport, apolipopro-
tein B assembly, and the release of chylomicrons and VLDL.
Endurance training has been shown to increase MTP expres-
sion in fruit flies, improving systemic lipid imbalances and
high-fat diet-induced cardiac dysfunction [139]. Additionally,
endurance exercise alleviates age-related diastolic dysfunction
and mitochondrial impairments, enhances lipid metabolism,
and improves survival rates [140, 141]. Collectively, these find-
ings underscore the role of exercise in restoring metabolic
balance in failing cardiac muscle, ultimately preserving heart
function.

GLUT4 is a key protein in glucose uptake and transport.
Previous studies have shown that endurance exercise increases
GLUT4 content in diabetic myocardium, thereby improving
glucose utilization disorders in diabetic cardiomyopathy [142].
Research indicates that short-term treadmill exercise (60-min
sessions, once daily, five days a week, for two weeks) can
reverse GLUT4 decline in a rat model of pulmonary arte-
rial hypertension (PAH), regulating glucose metabolism and
improving PAH-induced diastolic dysfunction [143].

However, this short-term regimen did not reverse declines
in FA and amino acid metabolism but did elevate PGC-1α
and PPAR-γ, both linked to FA metabolism in HF [6, 30].
Longer treadmill training (60-min sessions, once daily, five
days a week, for 12 weeks) restored GLUT4 levels in female
mice, reducing cellular aging, inflammation, and oxidative
stress while restoring autophagy and protecting cardiac
function in high-fat diet-induced diabetes [144]. Beyond
glucose metabolism, exercise significantly affects mitochon-
drial function through multiple pathways, with variability
in outcomes likely influenced by animal models, disease
conditions, and exercise protocols. Endurance training (60-
min sessions, once daily, five days a week, for four weeks)
stimulates myocardial AMPK, which phosphorylates histone

deacetylase 4, reducing MEF2a inhibition in HF mice. This
enhances GLUT1 expression, improves glucose metabolism,
and strengthens cardiac function following myocardial
infarction [145]. In a rat model of post-infarction HF, the
same protocol provided cardiovascular benefits, increasing
FA metabolism and reducing glycolysis, potentially through
AMPK/PPAR-α pathway activation and mitochondrial function
improvement [146, 147]. A study comparing exercise durations
(15- vs 60-min sessions, once daily, five days a week, for eight
weeks) found that low-intensity endurance exercise enhanced
Sirt3 activity more effectively than higher-intensity training.
This improved mitochondrial structure and autophagy in
elderly post-infarction HF mice, reducing apoptosis, oxidative
stress, and myocardial fibrosis while improving survival and
cardiac function [148]. Overall, these findings emphasize the
importance of specific exercise intensities and durations in
mitigating mitochondrial dysfunction and promoting heart
health in HF. Exercise enhances not only FA, glucose, and
ketone metabolism in failing hearts but also boosts BCAA
metabolism. This occurs via mitochondrial serine–threonine
PP2Cm upregulation, reducing cardiac BCAA accumulation,
myocardial fibrosis, apoptosis, and cardiomyocyte hypertro-
phy while increasing capillary density and LVEF, ultimately
protecting the heart from ischemic damage [149]. Collectively,
these studies underscore the role of tailored exercise in
optimizing myocardial energy metabolism and alleviating
HF (Figure 2).

The influence of exercise on mitochondria
Building on the benefits of exercise-induced metabolic changes,
the impact of physical activity on mitochondrial dynamics
is a crucial factor in cardiovascular protection. As the pri-
mary site of metabolism, mitochondria are highly dynamic
organelles that play a key role in cell survival and death
during the progression of cardiovascular diseases [150].
Their dynamics—including biogenesis, fusion, fission, and
autophagy—are essential for maintaining mitochondrial
integrity, positioning, size, and function, all of which are
critical for cardiovascular health [151]. Exercise actively
influences mitochondrial shape and biogenesis, supports
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Figure 2. Mechanisms of how exercise regulates myocardial metabolism and enhances heart function. Exercise can activate various pathways in
the body, thereby improving fatty acid metabolism, glucose metabolism, and BCAA metabolism, while also reducing ketone bodies and lipids. As a result,
this ultimately leads to increased autophagy of cardiomyocytes and higher capillary density in the myocardium, which is accompanied by decreased aging,
apoptosis, fibrosis, and inflammation in cardiomyocytes, collectively enhancing cardiac function. HMGCS2: 3-hydroxy-3-methylglutaryl-CoA synthase 2;
MTP: Microsomal triglyceride transfer protein; PPAR-α: Peroxisome proliferator-activated receptor-alpha; HDAC4: Histone deacetylase 4; MEF2A: Myocyte
enhancer factor 2A; GLUT1: Glucose transporter type 1; GLUT4: Glucose transporter type 4; PP2Cm: Protein phosphatase 2Cm; AMPK: AMP-activated protein
kinase; BCAA: Branched-chain amino acid.

mitochondrial homeostasis, optimizes myocardial metabolic
substrates, and enhances cardiovascular function [151–153].
While the precise mechanisms remain unclear [154], research
suggests that treadmill running (60-min sessions, once daily,
five days a week, for four weeks) activates the SIRT1/PGC-
1α/PI3K/Akt pathway, enhances antioxidant defenses, and
improves mitochondrial function, ultimately reducing myocar-
dial fibrosis and enhancing heart function in aged rats following
myocardial infarction [155]. The same treadmill regimen also
increases AMPKα2 activity, boosts respiratory chain complex
I function, promotes mitochondrial autophagy, and mitigates
DOX-induced cardiac injury [156]. In the myocardium, mito-
chondria exist primarily as intermyofibrillar and subsar-
colemmal (SS) populations. Exercise is particularly effective
in regulating the redox balance and iron homeostasis of SS
mitochondria, thereby contributing to overall mitochondrial
stability [157].

HIIT, known for its time efficiency, is increasingly studied
for its cardiovascular benefits compared to traditional exercise
regimens like moderate-intensity continuous training (MICT).
Mitochondrial function plays a key role in these protective
mechanisms and has become a major focus of research. A
randomized controlled trial involving obese individuals found
that both MICT and HIIT improve mitochondrial respiratory
function. However, HIIT was more effective in increasing mito-
chondrial numbers and enhancing cardiac contractility, under-
scoring its superior benefits for mitochondrial health [158, 159].
This suggests that different aerobic exercise intensities

offer distinct mitochondrial advantages. Additionally, HIIT
enhances mitochondrial size and morphology while reducing
fragmentation caused by prolonged sitting, helping to preserve
mitochondrial integrity [160].

Exercise influences not only mitochondrial dynamics—
such as biogenesis, fusion, and fission—but also other critical
aspects of mitochondrial health. Treadmill training (60-min
sessions, once daily, five days a week, for 12 weeks) sig-
nificantly increases mitochondrial-derived peptide levels in
the heart, improving myocardial contraction and potentially
enhancing diastolic function [161]. Similarly, treadmill run-
ning (45-min sessions, once daily, five days a week, for
five weeks) boosts endothelial nitric oxide synthase (eNOS)
activity in mitochondria, elevates nitric oxide production,
enhances S-nitrosylation, reduces oxidative stress, improves
mitochondrial function, and strengthens the heart’s ability to
withstand ischemic hypoxia [162]. Beyond telomere mainte-
nance, telomerase reverse transcriptase (TERT) in mitochon-
dria plays additional roles. Voluntary wheel running (4350
± 685 m per day, for three weeks) increases TERT activ-
ity in hearts under pressure overload, leading to improved
complex I activity, enhanced antioxidant responses, and pre-
vention of mitochondrial dysfunction—ultimately exerting an
anti-hypertrophic effect [163].

Exercise has effects not only during performance but also
afterward. Studies show that rats on a high-fat diet retain ben-
efits such as enhanced mitochondrial respiratory efficiency,
increased antioxidant response, and reduced inflammation
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Figure 3. Mechanisms through which exercise modulates mitochondria to enhance heart function. Exercise can activate the SIRT1/PGC-1α/PI3K/Akt
pathway and the AMPK/complex-I pathway in the body, as well as stimulate mitochondria to enhance the activity of MOTS-c, eNOS, and TERT.
Consequently, these actions collectively promote overall mitochondrial function, increase mitochondrial autophagy, alleviate mitochondrial fragmentation
and dysfunction, reduce cardiomyocyte apoptosis and ferroptosis, and ultimately improve cardiac function. PI3K: Phosphoinositide 3-kinase; AKT: Protein
kinase B; Sirt1: Sirtuin 1; PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator 1-α; Complex I: NADH dehydrogenase; TERT: Telomerase
reverse transcriptase; MOTS-c: Mitochondrial-derived peptide; eNOS: Endothelial nitric oxide synthase; NO: Nitric oxide; SS: Subsarcolemmal mitochondrial
populations; IMF: Intermyofibrillar mitochondrial populations.

for up to eight weeks after stopping exercise [107]. Genetic
factors significantly influence the cardiac response to exer-
cise. Under certain genetic conditions, exercise may fail to
provide cardioprotective benefits. For instance, in a model of
arrhythmogenic cardiomyopathy with a desmoglein-2 muta-
tion, prolonged swimming sessions (90 min, five days a week,
for 11 weeks) unexpectedly led to adverse outcomes, includ-
ing calcium overload, activation of calpain-1, and cleavage
of mitochondria-associated apoptosis-inducing factor. These
processes ultimately exacerbated cardiac pathology and func-
tion in DSG2mut/mut mice by promoting cellular damage and
apoptosis [164]. In contrast, treadmill running (45 min, once
daily, five days a week, for eight weeks) failed to reduce blood
pressure, left ventricular hypertrophy, or myocardial fibro-
sis in aged spontaneously hypertensive rats (SHRs), showing
no effect on mitochondrial dynamics. However, it effectively
lowered blood pressure in younger SHRs [165]. Interestingly,
swimming (45 min, twice daily, five days a week, for eight
weeks) activated AKT, increased glycogen synthase kinase-3β

phosphorylation, enhanced mitochondrial dynamics and spa-
tial distribution, lowered ANP levels, and improved cardiac
contractility [166].

These contrasting findings highlight the complexity of exer-
cise’s cardiovascular effects, emphasizing the need for tailored
exercise programs to optimize heart health in diverse popula-
tions (Figure 3).

The influence of exercise on exerkines
Exerkines are fluid factors that respond to both acute and
chronic exercise, playing a crucial role in delivering vari-
ous cardiac metabolic benefits. Recently identified exerkines,
such as FGF21, BAIBA, and irisin, offer new insights into how

exercise provides both immediate and long-term cardiovascu-
lar advantages [167].

FGF21

FGF21 was initially identified as a liver-secreted protein, but
later studies revealed that skeletal muscle, the pancreas, and
brown adipose tissue can also produce it [168]. Research on
FGF21−/− mice has shown that FGF21 overexpression can pre-
serve myocardial mitochondrial dynamics and improve cardiac
dysfunction caused by its deficiency [169]. While the heart was
traditionally considered the primary target organ of FGF21,
recent findings suggest that myocardial cell damage can trigger
its autocrine release, providing cardioprotective effects [170].
Additionally, other tissues, such as the liver and brown adipose
tissue, secrete FGF21 in a paracrine manner to inhibit ventricu-
lar remodeling and protect the heart [171, 172].

In mice with cardiomyocyte β-klotho knockout, endurance
exercise led to an upregulation of FGF21, which activated
AMPK, resulting in FOXO3 phosphorylation and increased
SIRT3 expression. This cascade ultimately prevented mitochon-
drial dysfunction and improved cardiac function in diabetic
cardiomyopathy [173].

Additionally, studies have shown that FGF21 has significant
predictive value in distinguishing between mild and severe
HF caused by T2DM. It can also serve as an independent
predictor of late-stage HF in patients with HFrEF, HFpEF,
HFmrEF, and T2DM [174–176]. At the same time, research on
the therapeutic potential of FGF21 continues to advance. For
instance, a study on insulin-resistant mice found that long-term
FGF21 treatment activated the FAO signaling pathway, lead-
ing to improved cardiac metabolism, reduced insulin resis-
tance, enhanced FGF21 sensitivity, and better overall cardiac
function [177].
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Irisin

Irisin, produced during skeletal muscle exercise and activated
by PGC-1α, is derived from the cleavage of the membrane pro-
tein FNDC5 and serves as a key mediator of exercise-induced
metabolic adaptations [178–180]. Recent studies have shown
that Irisin can also be secreted by various tissues, including
the heart, brain, liver, and fat, though its highest expression
occurs in skeletal muscle. As a myokine, it plays a crucial role
in enhancing energy expenditure and exerts its effects through
both autocrine and paracrine mechanisms.

A study examining various exercise modalities—including
endurance training, weight resistance, vibration, and electrical
stimulation—found that all forms increased Irisin/FNDC5
levels in the myocardium, thereby promoting mitochon-
drial autophagy. Among these, weight resistance exercise
had the most pronounced effect, significantly activating the
PINK1/Parkin-LC3/P62 pathway, which in turn suppressed
oxidative stress and improved cardiac function [181].

In models of radiation-induced heart injury, treadmill run-
ning (30-min sessions, once daily, five days a week, for three
weeks) increased Irisin expression, selectively activated mito-
chondrial autophagy, and improved heart function [182]. This
induced protective mitochondrial autophagy also alleviates car-
diac hypertrophy caused by TAC and apoptosis triggered by Ang
II [183, 184]. Iditarod, a protein related to FNDC5, is produced
in response to exercise, modulating myocardial autophagy
levels and enhancing resistance to exercise-induced cardiac
stress [185]. In a type 2 diabetes mellitus model, treadmill train-
ing (45-min sessions, once daily, five days a week, for eight
weeks) elevated Irisin levels, which in turn inhibited exces-
sive mitochondrial fission mediated by DRP1 [186]. Research
suggests that Irisin can serve as a biomarker for predicting
the long-term clinical prognosis of HFpEF patients with low or
near-normal NT-proBNP levels [187]. Additionally, it may help
predict outcomes in chronic HF associated with T2DM, as well
as in acute decompensated HF patients with acute myocardial
infarction [188]. Furthermore, the precursor FNDC5 of Irisin
shows increased expression in HF patients with better aero-
bic exercise performance, indicating a potential link between
FNDC5 and exercise capacity in HF patients [189].

Other exerkines

BAIBA is a valine metabolite composed of L-BAIBA and D-BAIBA
isomers. It is produced by skeletal muscles during exercise and
reaches other organs through paracrine and autocrine signal-
ing to exert its effects [190]. Studies indicate that BAIBA can
improve diabetic cardiomyopathy, obesity-induced atrial fib-
rillation, and atrial remodeling by inhibiting oxidative stress,
reducing inflammation, and increasing insulin sensitivity.
Together, these mechanisms contribute to its cardioprotective
effects [191, 192]. Endurance training (60-min sessions, once
daily, five days a week, for eight weeks) has been shown
to increase BAIBA levels. This elevation enhances miR-208b
expression and AMPK phosphorylation, reducing myocardial
apoptosis and mitochondrial dysfunction—ultimately improv-
ing heart function after myocardial infarction [193]. In human
studies, higher circulating BAIBA concentrations have been

negatively correlated with several cardiac metabolic risk fac-
tors, including elevated blood pressure, cholesterol levels, and
insulin resistance [194].

CCDC80 is a signal peptide, and evidence supports its pres-
ence in various cell types [195–197]. However, its functions and
secretion mechanisms remain complex, necessitating further
studies to clarify the underlying processes [195]. Swimming
(60-min sessions, once daily, five days a week, for 12 weeks)
has been shown to stimulate the production of coiled-coil
domain-containing protein 80 (CCDC80). This protein selec-
tively inhibits the kinase activity of JAK2 and the STAT3 sig-
naling pathway, thereby reducing Angiotensin II-induced car-
diac fibrosis and hypertrophy in mice while preserving heart
function [198]. Additionally, the study found that circulating
CCDC80 levels increased following exercise in healthy individ-
uals. However, it did not assess these levels in populations with
pathological conditions such as HF, which would be crucial for
understanding its broader role. Future research is needed to
determine whether CCDC80 can predict individual responses to
exercise in HF patients, particularly in relation to metabolic and
cardiorespiratory health.

In conclusion, exerkines, such as FGF21, Irisin, BAIBA, and
CCDC80 contribute to cardiac protection and the recovery of
heart function through various mechanisms (as illustrated in
Figure 4). Given that HF patients often experience exercise
intolerance, these exerkines hold significant potential as thera-
peutic alternatives to exercise. While research on their preclin-
ical mechanisms continues to advance, direct clinical evidence
for their use in HF patients is still lacking. Nevertheless, their
potential remains promising.

Conclusion
HF represents the final stage of multiple cardiovascular dis-
eases and poses a significant global public health challenge,
urgently requiring effective solutions. While numerous treat-
ment strategies continue to be explored, a critical gap remains
in identifying truly effective therapies. The cardiovascular
benefits of exercise are well established, as it plays a key
role in mitigating pathological factors, correcting myocardial
metabolic imbalances, reducing oxidative stress and inflam-
mation, minimizing cell death, and preserving mitochondrial
function and dynamics. Maintaining normal heart function
critically depends on optimal myocardial metabolism, as dis-
ruptions in energy supply or substrate availability can cre-
ate an imbalance between myocardial energy demand and
supply, ultimately leading to HF. Exercise not only increases
myocardial metabolic demands but also dynamically reshapes
the metabolic environment. Recent research highlights that
exercise primarily exerts its protective effects by correcting
metabolic disorders, enhancing glucose and lipid transport,
preserving mitochondrial integrity, and promoting the release
of beneficial exerkines.

Recent meta-analysis evidence indicates that exercise posi-
tively impacts quality of life (QoL), aerobic capacity, and car-
diac function in elderly patients with HF. However, exercise
variables, such as frequency, volume, and duration did not
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Figure 4. Mechanisms of how exerkines enhance heart function. Exercise can stimulate the body to secrete various exerkines, such as FGF21, BAIBA,
Irisin, Iditarod, and CCDC80, which in turn collectively reduce adverse factors, such as cardiomyocyte apoptosis, oxidative stress, hypertrophy, fibrosis,
excessive mitochondrial fission, and dysfunction, thereby enhancing cardiac function. FGF21: Fibroblast growth factor 21; AMPK: AMP-activated protein
kinase; FOXO3: Forkhead box O3; Sirt3: Sirtuin 3; BAIBA: β-Aminoisobutyric acid; miR-208b: MicroRNA-208b; FNDC5: Fibronectin type III domain-containing
protein 5; DRP1: Dynamin-related protein 1; PINK1: PTEN-induced kinase 1; CCDC80: Coiled-coil domain containing 80; JAK2: Janus kinase 2; STAT3: Signal
transducer and activator of transcription 3.

significantly improve the LVEF indicator [199]. This finding
highlights the complexity of optimizing exercise programs for
HF patients, as factors beyond exercise variables—or inter-
actions between them—may play a crucial role in improv-
ing cardiac function. Additionally, the studies included in
the meta-analysis exhibited considerable heterogeneity, likely
due to differences in HF severity, exercise modalities, and
the presence of comorbidities. This variability may obscure
the dose-response relationship between exercise variables and
LVEF improvement. Furthermore, research suggests that resis-
tance exercise has a greater impact on enhancing aerobic
capacity than aerobic exercise, while CT does not show a sig-
nificant advantage over either approach in improving LVEF.
These findings indicate that exercise prescriptions for HF
patients should be personalized to maximize both safety and
efficacy. At the same time, while improvements in LVEF fol-
lowing exercise interventions do not appear to be significantly
related to exercise variables, it is essential to recognize that
exercise-induced metabolic adaptations—such as enhanced
mitochondrial function and reduced metabolic dysfunction—
may still contribute meaningfully to overall cardiac health.
Future research should integrate metabolomics and molecular
analysis to better elucidate the mechanisms by which exercise
benefits cardiac health, complementing traditional assessments
such as echocardiography.

Current evidence indicates that moderate to low-intensity
aerobic exercise benefits heart health, whereas exhaustive
exercise can impair myocardial contractility, cause myocar-
dial damage, and deteriorate heart function. This deteriora-
tion is closely linked to the type, intensity, and frequency
of exercise [118, 134, 200, 201]. Therefore, defining exercise
dosage limits is crucial. In clinical settings, exercise intoler-
ance remains a major symptom in individuals with HF, signif-
icantly reducing their QoL. This intolerance likely stems from
aging, reduced pulmonary reserve, and respiratory or skeletal
muscle dysfunction, among other complex factors [202]. While

current strategies to address exercise intolerance are limited,
growing research suggests that exercise itself benefits HF and
can help alleviate intolerance [203]. Thus, further studies on
exercise dosage and timing are essential to optimize its role
in cardiac rehabilitation, with important clinical and societal
implications.
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