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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motor neurons in the spinal cord
and brain, resulting in motor deficits and muscle atrophy. Approximately 5-10% of ALS patients are familial (fALS), while the rest are
sporadic (sALS). Currently, early diagnosis of ALS cannot be achieved based on clinical manifestations and electromyography due to the
lack of effective and easily available biomarkers. The skin and central nervous system (CNS) share the same embryonic origin. Several
skin biomarkers have been found in many neurodegenerative diseases, such as abnormal deposition of pathological a-synuclein (a-Syn)
in Parkinson’s disease. Thus, molecular changes in the skin associated with ALS-specific pathological events could readily be detected

and become biomarkers for ALS through skin testing. Here, we summarize the literature on pathological changes in the skin of ALS
patients and animal models, including structural abnormalities of the skin, reduced density of skin nerve fibers, abnormal protein
aggregation, altered mitochondrial morphology and function, and dysregulation of skin inflammation, which may be useful for early

diagnosis and monitoring of ALS progression.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a degenerative disease
with a poor prognosis, resulting from the loss of motor neurons
(MNs) in the cerebral cortex and spinal cord. Most patients
die of respiratory failure within 3-5 years of disease onset [1].
ALS includes both sporadic and familial forms, with familial
ALS (fALS) accounting for approximately 10% of cases and spo-
radic ALS (SALS) comprising the remaining 90% [2]. To date,
the U.S. Food and Drug Administration (FDA) has approved
several drugs for ALS treatment, including riluzole, AMX0035,
and tofersen. These drugs can slow disease progression but do
not provide a cure [3]. Early diagnosis is essential for effec-
tive treatment of ALS. However, diagnostic challenges persist:
spinal cord and brain tissues are not easily accessible, blood
markers lack specificity, and cerebrospinal fluid (CSF) sam-
pling carries increased risk of complications in patients with
advanced disease [4]. A definitive diagnosis typically involves
identifying the progressive spread of symptoms affecting the
medulla oblongata, cervical, thoracic, and lumbar regions in
both upper and lower MNs, using clinical and neurophysi-
ological testing [5, 6]. Due to the lack of simple and effec-
tive early-stage diagnostic methods, formal diagnosis is often
delayed by 10-16 months [7]. This highlights the urgent need
for reliable biomarkers to facilitate early diagnosis and monitor
disease progression. During weeks 3-4 of human embryonic
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development, both the skin and nervous system originate from
the neuroectoderm. The epidermis forms from the ventral ecto-
derm, while the neural ectoderm develops along the dorsal side,
eventually thickening into the neural plate and shaping into the
neural tube. Because of this common origin, several key factors
and regulatory mechanisms involved in the central and periph-
eral nervous systems are also active in the skin [8]. Epidermal
keratinocytes play a central role in the connection between
the skin and neural development. These cells share hormones
and receptors with the central nervous system (CNS), includ-
ing the N-methyl-D-aspartate (NMDA) receptor, which influ-
ences both epidermal proliferation and barrier maintenance,
and is also involved in learning and memory regulation [9].
Furthermore, epidermal keratinocytes express components of
the hypothalamic-pituitary-adrenal (HPA) axis that regulate
the skin’s antimicrobial defense mechanisms [10]. These find-
ings suggest a close relationship between the epidermal barrier
and neurodevelopment. Given their shared embryonic origin,
pathological changes in the nervous system may be detectable
via skin biopsy [9]. Skin changes have been observed in sev-
eral neurodegenerative diseases prior to the onset of neuro-
logical symptoms. For instance, a-synuclein (a-Syn) deposits
in the skin may serve as a reliable biomarker for diagnosing
Parkinson’s disease before neurological symptoms appear [11].
Patients with Alzheimer’s disease (AD) have also been found
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Figure 1. (A) Normal skin and (B) possible pathology in ALS skin. The pink text indicates increased molecules and the green text represents decreased
molecules. The following changes occur in the skin of ALS patients compared to normal human skin: (1) Structural abnormalities include a reduced number of
collagen bundles, sparse weaving and widening of gaps; deposition of amorphous fine-grained material; reduced density of nerve fibers; thickening of blood
vessel walls and decreased expression of ANG. (2) Abnormal deposition of genetically determined ALS-related proteins, including superoxide dismutase
1 (SOD1), TAR DNA binding protein 43 (TDP-43), fused in sarcoma (FUS), valine-containing proteins (VCP), ubiquitin 2 (UBQLN2), vesicle-associated
membrane protein-associated protein-B (VAPB), and progranulin (PGRN). (3) Abnormal mitochondrial morphology with reduced long-axis length, area,
and circumference, rupture of the outer membrane, and cristae lysis. (4) Dysregulation of inflammatory response in the skin, with a decrease in the number
of T lymphocytes (Tregs) and an increase in the expression of IL-6 and TNF-a. (5) Other molecules such as MMP-9, IGF-1, VEGF, HGF, cystatin C, laminin
1, and HA were increased, and galectin-1 was decreased in the skin of ALS patients. (Created by BioRender.com). ALS: Amyotrophic lateral sclerosis; HGF:
Hepatocyte growth factor; VEGF: Vascular endothelial growth factor; HA: Hyaluronic acid; ANG: Angiogenin; MMP-9: Matrix metalloproteinase 9; TNF-a:
Tumor necrosis factor-; IL-6: Interleukin-6; IGF-I: Insulin-like growth factor I.

to exhibit a less acidic skin pH, increased skin hydration, and
reduced skin elasticity compared to healthy controls [12]. The
connection between morphological and biochemical changes
in the skin and ALS is an emerging area of research with sig-
nificant potential for advancing diagnostics. In this paper, we
systematically review structural changes in the skin of ALS
patients, related cellular alterations, molecular and biochemical
skin changes, and associated models, with the aim of identifying
potential skin biomarkers for the diagnosis and assessment of
ALS (Figure 1).

Changes in skin structure and appendages
Skin is the largest organ in the human body, covering the
entire body surface and made up of the epidermis, dermis,
subcutaneous tissue, and skin appendages. The epidermis is
the outermost layer and is divided into five layers from the
surface inward: the stratum corneum, stratum lucidum, stra-
tum granulosum, stratum spinosum, and stratum basale. It
primarily consists of keratinocytes, melanocytes, Langerhans
cells, and Merkel cells [13]. Beneath the epidermis lies the der-
mis, which is mainly composed of extracellular matrix and
fibroblasts. The dermis is further divided into the papillary
and reticular layers. The papillary layer connects to the basal
layer of the epidermis, while the reticular layer attaches to
the subcutaneous tissue. This deeper tissue is rich in collagen
fibers, elastin fibers, reticular fibers, and hyaluronic acid (HA).
The dermis also contains numerous nerve endings, blood ves-
sels, and lymphatic vessels [14]. The subcutaneous tissue has
a loose structure and contains a large number of fat cells. The
skin also secretes substances like sweat and sebum through
the sweat and sebaceous glands, which are part of the skin’s
appendages [13].
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Abnormalities in skin structure

Structural abnormalities in the dermis of ALS patients have
been repeatedly observed. The skin of an ALS patient is often
described as soft to the touch, resembling tanned leather, and
exhibits the “delayed return phenomenon (DRP)” [15]. Collagen,
akey structural protein in the skin’s connective tissue, provides
mechanical support and protection. In ALS patients, increased
collagen solubility and density, as well as altered cross-linking,
have been reported. Specifically, there is a decrease in type IV
collagen—primarily located in the basement membrane—and
type I collagen, alongside an increase in type III procolla-
gen in the dermis [16-18]. Light microscopy has revealed
a reduced number of collagen bundles, which appear more
loosely arranged, with progressively wider gaps in the connec-
tive tissue of ALS patients exhibiting DRP. Electron microscopy
shows extensive deposition of amorphous, fine-grained mate-
rial in the dermal matrix, with this deposition increasing
as the disease progresses. This material can also accumulate
on the surface of collagen fibers, leading to their separation
and fragmentation, and contributing to further connective tis-
sue abnormalities [19, 20]. Interestingly, a patient-derived ALS
tissue-engineered skin model (ALS-TES) has demonstrated sev-
eral structural abnormalities even in pre-symptomatic C9orf72-
linked patients. These include epidermal undifferentiation,
abnormalities at the dermal-epidermal junction, delamination,
keratinocyte infiltration, and collagen disorganization [21].

Decreased density of skin nerve fibers

In recent years, an increasing number of studies have
shown that patients with ALS also experience a range of
non-motor manifestations, including autonomic dysfunction
and involvement of the sensory nervous system [22]. Small
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fiber neuropathy in the skin—reflected by both sensory and
autonomic dysfunction—has been reported alongside motor
damage in ALS patients [23]. Research has demonstrated
that autonomic dysfunction in early-stage ALS may present
as subclinical impairments in cardiovascular, sudomotor,
gastrointestinal, salivary, and lacrimal regulation [24]. Sym-
pathetic skin response (SSR) testing in ALS patients has shown
prolonged latency and reduced amplitude, suggesting impaired
sympathetic efferent function. Additionally, ultrasonography
of the vagus nerve (VN) at the level of the thyroid gland has
revealed a significant decrease in the VN’s cross-sectional
area, which may indicate VN atrophy—further supporting the
presence of dysautonomia in ALS patients [25]. Moreover, ALS
patients have shown significantly higher autonomic-related
COMPASS-31 scores and longer SSR latencies in the lower
extremities than in the upper extremities, when compared with
healthy controls [26, 27]. These findings support involvement
of skin autonomic nerve fibers in ALS, which can manifest
as abnormalities in cutaneous vasoconstriction, thermoregu-
lation, and sweating. Histopathological studies have demon-
strated reduced sweat gland nerve fiber density (SGNFD) and
abnormal morphology in the upper extremities of ALS patients,
contributing to sweating dysfunction [20, 22, 28-30]. SGNFD
is also correlated with scores on the Small Fiber Neuropathy
Symptom Inventory Questionnaire (SFN-SIQ) and the Visual
Analogue Scale (VAS). ALS patients tend to have higher
SFN-SIQ and VAS scores, which may reflect loss of SGNFs [22].
A related study reported a loss of pilomotor nerve fiber density
(PNFD), along with morphological changes, such as axonal
rupture and varicosities in the epidermis and basement mem-
brane of ALS patients [31]. Sensory nerve fiber damage has also
been reported in ALS patients who experience symptoms like
numbness and pain [22]. Quantitative sensory testing (QST)—
which can detect small nerve fiber damage and objectively
assess sensory impairment—has shown that patients with
spinal-onset ALS have elevated warm detection thresholds
and reduced cold detection thresholds [23]. Additionally, skin
biopsies have revealed reduced intraepidermal nerve fiber
density and sensory axonal lesions in both ALS patients and
mouse models [22, 32-34]. Isolated and chain-like swellings of
nerve fiber axons in the epidermis have also been observed in
early ALS stages [35]. Such axonal swelling, which results from
disrupted axonal transport, may serve as an early marker of
nerve fiber damage [36]. Together, these findings support the
presence of nerve fiber injury and hypodensity in the skin of
patients with ALS.

Thickening walls of small blood vessels in the skin

Changes in the small blood vessels of the skin have been
reported in ALS patients. Histopathological examination has
revealed thickening of the dermal vessel walls in patients
with sALS, while further electron microscopic analysis showed
onion-skin-like morphological changes caused by B-amyloid
deposits and basement membrane duplications within small
vessels [37, 38]. The vascular bed was evaluated by measur-
ing the vascular area relative to the dermal area. Confocal
microscopy indicated that dermal vascular wall thickening in
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ALS patients may reduce the overall area of the vascular bed.
The vascular network in the papillary dermis is denser and
more complex in both hairless and hairy skin, a difference
that may be related to autonomic innervation [31]. Addition-
ally, some amorphous, fine particle-like substances deposited
in the dermis may act as pressure absorbers, preventing blood
vessels from becoming occluded [19]. These unique features
of the small blood vessels may contribute to the skin’s ability
to resist pressure ulcer formation in ALS. Mutations in the
angiogenin (ANG) gene are among the factors implicated in the
pathogenesis of ALS. ANG is a secreted ribonuclease involved in
angiogenesis and the maintenance of vascular stability. In the
skin, ANG is primarily produced by keratinocytes and endothe-
lial cells. Immunohistochemistry studies have shown that ANG
expression in the skin of sALS patients progressively decreases
with disease progression, particularly in the nuclei of epidermal
cells [39]. This reduction in ANG expression may impair blood
vessel formation and branching. However, it remains unclear
whether vascular changes occur in the skin of patients with
ANG mutations, highlighting the need for further investigation.

Abnormal deposition of genetically
determined ALS-related proteins in

skin tissue

Aberrant aggregation of insoluble proteins, such as superoxide
dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43),
and fused in sarcoma (FUS) in the cytoplasm of MNs is a key
pathological feature of ALS [40]. SOD1is an antioxidant enzyme
that protects cells from oxidative damage. It is a homodimer
composed 0f 153 amino acids per monomer and contains binding
sites for copper and zinc atoms (Figure 2) [41]. In ALS patients,
mutant SOD1 proteins tend to aggregate in the cytoplasm,
forming insoluble protein inclusions [42]. TDP-43 and FUS
are two RNA-binding proteins (RBPs) primarily located in
the nucleus. TDP-43 contains an N-terminal region, a nuclear
localization signal (NLS), two RNA recognition motifs (RRM1
and RRM2), and a glycine-rich low-complexity domain (LCD) at
the C-terminus. The FUS protein, composed of 526 amino acids,
shares a similar domain structure with TDP-43 (Figure 2) [41].
In ALS, both proteins abnormally relocate from the nucleus
to the cytoplasm and form cytoplasmic inclusion bodies, a
process exacerbated by disease-associated mutations [40].
Moreover, TDP-43 and FUS are strongly associated with
stress granules (SGs) [43]. SGs are dynamic, membrane-less
cytoplasmic assemblies that form under cellular stress and
consist mainly of translation factors, mRNAs, and RBPs.
They regulate mRNA translation during stress and facilitate
the resumption of protein synthesis once stress subsides,
supporting the recovery of cellular functions [44]. In ALS,
however, TDP-43 and FUS enter SGs and form insoluble aggre-
gates, ultimately contributing to neuronal degeneration [43].
The protein quality control system plays a crucial role in
degrading misfolded proteins and maintaining cellular protein
homeostasis. The ubiquitin-proteasome system (UPS) is a
central component of this process. UPS dysfunction can lead
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Table 1. Abnormal deposition of SOD1, TDP-43, FUS, VCP, UBQLN2, VAPB, and PGRN proteins present in the skin of ALS patients

Proteins Aggregation structure Aggregate location Sample type References
SOD1 Cytoplasmic aggregates Skin fibroblasts FALS cases (SOD1 mutation) [49]
TDP-43 Cytoplasmic aggregates Skin fibroblasts, skin tissue SALS, fALS cases (TARDBP mutation) [52-56]
FUS Cytoplasmic aggregates Skin fibroblasts SALS, fALS cases (FUS mutation) [47]

VCP VCP+ cells Skin tissue SALS cases [61]
UBQLN2 Ubiquitinated inclusions Skin fibroblasts FALS cases (UBQLN2 mutation) [56, 64]
VAPB Misfolded aggregates Skin fibroblasts SALS cases [63]

PGRN Diffuse or tightly aggregated granular PGRN+ Skin tissue ALS cases [69]

SOD1: Superoxide dismutase 1; FUS: Fused in sarcoma; VCP: Valosin-containing protein; UBQLN2: Ubiquilin 2; VAPB: Vesicle-associated membrane
protein-associated protein B; PGRN: Progranulin; TDP-43: TAR DNA-binding protein 43; fALS: Familial amyotrophic lateral sclerosis; sALS: Sporadic

amyotrophic lateral sclerosis.

to protein aggregation [45]. Interestingly, at least three genes—
valosin-containing protein (VCP), ubiquilin 2 (UBQLN2), and
vesicle-associated membrane protein-associated protein B
(VAPB)—have been implicated in protein quality control in
the endoplasmic reticulum (ER) in the context of ALS. Accu-
mulation of misfolded or improperly assembled proteins in the
ER activates the ER-associated degradation (ERAD) pathway,
resulting in the ubiquitination of these proteins for subsequent
degradation via the UPS or autophagy pathways [46]. Mutations
in VCP, UBQLN2, and VAPB impair ERAD function, promote
protein aggregation, and contribute to MN degeneration.
Additionally, abnormal deposition of certain genetically linked
ALS-associated proteins has been observed in the skin of ALS
patients (Table 1) [47, 48].

SOD1

Only one study has investigated SOD1 protein expression in
fibroblasts from fALS patients carrying the SOD1-V14M, SOD1-
G16A, and SODI1-C111Y mutations using immunofluorescence
staining. The results showed that SODI protein was diffusely
aggregated in the cytoplasm, with reduced nuclear distribution.
The cytoplasmic-to-nuclear ratio of SOD1 aggregates increased
by 2.54-, 2.80-, and 3.25-fold for each respective mutation [49].
These findings suggest that skin fibroblasts from patients
with SOD1 mutations may reflect key pathological features
of ALS.

TDP-43

Several studies have shown significantly elevated levels
of TDP-43 in the skin of ALS patients [22,50]. While
TDP-43 mRNA levels in the skin decrease as the disease pro-
gresses, TDP-43 protein expression is increased in ALS patients
with upper extremity onset compared to those with medullary
or lower extremity onset. This suggests that the autoregulation
of TDP-43 expression is disrupted in the skin of ALS patients,
which may serve as a potential biomarker for early diagnosis
of the disease [51]. Additionally, markedly elevated TDP-43
protein levels and abnormal aggregate formation have been
observed in the skin of fALS patients with the TDP-43"A315T
mutation, as well as in fibroblasts from ALS patients. These
changes are accompanied by increased expression of ER

Gao etal.
Skin pathology and biomarkers in ALS

stress-related proteins—GRP-78, ERK1/2—and the autophagy
marker LC3, indicating dysregulation in both production and
degradation of TDP-43 protein in the skin [52-56]. However,
some studies have reported no detectable abnormal localization
or aggregation of TDP-43 in the skin fibroblasts of sALS
patients [57]. Given the small sample sizes in current studies,
further multicenter research is necessary to determine whether
changes in TDP-43 expression in the skin can reliably aid in ALS
diagnosis.

FUS

Immunohistochemical staining revealed that both the propor-
tion and optical density of FUS-positive cells were signifi-
cantly higher in the epidermis of sALS patients compared to
controls [48]. This suggests that metabolic changes involving
FUS may be present in the skin of ALS patients and could be
associated with the disease process. Most mutations in the FUS
gene are located at the C-terminus, which contains the NLS
domain; these mutations may lead to the formation of cyto-
plasmic aggregates of mutant FUS proteins and their incor-
poration into SGs [58]. The subcellular localization of FUS in
skin fibroblasts from controls, SALS patients, and asymptomatic
ALS patients carrying the FUS P525L mutation was further
investigated using immunocytochemistry and Western blot-
ting. Results showed that nuclear FUS expression was present
in fibroblasts from all groups, while cytoplasmic FUS expression
was notably stronger only in ALS patients with the FUS P525L
mutation. Upon exposure to two stressors—heat shock and
dithiothreitol (DTT)—wild-type FUS from sALS patients and
mutant FUS from P525L patients redistributed to the cytoplasm
and were recruited into SGs. However, compared to controls
and sALS patients, fibroblasts from FUS P525L patients exhib-
ited a greater number of SGs that persisted longer, suggesting
a pre-aggregated state. These molecular alterations may rep-
resent early pathogenic events that precede disease onset [47].
Nonetheless, some studies have reported no detectable changes
in FUS expression patterns in skin fibroblasts from sALS
patients [59]. Therefore, further research is needed before
abnormal FUS deposition in the skin can be considered a reliable
biomarker for ALS diagnosis.
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Figure 2. Structures and domains of SOD1, TDP-43, FUS, VCP, UBQLN2, VAPB, and PGRN proteins (Created by BioRender.com). SOD1: Superoxide
dismutase 1; FUS: Fused in sarcoma; VCP: Valosin-containing protein; UBQLN2: Ubiquilin 2; VAPB: Vesicle-associated membrane protein-associated
protein B; PGRN: Progranulin; TDP-43: TAR DNA-binding protein 43; MSP: Major Sperm Protein; NLS: Nuclear localization signal; RRM: RNA recognition

motif.

VCP

VCP is a member of the AAA family of adenosine triphos-
phatase (ATP)-associated enzymes, and its structure primarily
comprises two AAA ATPase domains, D1 and D2, which together
form a cyclic hexameric structure (Figure 2) [60]. Increased
expression of VCP has been reported in the skin of patients
with sALS. A large number of VCP-positive (VCP+) cells have
been observed in the epidermis of ALS patients, with higher
optical density compared to controls. Moreover, a significant
positive correlation has been found between VCP immunoreac-
tivity and disease duration in ALS patients [61]. These changes
in VCP protein expression in the skin may be associated with
the underlying disease process and could serve as a potential
biomarker for ALS disease monitoring.

UBQLN2

Skin biopsies from sALS patients showed a higher number
of ubiquitin-positive cells in the epidermis compared to con-
trols, with this change becoming more pronounced as the
disease progressed [62]. UBQLN2 belongs to the family of
ubiquitin-like proteins and contains an N-terminal ubiquitin-
like domain (UBL) and a C-terminal ubiquitin-associated
domain (UBA), which bind to ubiquitinated proteins and facil-
itate their degradation by the proteasome. It also includes
four heat shock chaperone-binding motifs (STI1) and PXX
repeats (Figure 2) [63]. UBQLN2-positive aggregates have been
observed in the MNs of ALS patients, indicating impair-
ment of the UPS. One study reported an increased number
of ubiquitin-positive aggregates in the cytoplasm of fibrob-
lasts from ALS patients with a UBQLN2 gene mutation after
treatment with MG-132, a proteasome inhibitor [64]. These
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findings suggest that the skin of ALS patients may exhibit signs
of impaired proteasomal degradation, resulting in the accu-
mulation of ubiquitinated proteins. Therefore, similar to VCP,
ubiquitin may also serve as a potential marker for ALS disease
monitoring.

VAPB

VAPB belongs to a family of vesicle-associated membrane pro-
teins characterized by an N-terminal Major Sperm Protein
(MSP) domain, a coiled-coil (CC) region, and a C-terminal trans-
membrane (TM) helix (Figure 2) [65]. In patients with auto-
somal dominant ALS caused by a point mutation in VAPB,
aggregation of the mutant protein leads to structural reorga-
nization of the ER. Similar alterations have been observed in
peripheral blood mononuclear cells (PBMCs) from patients with
sALS, suggesting their potential use as biomarkers for ALS
research. In line with this, flow cytometric analysis of fibrob-
lasts from sALS patients using an anti-human VAPB monoclonal
antibody revealed reduced VAPB fluorescence. Immunofluores-
cence analysis with a polyclonal anti-human VAPB antibody
showed spherical VAPB aggregates. Both findings likely reflect
VAPB misfolding, and the observation that these aggregates
co-localize with the ER chaperone GRP78 supports the idea that
VAPB aggregation may cause ER damage [66]. Therefore, VAPB
alterations in skin cells may serve as a potential biomarker for
ALS diagnosis.

Progranulin (PGRN)

PGRN is a secreted growth factor encoded by the GRN gene,
which consists of approximately 593 amino acids and includes
seven semi-repeated cysteine-rich motifs (P-G-F-B-A-C-D-E)
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(Figure 2) [67]. Nonsense or deletion mutations in this gene
have been associated with ubiquitin-positive, tau-negative
frontotemporal dementia (FTD-U) [68]. A study examining
PGRN levels in the skin of patients with sALS revealed large
amounts of poorly defined diffuse or tightly aggregated granu-
lar PGRN+ material in the epidermal and dermal glands. Fur-
thermore, a significant positive correlation was found between
the proportion of PGRN+ cells in the epidermis and disease
duration in ALS patients [69]. These findings suggest that
PGRN-related pathological changes may be detectable in the
skin of ALS patients and could correlate with disease progres-
sion. However, additional studies with larger sample sizes are
needed to validate these observations.

Abnormal mitochondrial morphology and
altered oxidative phosphorylation in

skin cells

Mitochondrial dysfunction plays a key role in the pathogenesis
of ALS. It contributes to severe oxidative stress, disruption of
cytosolic calcium homeostasis, and activation of inflammatory
responses due to the abnormal release of mitochondrial DNA—
factors that may underlie MN death in ALS patients. Evidence of
mitochondrial damage within MNs has been observed at early
stages of the disease [70]. In patients with sALS, the mitochon-
dria within keratin-forming cells near the basal layer of the
skin show reduced long-axis length, area, and circumference.
Electron microscopy further reveals outer membrane rupture
and cristae degradation [71]. Similarly, in fALS, skin-derived
fibroblasts exhibit disrupted mitochondrial dynamics, includ-
ing imbalances in fission and fusion, reduced mitochondrial
numbers, and compromised cristae integrity [72]. The primary
function of mitochondria—ATP production through oxidative
phosphorylation—is impaired in both sALS and fALS. Fibrob-
lasts from these patients display reduced mitochondrial mem-
brane potential, impaired oxidative phosphorylation, decreased
ATPlevels, increased reactive oxygen species (ROS) production,
and redox imbalance [49, 70, 73]. However, one study involv-
ing only six sALS samples reported no structural changes in
the mitochondrial network or significant alterations in ROS
production [57]. Such discrepancies may reflect the heterogene-
ity of ALS in terms of disease duration, onset site, and other
variables. As a result, whether mitochondrial alterations in the
skin cells of ALS patients can serve as reliable biomarkers for
disease monitoring remains an open question and warrants
further investigation.

Dysregulation of the inflammatory response
in the skin

Inflammation plays a key role in the pathogenesis of ALS, con-
tributing to neuronal damage and disease progression. Early
autopsy studies revealed the presence of activated microglia,
astrocyte proliferation, and lymphocyte infiltration in brain
and spinal cord tissue from ALS patients [74]. More recently,
some research teams have used PET imaging to detect microglial
activation in regions, such as the motor cortex, anterior frontal
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lobe, thalamus, and pons during the early stages of ALS
development [75]. Additionally, systemic inflammatory mark-
ers and immune cell populations in the blood of ALS patients
show consistent alterations compared to healthy individu-
als. Notably, changes in the levels of neutrophils, CD4 and
CD8 lymphocytes, and CD16 monocytes have been observed,
correlating with disease severity [76,77]. Dysregulation of
neuroinflammatory responses—such as an increase in acti-
vated microglia and a reduction in regulatory T lymphocytes
(Tregs)—has also been observed in ALS animal models like
the SOD1 G93A mouse. Infusion of Tregs has been shown
to suppress inflammation, prolong survival in these models,
and lower peripheral levels of inflammatory markers such as
acute-phase proteins (APPs) in patients [78,79]. Some stud-
ies have found evidence of immune dysregulation in the skin
of ALS patients. The tuberculin skin test following Bacillus
Calmette-Guérin (BCG) vaccination is a standardized measure
of adaptive immune function involving key ALS-associated
immune cells like Tregs, Thi7 cells, and monocytes. A recent
study reported that a weaker tuberculin response to BCG vac-
cination was associated with a long-term reduction in ALS risk,
supporting the idea of an altered immunomodulatory response
in ALS pathogenesis [80]. On Guam, ALS patients exhibited
reduced Treg levels and diminished antigenic responses in skin
tissue early in disease progression. The diameter of positive
skin reactions (sclerotomies) was significantly smaller in ALS
patients injected with Candida-purified protein derivatives and
streptokinase-streptozotocin antigens into the forearms, com-
pared to healthy controls [81]. Moreover, skin epidermal cells
and macrophages can release inflammatory factors, such as
interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a),
contributing to the systemic immune-inflammatory response.
Immunohistochemical studies have shown that IL-6 and TNF-
a expression in the epidermis and dermis of ALS patients
increases with disease progression, with diffuse, unstructured
TNF-a+ particles accumulating in the epidermis. In response
to inflammation and immune dysfunction, epidermal ker-
atinocytes release TNF-o, which stimulates the expression of
endothelial cell adhesion molecules, leading to the accumula-
tion of inflammatory cells. The elevation of these inflammatory
mediators may strengthen the skin’s defense mechanisms and
could be linked to a lower incidence of decubitus ulcers in ALS
patients [82, 83]. These findings suggest that abnormal immune
responses in the skin may serve as systemic biomarkers associ-
ated with ALS progression.

Other molecules change in ALS skin

In addition to the changes described above, several other molec-
ular alterations have been identified in the skin of individ-
uals with ALS. Elevated levels of specific substances were
found in the epidermis, dermis, and glands of ALS patients,
including matrix metalloproteinase 9 (MMP-9), insulin-like
growth factor I (IGF-I), vascular endothelial growth factor
(VEGF), hepatocyte growth factor (HGF), cystatin C, laminin 1,
and HA [84-90]. Among these, MMP-9 belongs to the matrix
metalloproteinases (MMPs) family, which is responsible for
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degrading extracellular matrix components such as collagen.
Increased levels of MMP-9 have been observed in both the
skin and spinal cord of SOD1"G93A mice, suggesting that MMP
upregulation may serve as alink between neurons and the skin.
This connection could help elucidate ALS pathogenesis and
highlights MMP-9 as a potential biomarker for the disease [91].
IGF-], laminin 1, and HA are thought to be involved in collagen
degradation and synthesis. Additionally, IGF-I, VEGF, HGF, cys-
tatin C, laminin 1, and HA have all been associated with ALS
disease progression. Their increased immunoreactivity in the
skin may also contribute to the observation that ALS patients
are less prone to developing pressure ulcers. A reduction in
galectin-1immunoreactivity has also been observed in the der-
mis. Galectin-1 is a muscle cell-derived growth regulator that
influences dermal fibroblast proliferation. It also plays a role in
the formation of axonal spheroids, an early pathological feature
of ALS. Notably, intramuscular injection of oxidized galectin-1
into ALS model mice has been shown to improve clinical out-
comes and extend survival [92]. These molecules may serve not
only as indicators of disease progression but also as potential
therapeutic targets in ALS.

Conclusion

Currently, identifying reliable biomarkers remains one of the
major challenges in diagnosing ALS. Skin examinations in ALS
patients are easy to perform and offer valuable insights into the
disease’s pathogenesis. Tests assessing skin autonomic and sen-
sory nerve function, skin biopsies analyzing structural changes,
MMP-9 expression, and immune biomarkers such as tuberculin
reactivity could serve as non-invasive tools for ALS detection
and monitoring its progression. Therefore, large-scale prospec-
tive studies focusing on skin-related changes are still needed
to identify and investigate pathological alterations in both skin
structure and key molecular markers associated with ALS.
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