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ABSTRACT 

Immune checkpoint inhibitors (ICIs) demonstrate substantial interpatient variability in 

clinical efficacy for unresectable non-small cell lung cancer (NSCLC), underscoring the 

unmet need for noninvasive biomarkers to predict early therapeutic responses and 

improve survival outcomes. To address this, we developed a CT-based deep learning 

model integrated with the systemic immune-inflammatory-nutritional index (SIINI) for 

early prediction of ICI response. In a retrospective multicenter study of 265 patients 

treated with ICIs (incorporating chest CT and laboratory data), the cohort was divided 

into training (70%), internal validation (30%), and external validation sets. The combined 

model—leveraging DenseNet121-derived deep radiomic features alongside SIINI—

achieved strong predictive performance, with AUCs of 0.865 (95% CI: 0.7709–0.9595) 

in the internal validation cohort and 0.823 (95% CI: 0.6627–0.9827) in the external 

validation cohort. Gradient-weighted class activation mapping (Grad-CAM) highlighted 

key CT regions contributing to model predictions, enhancing interpretability for clinical 

application. These findings highlight the potential of integrating deep learning with 

inflammatory biomarkers to support personalized ICI therapy in unresectable NSCLC. 

Future directions include incorporating multi-omics biomarkers, expanding multicenter 

validation, and increasing sample sizes to further improve predictive accuracy and 

facilitate clinical translation. 

Keywords: Artificial intelligence; deep learning; non-small cell lung cancer; NSCLC; 

inflammatory parameter; immunotherapy.   

 

INTRODUCTION 

Lung cancer remains a leading type of cancer and the foremost cause of cancer fatalities 

worldwide (1, 2). Non-small cell lung cancer (NSCLC) constitutes the majority of lung 

cancer cases (80-90%) and is often diagnosed at advanced stages (65%), frequently 

presenting with local or distant metastases (3), which often precludes surgical 

intervention. Recent progress in immunotherapy, especially the application of immune 
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checkpoint inhibitors (ICIs), has shown significant promise in improving outcomes for 

patients with unresectable NSCLC (4). However, the variable response to immunotherapy 

highlights the necessity for further investigation into predictive biomarkers that can 

forecast immune response. Accumulating evidence has implicated various biomarkers in 

predicting responsiveness to ICIs in NSCLC, including tumor mutational burden (TMB) 

(5), programmed death ligand-1 (PD-L1) expression (6), tumor-infiltrating lymphocyte 

(TIL) density (7), and inflammatory cytokine profiles (8). However, current biomarker 

assessment protocols predominantly depend on invasive tissue biopsies which present 

dual clinical challenges: procedure-related morbidity risks and limited capacity to map 

intratumoral heterogeneity due to inherent sampling constraints (9, 10). This critical 

methodological gap necessitates the development of robust non-invasive biomarkers 

capable of predicting therapeutic outcomes in patients with unresectable NSCLC 

undergoing ICI regimens. 

Emerging evidence underscores the intricate interplay between tumor pathogenesis and 

host inflammatory response, immune status, and nutritional profile (11-15). The Systemic 

Immune-Inflammation-Nutritional Index (SIINI) is an innovative multidimensional 

biomarker that combines pre-treatment inflammatory indicators(16), immunocompetence 

metrics, and nutritional determinants, theoretically provides a more comprehensive 

evaluation of pretherapeutic host status compared to conventional unidimensional 

biomarkers. Nevertheless, the prognostic utility of SIINI in predicting clinical outcomes 

for NSCLC patients receiving ICIs remains unexplored.  

Beyond conventional laboratory diagnostics, computed tomography (CT)-based imaging 

biomarkers have become indispensable in the diagnostic workflow of lung cancer (17). 

The integration of artificial intelligence with medical imaging has catalyzed the 

emergence of radiomics-driven deep learning (RDL) in thoracic oncology, enabling the 

quantitative extraction of high-dimensional imaging features imperceptible to human 

visual assessment (18). This computational approach facilitates the development of non-

invasive predictive signatures for diverse clinical applications, including tumor 

characterization (19), therapeutic strategy optimization (20), and treatment response 

monitoring. Notably, foundational studies have established the prognostic relevance of 

conventional radiomic features in both localized and advanced NSCLC. For resectable 
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disease, radiomic signatures demonstrate predictive capacity for neoadjuvant 

chemotherapy response (21), while in advanced stages, specific imaging biomarkers 

correlate with immunotherapy outcomes (22). These findings underscore the evolving 

role of quantitative imaging biomarkers in precision oncology paradigms. Nevertheless, 

at present, there is limited evidence to substantiate the effectiveness of integrating clinical 

data, especially systemic immune-inflammatory-nutritional indexes such as SIINI, into 

deep learning models to predict the response of patients with unresectable NSCLC to 

immune checkpoint inhibitors. Moreover, CT-based RDL can reveal the heterogeneity 

within the tumor and provide a potential research direction for multi-dimensional 

interpretation of the tumor microenvironment(23, 24). 

In this study, we aimed to investigate the early predictive capability of a CT-based deep 

learning model combined with the inflammation parameter SIINI for predicting the 

response of unresectable NSCLC patients to ICIs by utilizing clinical data from 265 

patients across two independent medical centers. 

 

MATERIALS AND METHODS 
Data collection 

In this study, patients with unresectable NSCLC treated with single-agent ICI at 

Northern Jiangsu People's Hospital (Center A) and Taizhou People's Hospital 

(Center B) were selected as subjects. (Ethical Review No. 2021ky211; KY 2024-

093-01). Patients were administered 200 mg of Pembrolizumab every three weeks, 

or 3 mg/kg of Nivolumab every two weeks, or 200 mg of Sintilimab every three 

weeks. The planned time span is from January 2021 to December 2024. All 

procedures comply with the guidelines and ethical principles outlined in the 1964 

Declaration of Helsinki. 

Inclusion criteria:  

(1) Eastern Cooperative Oncology Group (ECOG) performance status of 0-3; (2) 

Presence of measurable lung lesions as per Response Evaluation Criteria in Solid 

Tumors (RECIST V1.1), as determined by standard chest computed tomography 

(CT) scans; (3) Diagnosis of NSCLC confirmed by biopsy or bronchofibroscopy and 

histopathological examination, with staging based on imaging and pathology 
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according to the TNM (8th edition) classification as stage IIIB to IV (25) ; (4) The 

comprehensive availability of laboratory and imaging data for evaluating disease 

progression includes standard blood work and biochemical analyses carried out 

before the commencement of ICI therapy, along with chest CT scans performed 

every 6 to 8 weeks thereafter; (5) Comprehensive follow-up information available. 

Exclusion criteria:  

(1) Inadequate image quality, such as presence of artifacts; (2) History of thoracic 

surgery; (3) Loss to follow-up after receiving immunotherapy; (4) Inability to obtain 

complete laboratory and imaging data for pathological evaluation.  

Clinical data 

We collected baseline data of patients and laboratory test results, including age, 

gender(female==0/male==1), smoking history(Current or former smokers==1/Never 

smokers==0), basic disease(with basic disease==1/without basic disease==0), body mass 

index (BMI), treatment lines, medication regimen (Pembrolizumab==1/ Nivolumab==2/ 

Sintilimab==3), EGFR mutation (Postive==1/Negative==0), TNM(ⅢB==3/Ⅳ==4), 

ECOG, pathological type(adenocarcinoma==1/squamocellular carcinoma==0), modality, 

PD-L1 expression(No record==0,Tumor Proportion Score, TPS <1%==1、TPS≥1%-

49%==2 、 TPS≥50%==3), etc. Blood cell counts encompassed white blood cell 

enumeration, neutrophil, lymphocyte, monocyte, eosinophil, and basophil quantifications 

along with their respective percentages. Additionally, hemoglobin concentration, red 

blood cell count, hematocrit level, platelet count, proportion of larger platelets, and 

plateletcrit were determined. Blood biochemistry analyses comprised measurements of 

total protein, albumin, and levels of LDH, ALT, AST, urea, and creatinine. Based on 

clinical retrospective data, this study found that neutrophil count, lymphocyte count, 

platelet count, hemoglobin level, serum albumin level and BMI before treatment were 

calculated by neutrophil count × platelet count × hemoglobin level / ( lymphocyte count 

× BMI × serum albumin level ) to form a new index-systematic immune-inflammation-

nutritional index ( SIINI ).At the same time, PNI, PLR, ALI, SII, and NLR calculated 

from these indicators were also included in the subsequent clinical prediction model 

studies, and the calculation formulas and data were in the supplementary materials. The 
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full names of some laboratory test results can be found in the abbreviation list at the end 

of this article. 

Image acquisition 

 

All patients underwent chest CT scans prior to the initiation of ICI therapy. Resultant 

imagery underwent moderate-detail reconstruction, yielding slice widths of 3–5 

mm.Tumor segmentation was subsequently performed to delineate the primary NSCLC 

lesions. Using 3D-Slicer v4.11, two cancer specialists jointly delineated regions of 

interest (ROIs) and derived radiomic features from each detected nodule. The target 

lesion was defined as any tumor mass measuring ≥ 5 millimeters in diameter, which was 

distinctly marked at the baseline and consistently observed in follow-up CT scans. 

Response assessment based on the follow-up CT scans adhering to RECIST 1.1 criteria 

categorized patients into responders (label=1) exhibiting complete remission (CR), partial 

remission (PR), or stable disease (SD), while those with progressive disease (PD) were 

classified as non-responders (label=0). All CT scan interpretations were conducted by 

two independent oncologists to ensure objectivity. 

To enhance reliability, two researchers (QW and FS) independently outlined the ROIs. 

Each researcher repeated this process for the same tumor at different time points. Intra-

group consistency of the extracted radiomic features was evaluated using the intra-class 

correlation coefficient (ICC), thereby ensuring robustness in the data collected. After 

calculating the ICC within and between groups, the characteristics of ICC > 0.8 at both 

time points were selected. Any differences are resolved through discussions between the 

two researchers. 

Methods 

 

We have developed the workflow shown in Figure 1 to carry out this research. This 

study included 265 participants, comprising 207 patients from Center A; Center B: 

58 cases, 145 cases as training set, 62 cases as validation set, and 58 cases in Center 

B as test set. (Supplementary Figure 1) 



 

7 
 

 

Data preprocessing 

 

In our medical image analysis, voxel spacing was standardized across all volumes of 

interest to a uniform resolution of 1𝑚𝑚 × 1𝑚𝑚 × 1𝑚𝑚  employing a fixed 

resolution resampling method. Concurrently, CT Hounsfield Units (HU) were 

constrained within the range of -400 to 600. This standardization process was 

critical for facilitating precise image comparisons, markedly enhancing the accuracy 

and dependability of our analytical outcomes. 

Radiomics procedure 

Feature extraction 

In this study, we've neatly divided radiomic features into three main buckets: (I) Shape 

and Size Descriptors, (II) Intensity-Based Measures, and (III) Texture Features. Shape 

and size descriptors are all about capturing the 3D form of the tumors. Intensity-based 

measures look at the spread of voxel intensities using basic statistical tools. On the flip 

side, texture features dig into the patterns and how voxel intensities are arranged in space, 

using more complex statistical methods like second-order and higher-order analyses. 

In analyzing the texture, we utilized well-established methods including the gray-level 

co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), gray-level size 

zone matrix (GLSZM), and neighborhood gray-tone difference matrix (NGTDM). Each 

specified subregion underwent feature extraction using the PyRadiomics tool (version 

3.0.1), following the protocols established by the Imaging Biomarker Standardization 

Initiative (IBSI) meticulously. 

Feature selection 

In the feature selection process, we took a layered approach. We kicked things off by 

standardizing the features using Z-scores, followed by running t-tests to gauge their 

significance. Any feature with a p-value under 0.05 was given the green light to move on 

to the next round. Subsequently, features exhibiting high reproducibility were assessed 

using Pearson's correlation coefficient. In cases where pairs of features demonstrated a 
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correlation greater than 0.9, a strategic recursive elimination process was applied to retain 

a single representative feature from each highly correlated pair, thereby minimizing 

redundancy. Thereafter, refinement of the radiomic signature was accomplished using 

Least Absolute Shrinkage and Selection Operator (LASSO) regression, which effectively 

reduced the influence of non-contributory features. The ideal regularization parameter (λ) 

was established using 10-fold cross-validation. 

Radiomics signature 

Following feature refinement via LASSO regression, risk evaluation was conducted 

utilizing both linear models (such as Logistic Regression) and tree-based models 

(including Random Forest and LightGBM). Model hyperparameter optimization was 

performed through 10-fold cross-validation within the training dataset, employing the 

GridSearch algorithm to fine-tune parameters. The parameters demonstrating the highest 

median efficacy were selected for the final model training. 

Deep learning procedure 

Data preparation 

Crop ROI: Within our methodology, for each patient, we identified the slice exhibiting 

the largest ROI as the representative image. For streamline analysis and minimize 

interference, the region of interest (ROI) was limited to its minimal bounding rectangle, 

extended by 10 pixels. This expansion acknowledges the importance of peritumoral 

regions, as indicated by recent studies (26). 

Data augmentation: The intensity distribution across RGB channels for the input images 

was standardized using Z-score normalization. During training stage, real-time data 

augmentation boosted model resilience using random crops and horizontal/vertical flips. 

For test images, processing was limited to normalization to ensure consistency. 

Model training 

Transfer Learning: Previous studies have shown that DenseNet121 (27, 28) , with its 

unique dense connection mechanism, is significantly superior to traditional CNN models 

(such as ResNet and VGG) in terms of feature reuse, parameter efficiency, training 

stability and task adaptability. Its advantages are particularly prominent in scenarios that 
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require high-precision and efficient feature extraction, such as medical imaging and target 

detection. This study leveraged advanced architectures DenseNet121 to surpass 

traditional CNN-based model performance. We performed comparative analyses of these 

networks to determine the most effective model for our specific research needs. 

Hyperparameters: Our strategy incorporated transfer learning to accommodate diverse 

patient populations and variability. Models began with ImageNet-derived parameters for 

enhanced accommodation. Our methodology hinged on meticulous learning rate 

calibration, employing a cosine decay strategy to maximize generalization across diverse 

data: 

𝜂𝑡 = 𝜂𝑚𝑖𝑛
𝑖 +

1

2
(𝜂𝑚𝑎𝑥

𝑖 − 𝜂𝑚𝑖𝑛
𝑖 ) (1 + cos (

𝑇𝑐𝑢𝑟
𝑇𝑖

𝜋)) 

Here, 𝜂𝑚𝑖𝑛
𝑖 = 0 represents the minimum learning rate, 𝜂𝑚𝑎𝑥

𝑖 = 0.01 sets the maximum 

learning rate, and 𝑇𝑖 = 30  denotes the number of epochs for each training cycle. 

Additional critical hyperparameters included the use of Stochastic Gradient Descent 

(SGD) as the optimizer and softmax cross-entropy as the loss function. 

Deep learning signature 

In our model, the probabilities outputted by the DenseNet121 are defined as the deep 

learning signature, representing the model's predictive capabilities. 

Clinical use 

Clinical Signature: We employed the same model used for the Radiomics Signature 

to model our clinical task. We then selected the model that performed best on the 

test set for subsequent comparisons of the signatures. This approach ensured that the 

most effective predictive model was utilized for clinical evaluation.  

Combined Model: To enhance its clinical utility, we carried out univariable and stepwise 

multivariable analyses on all clinical features to identify significant predictors. These 

selected clinical features were integrated with outputs from our deep learning model to 

develop a Logistic Regression (LR) linear model, resulting in the formation of the 
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Combined Signature.  We employed a nomogram for effective visualization of this 

signature. 

Metrics: We gauged how well our models could distinguish between true and false 

positives by using Receiver Operating Characteristic (ROC) curves. To see if our models 

were well-calibrated, we plotted calibration curves and then ran Hosmer-Lemeshow tests 

to really put them through their paces. On top of that, we performed Decision Curve 

Analysis (DCA) to figure out if our predictive models would actually be helpful in a 

clinical setting. 

Statistical analysis 

We randomly split the dataset, earmarking 70% for training and setting aside the 

remaining 30% for internal validation. To really put our model through its paces and see 

how well it generalized, we also tapped into data from an outside center, using it as an 

external validation set. Table 1 shows baseline characteristic of this study. 

We ran our analyses, using Python 3.7.12 and the statsmodels package, version 0.13.2. 

When it came to building our machine learning models, we leaned on scikit-learn, 

specifically version 1.0.2. For the deep learning side of things, we harnessed the power of 

an NVIDIA 4090 GPU, along with the MONAI (version 0.8.1) and PyTorch (version 

1.8.1) frameworks. 

Ethical statement 

 

This study was conducted according to the ' Helsinki Declaration '. Besides, this study 

was carefully reviewed by the Ethical Review Committee of Northern Jiangsu People 's 

Hospital and Taizhou People 's Hospital (Ethical Review No.2021ky211; No.KY 2024-

093-01), unanimously agreed that the patient 's hospitalization data and images used in 

this retrospective study were exempted from the informed consent application in the 

ethics committees and approved by the committees. 



 

11 
 

RESULTS 

Clinical features analysis 

Univariable and Multivariable Analysis: In our research, we performed an extensive 

univariate analysis of all clinical features, calculating the Odds Ratio (OR) and associated 

p-values for each. Features with a p-value less than 0.05 were selected for inclusion in the 

nomogram construction (Figure 2). Additionally, we constructed a clinical model based 

on these clinical features, including EGFR, TNM, SIINI, gender. To some extent, these 

indicators present the body nutritional inflammation status and tumor heterogeneity of 

unresectable NSCLC patients using ICIs, which can be included in the prediction model 

after multivariate variable analysis (Supplementary Table 1 and Table 2). 

 

The LightGBM model exhibited the highest AUC of 0.820 in the test set (Table 2). This 

performance highlights its capability to differentiate between the classes, marking its 

importance in evaluating binary classification models in medical diagnostics 

(Supplementary Figure 2). 

Rad signature 

In this study, we compiled a comprehensive dataset of 1,834 handcrafted radiomic 

features, organized into three primary categories: shape, first-order, and texture. This 

compilation consists of 360 first-order metrics, 14 shape descriptors, and a broad array of 

texture characteristics. These features were extracted using a specialized program created 

with Pyradiomics, detailed at http://pyradiomics.readthedocs.io. These distribution of 

handcrafted features among the different categories are illustrated in Figure 3. 

Radiomics Feature Selection: We employed the Least Absolute Shrinkage and Selection 

Operator cross-validation, LassoCV) methodology, integrating it with a rigorous 10-fold 

cross-validation framework, to select salient radiomic features. The intricate details of 

this feature selection process are vividly depicted in Figures 1, offering a comprehensive 

visual representation of our approach. Figure 4 showcases the coefficients obtained 

through Least Absolute Shrinkage and Selection Operator (LASSO) regression using 10-

fold cross-validation, a technique we employed in both our Radiomics Signature and 
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INTRA Signature analyses.Left and right sub-figure portions display Lasso regularization 

paths, Mean Squared Error (MSE) values, and pertinent radiomic feature weighting.  

Metrics 

Looking at the AUC scores in Table 3, LightGBM comes out on top on the validation set 

with an AUC of 0.624. While it's not exactly blowing the competition out of the water, it 

still edges out Logistic Regression (LR) and RandomForest, which clocked in at 0.551 

and 0.622 respectively on the validation set. This outcome suggests that the LightGBM 

model, a non-linear model, has a superior capability to fit and generalize the complex 

relationships in the dataset compared to the linear models like LR (Figure 5). 

The higher AUC value in LightGBM underscores its enhanced ability to discriminate 

between the positive and negative classes under more varied and complex scenarios. This 

supports the assertion that non-linear models, due to their ability to model intricate 

interactions and non-linear dependencies, are often better suited for tasks where the 

relationships between features are not straightforward, thereby providing a more robust 

fit to the data. 

Deep learning radiomics signature 

Results 

The performance of the DenseNet121 model, as indicated in the provided data (Table 4), 

shows promising results in terms of its ability to discriminate between classes, 

particularly highlighted by its AUC scores across different cohorts (Supplementary 

Figure 3).  

• Training cohort: The DenseNet121 model attained an AUC of 0.846, with a 95% 

confidence interval (CI) between 0.7793 and 0.9126. This high AUC indicates 

strong discriminative capability during the training phase. 

• Validation cohort: In the validation set, the model achieved an AUC of 0.751, 

with a CI from 0.6300 to 0.8722, still reflecting a relatively high predictive 

accuracy. 
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• Test cohort: On the test dataset, the AUC measured 0.691, with a confidence 

interval ranging from 0.4747 to 0.9071. Although lower than the training and 

validation phases, this score still suggests a moderate ability to distinguish 

between the positive and negative outcomes. 

In all phases, especially notable are the high specificity and Positive Predictive Value 

(PPV) scores, reaching 1.000 in both the validation and test cohorts. This result illustrates 

that when the model forecasts a positive class, it is notably accurate, with no false 

positives documented. However, the sensitivity scores are comparatively lower, 

suggesting that while the model is excellent at confirming cases when present, it misses a 

significant number of positive cases (low true positive rate). 

When contrasting these results with radiomics signature, the DenseNet121 deep learning 

approach potentially offers an improvement due to its capability to automatically learn 

and generalize from intricate image features across multiple levels of abstraction. This 

capability often translates into a more nuanced understanding and exploitation of the 

underlying patterns in medical images compared to more conventional radiomic 

approaches, which rely on pre-defined features. Thus, DenseNet121's performance, 

particularly in terms of its high specificity and PPV in the test cohort, underscores its 

potential for more accurate and reliable clinical applications, although there might be 

room for improvement in its sensitivity to ensure fewer positive cases are missed. 

Grad-CAM visualization 

To probe the deep learning models' recognition capabilities across different samples, we 

employed the Gradient-weighted Class Activation Mapping (Grad-CAM) technique for 

visualization. In the implementation of Grad-CAM, we focus on the analysis of the last 

convolutional layer feature map of DenseNet121 and use it to generate a heat map that 

reflects the metabolically active region at the edge of the tumor. Due to the dense 

connection mechanism of DenseNet, deep features can retain fine-grained semantic 

information through cross-layer aggregation. Experiments show that the convolutional 

layer at the end of the last dense block of DenseNet121 contributes the most to the final 

classification decision. After the global average pooling of the high-dimensional feature 

map output by this layer, the channel gradient weight directly reflects the degree of 
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attention of the model to the tumor area. Through Grad-CAM, we further localized the 

image areas associated with lung malignant tumors (such as irregularly enhanced areas on 

the edges, peripheral edema zones), while the activation areas of benign tumors were 

concentrated in the internal uniform texture areas. This analysis verifies the 

interpretability of the model decision, and the relevant heat map comparison will be 

presented in Figure 6 of the results section. 

Clinical use 

Analyzing the AUC scores across different models and cohorts (Table 5), the Combined 

model consistently demonstrates an improvement over single signature model (Figure 7). 

This trend is evident in training, validation, and test cohorts, underscoring the efficacy of 

integrating multiple types of data or analytical approaches. 

Calibration Curve: The Hosmer-Lemeshow (HL) test plays a crucial role in evaluating 

the calibration of a predictive model by comparing the predicted probabilities with the 

actual outcomes. Higher HL p-values indicate better calibration, reflecting closer 

alignment between the model's predictions and observed outcomes. In our study, the 

Combined model exhibited outstanding calibration, as evidenced by HL test statistics of 

0.964 in the training cohort, 0.633 in the validation cohort, and 0.140 in the test cohort. 

These results highlight the model's high effectiveness in accurately mirroring observed 

data (Supplementary Figure 4). 

Delong Test: The DeLong test is a method for comparing whether there is a significant 

difference in the AUC of two or more models. In other words, it helps us to judge 

whether a model is significantly better than another model. If the p- value is less than 

0.05, one of the models is significantly better than the other. While the Delong test 

confirmed no significant AUC difference between the Deep Learning model and Clinical 

model in the external test cohort (p= 0.298; AUC 95% CI overlap: Deep Learning model 

[0.475–0.907] vs. Clinical model [0.693–0.947]), the Combined model demonstrated 

superior overall performance in both the training and validation cohorts, as shown in 

Figure 8.  

 

DCA: Figure 9 presents the Decision Curve Analysis (DCA) for the training and testing 
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sets. These curves demonstrate that our fusion model offers significant advantages in 

terms of its predictive probabilities.  

Nomogram：Figure 10 Nomograms suggest that EGFR, TNM, SIINI, gender, and 

DeepLearning are incorporated into the combine model, and the corresponding scores can 

predict the unresectable NSCLC response to ICIs treatment in the early stage. Therefore, 

EGFR mutation negative, TNM stage Ⅲ, low SIINI score, and high deep learning index 

indicated a greater tendency to have an early response to ICIs. 

DISCUSSION 

The persistent global burden of lung cancer, characterized by high incidence and 

mortality rates, has driven multidisciplinary efforts to identify clinically actionable 

biomarkers for predicting ICI response in unresectable NSCLC. Current biomarker 

discovery paradigms span traditional histopathological evaluation to molecular profiling 

(29-31). Prior studies have identified numerous hematological parameters as prospective 

prognostic markers, including PD-L1, TMB, the neutrophil-to-lymphocyte ratio (NLR), 

derived NLR (dNLR), the platelet-to-lymphocyte ratio (PLR), the prognostic nutritional 

index (PNI), the systemic immune-inflammation index (SII), the advanced lung cancer 

inflammation index (ALI), alongside hemoglobin concentrations, among others (15, 32-

34). These parameters reflect distinct aspects of the tumor-host interface, yet their clinical 

application remains constrained by high costs, inherent biological variability, and limited 

capacity to capture the complex multidimensional nature of antitumor immunity.  

Throughout the immunotherapy for NSCLC, lymphocytes play an instrumental role in 

tumor defense via inducing apoptosis and inhibiting tumor cell proliferation and 

migration (33). The reduction in lymphocytes may reflect a decrease in CD4+ T 

lymphocytes, leading to a weakened lymphocyte-mediated immune response to 

malignant tumors (35). Furthermore, study by Lee et al.(36) suggests a possible link 

between serum hemoglobin levels and outcomes in lung cancer patients. Additionally, 

some studies indicate that NSCLC patients with lower baseline platelet (PLT) and NLR 

levels tend to have better prognoses (34).These findings suggest that the tumor 

inflammatory microenvironment may be closely related to anti-tumor immune responses, 

which can significantly impact the prognosis of NSCLC patients (37-39). Therefore, our 
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study identifies a novel indicator (SIINI), which considers various aspects of the body, 

offering a more comprehensive evaluation of immune, inflammatory, and nutritional 

indicators. The SIINI integrates neutrophil count, lymphocyte count, platelet count, 

hemoglobin level, serum albumin level, and BMI, offering a comprehensive evaluation of 

the nutritional, inflammatory, and immune status in patients with NSCLC. SIINI can be 

used not only to predict patient prognosis but also to assess treatment efficacy, and 

potentially offers greater clinical significance compared to established indicators such as 

NLR, PLR, PNI, SII, and ALI.  

Furthermore, within this landscape, CT-based radiological biomarkers hold unique 

translational potential due to their intrinsic non-invasive nature and universal acquisition 

during standard diagnostic workflows(40). Unlike invasive tissue sampling techniques, 

which are limited by spatial sampling bias, advanced imaging modalities enable 

comprehensive three-dimensional tumor characterization, capturing both intralesional 

heterogeneity and peritumoral microenvironmental features with millimeter-level spatial 

resolution (41). A paramount advantage of deep learning in radiomics feature extraction 

lies in its adaptability and proficiency in discerning patterns from image data(42, 43). 

Presently, it epitomizes the pinnacle of image analysis and categorization, consistently 

surpassing antecedent image analysis methodologies (44, 45). Rakaee et al.(46) 

constructed a machine learning model based on tumor-infiltrating lymphocyte (TIL) 

scoring to forecast the response of NSCLC to immune checkpoint inhibitors. In a parallel 

vein, Vanguri et al. amalgamated radiological, histopathological, and genomic attributes 

to gauge the predictive potential of immune therapy responses in NSCLC. Through the 

application of machine learning, they consolidated multimodal attributes into a risk 

prediction paradigm. The investigation revealed that the multimodal framework attained 

an AUC of 0.80, surpassing any solitary variable. These discoveries provide a 

quantitative foundation for harnessing multimodal integrated attributes in conjunction 

with machine learning to augment the precision of anticipating immune therapy 

responses in NSCLC patients (47). In our research, the DenseNet121 model manages to 

categorize responses at each evaluation point, essentially augmenting the training dataset, 

even with a small sample size. Furthermore, the validation set proves to be an 

unexpectedly good predictor in distinguishing responders from non-responders. Moreover, 
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external validation demonstrated good generalizability (AUC = 0.823), confirming the 

universality of the core predictive factors. 

This study primarily focused on patients with unresectable NSCLC at advanced TNM 

stages. Moreover, for patients with EGFR-positive NSCLC, targeted therapy remains the 

preferred treatment approach. Nevertheless, the emergence of resistance to targeted 

therapy is an inevitable challenge. In this context, ICIs have emerged as a promising 

therapeutic avenue for unresectable NSCLC patients. This study suggests that EGFR 

mutation status is associated with the response to ICIs, with EGFR-negative patients 

being more likely to exhibit an early response to ICI treatment, which is consistent with 

the findings of Jiang and colleagues (48, 49). The SIINI serves as both a clinical efficacy 

biomarker and prognostic indicator, offering distinct advantages in accessibility, safety, 

cost-efficiency, reproducibility, and adaptability for longitudinal monitoring. These 

strengths stem from its calculation using routine clinical parameters, including complete 

blood count, biochemical profiles, and BMI. However, some inflammatory components 

in SIINI are susceptible to a variety of confounding factors, which may lead to 

differences in model performance across different data sets and introduce bias into the 

research results. To mitigate such limitations, integrating SIINI with complementary 

inflammatory biomarkers and adopting longitudinal assessments could serve as effective 

strategies to enhance diagnostic accuracy and reduce measurement variability. 

Although results are promising, this research faced several constraints. Initially, 

participant numbers were limited. Although the data of two medical centers in China are 

included, further validation through larger prospective studies is needed. Secondly, real-

world data collection reveals that there are challenges in obtaining indicators such as 

TMB, circulating tumor DNA (ctDNA) (50), which may be due to high detection costs or 

inconsistent detection standards in local medical centers. Future investigations should 

synergistically integrate multi-omics biomarker panels, expand prospective multicenter 

validation frameworks, and achieve statistically powered cohort sizes (n≥400), 

collectively addressing current limitations in predictive robustness and clinical 

implementation scalability.  
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CONCLUSION 

This study investigated the early predictive capability of a CT-based deep learning model 

combined with the inflammation parameter SIINI for predicting the response of 

unresectable NSCLC patients to ICIs. By aiding in the selection of suitable candidates for 

ICI treatment, this research aims to reduce unnecessary financial and time burdens on 

patients while providing a feasible approach for precision therapy. 
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TABLES AND FIGURES WITH LEGENDS 

 

Table 1. Baseline characteristics 

Feature_na

me 
train-label=0 

train-

label=1 

P-

value 
val-label=0 val-label=1 

P-

value 

age 65.97±10.21 67.61±8.34 0.499 66.87±10.2

2 

65.71±10.0

2 

0.702 

BMI 22.76±3.75 22.47±3.94 0.618 24.21±4.55 22.67±4.58 0.253 

modality 3.17±1.92 3.11±1.60 0.992 3.07±1.98 3.40±1.74 0.605 

NLR 4.83±2.93 3.41±1.01 0.002 3.99±1.61 3.27±0.95 0.298 

PLR 202.05±107.29 191.07±94.9

5 

0.784 189.75±75.

05 

197.81±12

7.05 

0.67 

ALI 290.00±236.72 403.32±108

6.61 

0.717 284.93±14

1.93 

317.74±25

0.06 

0.905 

SII 1109.62±924.0

0 

922.70±852.

36 

0.255 994.24±59

1.15 

794.51±64

8.57 

0.116 

PNI 45.73±5.97 46.97±5.65 0.272 47.91±5.24 48.77±5.65 0.604 

SIINI 179.80±69.18 120.42±59.0

6 

<0.00

1 

169.75±49.

88 

123.02±70.

43 

0.003 

gender   0.025   0.835 

female 10(28.57) 11(10.78)  3(20.00) 6(13.33)  

male 25(71.43) 91(89.22)  12(80.00) 39(86.67)  

smoking   0.826   0.343 

0 13(37.14) 42(41.18)  7(46.67) 13(28.89)  

1 22(62.86) 60(58.82)  8(53.33) 32(71.11)  

basic_disea

se 

  0.317   0.536 

0 16(45.71) 35(34.31)  7(46.67) 15(33.33)  

1 19(54.29) 67(65.69)  8(53.33) 30(66.67)  

ECOG   0.095   0.013 

0 null 3(2.94)  null 2(4.44)  

1 13(37.14) 58(56.86)  4(26.67) 25(55.56)  

2 15(42.86) 31(30.39)  6(40.00) 16(35.56)  

3 7(20.00) 10(9.80)  5(33.33) 2(4.44)  

EGFR   <0.00

1 

  0.002 

0 6(17.14) 86(84.31)  7(46.67) 40(88.89)  

1 29(82.86) 16(15.69)  8(53.33) 5(11.11)  

PD_L1   0.247   0.339 

0 32(91.43) 78(76.47)  12(80.00) 38(84.44)  

1 2(5.71) 11(10.78)  1(6.67) 5(11.11)  

2 1(2.86) 8(7.84)  1(6.67) 2(4.44)  

3 null 5(4.90)  1(6.67) null  
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Feature_na

me 
train-label=0 

train-

label=1 

P-

value 
val-label=0 val-label=1 

P-

value 

medication_

regimen 

  0.291   0.318 

1 13(37.14) 29(28.43)  7(46.67) 13(28.89)  

2 19(54.29) 69(67.65)  8(53.33) 29(64.44)  

3 3(8.57) 4(3.92)  null 3(6.67)  

treatment_li

nes 

  0.389   0.342 

1 20(57.14) 69(67.65)  8(53.33) 28(62.22)  

2 12(34.29) 23(22.55)  6(40.00) 10(22.22)  

3 3(8.57) 10(9.80)  1(6.67) 7(15.56)  

type   0.578   0.732 

1 33(94.29) 100(98.04)  15(100.00) 42(93.33)  

2 2(5.71) 2(1.96)  null 3(6.67)  

pathological

_type 

  0.399   1.0 

0 16(45.71) 57(55.88)  7(46.67) 20(44.44)  

1 19(54.29) 45(44.12)  8(53.33) 25(55.56)  

TNM   0.004   0.408 

3 3(8.57) 37(36.27)  6(40.00) 11(24.44)  

4 32(91.43) 65(63.73)  9(60.00) 34(75.56)  

Notes: gender(female==0/male==1), smoking history(Current or former 

smokers==1/Never smokers==0), basic disease(with basic disease==1/without basic 

disease==0), medication regimen (Pembrolizumab==1/ Nivolumab==2/ Sintilimab==3), 

EGFR mutation (Postive==1/Negative==0), TNM(ⅢB==3/Ⅳ==4), pathological 

type(adenocarcinoma==1/squamocellular carcinoma==0), PD-L1 expression(No 

record==0, TPS <1%==1、TPS≥1%-49%==2、TPS≥50%==3). 

Table 2. Metrics of clinical model 

Model_na

me 

Accurac

y 
AUC 

95% 

CI 

Sensitivit

y 

Specificit

y 
PPV NPV 

Cohor

t 

LR 0.905 0.929 

0.871 

- 

0.986 

0.931 0.829 
0.94

1 

0.80

6 
train 

LR 0.767 0.741 

0.597 

- 

0.884 

0.800 0.667 
0.87

8 

0.52

6 
val 

LR 0.776 0.868 0.758 0.750 1.000 1.00 0.31 test 
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Model_na

me 

Accurac

y 
AUC 

95% 

CI 

Sensitivit

y 

Specificit

y 
PPV NPV 

Cohor

t 

- 

0.978 

0 2 

SVM 0.883 0.965 

0.934 

- 

0.995 

0.863 0.943 
0.97

8 

0.70

2 
train 

SVM 0.700 0.794 

0.672 

- 

0.916 

0.644 0.867 
0.93

5 

0.44

8 
val 

SVM 0.796 0.855 

0.750 

- 

0.959 

0.773 1.000 
1.00

0 

0.33

3 
test 

LightGB

M 
0.891 0.938 

0.892 

- 

0.984 

0.912 0.829 
0.93

9 

0.76

3 
train 

LightGB

M 
0.650 0.830 

0.726 

- 

0.933 

0.533 1.000 
1.00

0 

0.41

7 
val 

LightGB

M 
0.571 0.820 

0.693 

- 

0.947 

0.523 1.000 
1.00

0 

0.19

2 
test 

Table 3. Rad signature results 

Model_n

ame 

Accura

cy 
AUC 95% CI 

Sensiti

vity 

Speci

ficity 
PPV NPV Cohort 

LR 0.679 0.801 
0.722 - 

0.880 
0.618 0.857 0.926 0.435 train 

LR 0.717 0.551 
0.360 - 

0.742 
0.822 0.400 0.804 0.429 val 

LR 0.755 0.673 
0.457 - 

0.888 
0.773 0.600 0.944 0.231 test 

SVM 0.839 0.912 
0.847 - 

0.977 
0.804 0.943 0.976 0.623 train 

SVM 0.700 0.517 
0.319 - 

0.715 
0.822 0.333 0.787 0.385 val 
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Model_n

ame 

Accura

cy 
AUC 95% CI 

Sensiti

vity 

Speci

ficity 
PPV NPV Cohort 

SVM 0.490 0.718 
0.523 - 

0.913 
0.432 1.000 1.000 0.167 test 

LightGB

M 
0.591 0.817 

0.748 - 

0.886 
0.461 0.971 0.979 0.382 train 

LightGB

M 
0.333 0.624 

0.469 - 

0.779 
0.133 0.933 0.857 0.264 val 

LightGB

M 
0.469 0.652 

0.411 - 

0.894 
0.432 0.800 0.950 0.138 test 

Random

Forest 
0.803 0.861 

0.788 - 

0.935 
0.794 0.829 0.931 0.580 train 

Random

Forest 
0.683 0.622 

0.445 - 

0.800 
0.733 0.533 0.825 0.400 val 

Random

Forest 
0.755 0.632 

0.332 - 

0.931 
0.773 0.600 0.944 0.231 test 

 

Table 4. Metric results for deep learning radiomics signature 

Model_nam

e 

Accurac

y 
AUC 

95% 

CI 

Sensitivit

y 

Specificit

y 
PPV NPV 

Cohor

t 

Densenet12

1 
0.730 

0.84

6 

0.7793

-

0.9126 

0.667 0.914 
0.95

8 

0.48

5 
train 

Densenet12

1 
0.633 

0.75

1 

0.6300

-

0.8722 

0.511 1.000 
1.00

0 

0.40

5 
val 

Densenet12

1 
0.490 

0.69

1 

0.4747

-

0.9071 

0.432 1.000 
1.00

0 

0.16

7 
test 

 

Table 5. Metrics on different signature 

Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort  

Clinical 0.891 0.938 
0.8924 - 

0.9840 
0.912 0.829 0.939 0.763 train  

Radiomics 0.591 0.817 
0.7478 - 

0.8861 
0.461 0.971 0.979 0.382 train  

DeepLearning 0.730 0.846 0.7793 - 0.667 0.914 0.958 0.485 train  
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Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort  

0.9126 

Combined 0.942 0.966 
0.9322 - 

0.9995 
0.971 0.857 0.952 0.909 train  

Clinical 0.650 0.830 
0.7258 - 

0.9334 
0.533 1.000 1.000 0.417 val  

Radiomics 0.333 0.624 
0.4687 - 

0.7787 
0.133 0.933 0.857 0.264 val  

DeepLearning 0.633 0.751 
0.6300 - 

0.8722 
0.511 1.000 1.000 0.405 val  

Combined 0.800 0.865 
0.7709 - 

0.9595 
0.778 0.867 0.946 0.565 val  

Clinical 0.571 0.820 
0.6934 - 

0.9475 
0.523 1.000 1.000 0.192 test  

Radiomics 0.469 0.652 
0.4109 - 

0.8937 
0.432 0.800 0.950 0.138 test  

DeepLearning 0.490 0.691 
0.4747 - 

0.9071 
0.432 1.000 1.000 0.167 test  

Combined 0.612 0.823 
0.6627 - 

0.9827 
0.568 1.000 1.000 0.208 test  
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Figure 1. Workflow of this study 

 

Figure 2. OR of clinical features: (A) OR of clinical features in univariable analysis;  

(B) OR of clinical features in multivariable analysis. 
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Figure 3. The distribution of these handcrafted features: (A) Number of handcrafted 

features; (B) Ratio of handcrafted features. 
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Figure 4. showcases the coefficients obtained through Least Absolute Shrinkage and 

Selection Operator (LASSO) regression using 10-fold cross-validation: (A) Lasso 

regularization paths; (B) Mean Squared Error (MSE); (C) Weights of the selected 

radiomic features. 

 

 

Figure 5.  Performance of the models for rad signature on different datasets: (A) training 

set; (B) validation set; (C) test set. 
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Figure 6. Present the Grad-CAM visualizations for two typical samples:(A) identified as 

"689166"; (B) identified as "866891". These visualizations are instrumental in 

demonstrating how the model focuses on different regions of the images for making its 

predictions. 

 

Figure 7. Illustration of the ROC curves for different model across various cohorts, 

offering a visual comparison of their diagnostic abilities: (A) training set; (B) validation 

set; (C) test set. 

 

Figure 8. Presentation of the Delong test results of different model:(A) training set; (B) 

validation set; (C) test set. 
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Figure 9. Decision curve of different model: (A) training set; (B) validation set; (C) test 

set. 

 

Figure 10. Nomogram. 
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