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R E S E A R C H A R T I C L E

Deep learning and inflammatory markers predict early
response to immunotherapy in unresectable NSCLC:
A multicenter study
Lei Yuan 1,2#, Qi Wang 1,2#, Fei Sun 3#, and Hongcan Shi 1,2∗

Immune checkpoint inhibitors (ICIs) demonstrate substantial interpatient variability in clinical efficacy for unresectable non-small cell
lung cancer (NSCLC), underscoring the unmet need for noninvasive biomarkers to predict early therapeutic responses and improve
survival outcomes. To address this, we developed a computed tomography (CT)-based deep learning model integrated with the
systemic immune-inflammatory-nutritional index (SIINI) for early prediction of ICI response. In a retrospective multicenter study of
265 patients treated with ICIs (incorporating chest CT and laboratory data), the cohort was divided into training (70%), internal
validation (30%), and external validation sets. The combined model—leveraging DenseNet121-derived deep radiomic features
alongside SIINI—achieved strong predictive performance, with AUCs of 0.865 (95% CI: 0.7709–0.9595) in the internal validation cohort
and 0.823 (95% CI: 0.6627–0.9827) in the external validation cohort. Gradient-weighted class activation mapping highlighted key CT
regions contributing to model predictions, enhancing interpretability for clinical application. These findings highlight the potential of
integrating deep learning with inflammatory biomarkers to support personalized ICI therapy in unresectable NSCLC. Future directions
include incorporating multi-omics biomarkers, expanding multicenter validation, and increasing sample sizes to further improve
predictive accuracy and facilitate clinical translation.
Keywords: Artificial intelligence, deep learning, non-small cell lung cancer, NSCLC, inflammatory parameter, immunotherapy.

Introduction
Lung cancer remains a leading type of cancer and the fore-
most cause of cancer fatalities worldwide [1, 2]. Non-small
cell lung cancer (NSCLC) accounts for the majority of lung
cancer cases (80%–90%) and is often diagnosed at advanced
stages (65%), frequently presenting with local or distant
metastases [3], which often precludes surgical intervention.
Recent advancements in immunotherapy, particularly the
application of immune checkpoint inhibitors (ICIs), have shown
significant promise in improving outcomes for patients with
unresectable NSCLC [4]. However, the variable response to
immunotherapy highlights the need for further investigation
into predictive biomarkers that can forecast immune response.
Accumulating evidence has implicated various biomarkers in
predicting responsiveness to ICIs in NSCLC, including tumor
mutational burden (TMB) [5], programmed death ligand-1
(PD-L1) expression [6], tumor-infiltrating lymphocyte (TIL)
density [7], and inflammatory cytokine profiles [8]. Current
biomarker assessment protocols predominantly rely on inva-
sive tissue biopsies, which present dual clinical challenges:
procedure-related morbidity risks and limited capacity to

map intratumoral heterogeneity due to inherent sampling
constraints [9, 10]. This critical methodological gap necessitates
the development of robust non-invasive biomarkers capable of
predicting therapeutic outcomes in patients with unresectable
NSCLC undergoing ICI regimens.

Emerging evidence underscores the intricate interplay
between tumor pathogenesis and host inflammatory response,
immune status, and nutritional profile [11–15]. The systemic
immune-inflammation-nutritional index (SIINI) is an innova-
tive multidimensional biomarker that combines pre-treatment
inflammatory indicators [16], immunocompetence metrics, and
nutritional determinants, theoretically providing a more com-
prehensive evaluation of pretherapeutic host status compared
to conventional unidimensional biomarkers. Nevertheless, the
prognostic utility of SIINI in predicting clinical outcomes for
NSCLC patients receiving ICIs remains unexplored.

Beyond conventional laboratory diagnostics, computed
tomography (CT)-based imaging biomarkers have become
indispensable in the diagnostic workflow of lung cancer [17].
The integration of artificial intelligence with medical imaging
has catalyzed the emergence of radiomics-driven deep learning
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(RDL) in thoracic oncology, enabling the quantitative extraction
of high-dimensional imaging features that are imperceptible to
human visual assessment [18]. This computational approach
facilitates the development of non-invasive predictive sig-
natures for diverse clinical applications, including tumor
characterization [19], therapeutic strategy optimization [20],
and treatment response monitoring. Notably, foundational
studies have established the prognostic relevance of conven-
tional radiomic features in both localized and advanced NSCLC.
For resectable disease, radiomic signatures demonstrate pre-
dictive capacity for neoadjuvant chemotherapy response [21],
while in advanced stages, specific imaging biomarkers correlate
with immunotherapy outcomes [22]. These findings underscore
the evolving role of quantitative imaging biomarkers in
precision oncology paradigms. However, there is currently
limited evidence to substantiate the effectiveness of integrating
clinical data, particularly systemic immune-inflammatory-
nutritional indexes such as SIINI, into deep learning mod-
els to predict the response of patients with unresectable
NSCLC toICIs. Moreover, CT-based RDL can reveal hetero-
geneity within the tumor and provide a potential research
direction for multidimensional interpretation of the tumor
microenvironment [23, 24].

In this study, we aimed to investigate the early predictive
capability of a CT-based deep learning model combined with
the inflammation parameter SIINI for predicting the response of
unresectable NSCLC patients to ICIs, utilizing clinical data from
265 patients across two independent medical centers.

Materials and methods
Data collection
In this study, we selected patients with unresectable NSCLC
who were treated with single-agent ICIs at Northern Jiangsu
People’s Hospital (Center A) and Taizhou People’s Hospital
(Center B) (Ethical Review No. 2021ky211; KY 2024-093-01).
Patients received either 200 mg of Pembrolizumab every three
weeks, 3 mg/kg of Nivolumab every two weeks, or 200 mg of
Sintilimab every three weeks. The planned study period is from
January 2021 to December 2024. All procedures adhere to the
guidelines and ethical principles outlined in the 1964 Declara-
tion of Helsinki.

Inclusion criteria:
(1) Eastern Cooperative Oncology Group (ECOG) performance
status of 0–3; (2) Presence of measurable lung lesions as per
Response Evaluation Criteria in Solid Tumors (RECIST V1.1), as
determined by standard chest CT scans; (3) Diagnosis of NSCLC
confirmed by biopsy or bronchofibroscopy and histopathologi-
cal examination, with staging based on imaging and pathology
according to the TNM (8th edition) classification as stage IIIB
to IV [25]; (4) The comprehensive availability of laboratory
and imaging data for evaluating disease progression includes
standard blood work and biochemical analyses carried out
before the commencement of ICI therapy, along with chest CT
scans performed every 6–8 weeks thereafter; (5) Comprehen-
sive follow-up information available.

Exclusion criteria:
(1) Inadequate image quality, such as presence of artifacts; (2)
History of thoracic surgery; (3) Loss to follow-up after receiving
immunotherapy; (4) Inability to obtain complete laboratory and
imaging data for pathological evaluation.

Clinical data
We collected baseline data of patients and laboratory test
results, including age, gender (female = 0/male = 1), smoking
history (current or former smokers = 1/Never smokers = 0),
basic disease (with basic disease = 1/without basic disease =
0), body mass index (BMI), treatment lines, medication regimen
(Pembrolizumab = 1/Nivolumab = 2/Sintilimab = 3), EGFR
mutation (Positive = 1/Negative = 0), TNM (IIIB = 3/IV = 4),
ECOG, pathological type (adenocarcinoma = 1/squamous cell
carcinoma = 0), modality, PD-L1 expression (No record = 0,
tumor proportion score, TPS < 1% = 1, TPS ≥ 1%–49% = 2, TPS
≥ 50% = 3), etc.

Blood cell counts encompassed white blood cell enumer-
ation, neutrophil, lymphocyte, monocyte, eosinophil, and
basophil quantifications along with their respective percent-
ages. Additionally, hemoglobin concentration, red blood cell
count, hematocrit level, platelet count, proportion of larger
platelets, and plateletcrit were determined. Blood biochemistry
analyses comprised measurements of total protein, albumin,
and levels of LDH, ALT, AST, urea, and creatinine.

Based on clinical retrospective data, this study found
that neutrophil count, lymphocyte count, platelet count,
hemoglobin level, serum albumin level, and BMI before
treatment were calculated by neutrophil count × platelet
count × hemoglobin level/(lymphocyte count × BMI × serum
albumin level) to form a new index—SIINI. At the same time,
PNI, PLR, ALI, SII, and NLR calculated from these indicators
were also included in the subsequent clinical prediction model
studies, and the calculation formulas and data were in the
supplementary materials. The full names of some laboratory
test results can be found in the abbreviation list at the end of
this article.

Image acquisition
All patients underwent chest CT scans prior to the initiation
of ICI therapy. Resultant imagery underwent moderate-detail
reconstruction, yielding slice widths of 3–5 mm. Tumor
segmentation was subsequently performed to delineate the
primary NSCLC lesions. Using 3D-Slicer v4.11, two cancer
specialists jointly delineated regions of interest (ROIs) and
derived radiomic features from each detected nodule. The
target lesion was defined as any tumor mass measuring
≥ 5 millimeters in diameter, which was distinctly marked
at baseline and consistently observed in follow-up CT scans.
Response assessment based on the follow-up CT scans adhering
to RECIST 1.1 criteria categorized patients into responders
(label=1) exhibiting complete remission (CR), partial remission
(PR), or stable disease (SD), while those with progressive
disease (PD) were classified as non-responders (label=0). All
CT scan interpretations were conducted by two independent
oncologists to ensure objectivity.
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Figure 1. Workflow of this study. It show the development process of the deep learning combined with inflammatory markers model, including ROI
segmentation, extraction of features, screening, visualization, and model evaluation. ROI: Region of interest; LASSO: Least Absolute Shrinkage and Selection
Operator; Grad-CAM: Gradient-weighted class activation mapping; DCA: Decision curve analysis.

To enhance reliability, two researchers (QW and FS) inde-
pendently outlined the ROIs. Each researcher repeated this pro-
cess for the same tumor at different time points. Intra-group
consistency of the extracted radiomic features was evalu-
ated using the intra-class correlation coefficient (ICC), thereby
ensuring robustness in the data collected. After calculating the
ICC within and between groups, the characteristics of ICC > 0.8
at both time points were selected. Any differences were resolved
through discussions between the two researchers.

Methods
We have developed the workflow shown in Figure 1 to carry out
this research. This study included 265 participants, comprising
207 patients from Center A; Center B had 58 cases, with 145 cases
as the training set, 62 cases as the validation set, and 58 cases in
Center B as the test set (Figure S1).

Data preprocessing
In our medical image analysis, voxel spacing was standardized
across all volumes of interest to a uniform resolution using
a fixed resolution resampling method. At the same time, CT
Hounsfield Units (HU) were limited to a range of −400 to 600.
This standardization process was crucial for enabling precise
image comparisons, significantly enhancing the accuracy and
reliability of our analytical outcomes.

Radiomics procedure
Feature extraction

In this study, we’ve neatly divided radiomic features
into three main buckets: (I) Shape and size descriptors,
(II) Intensity-based measures, and (III) Texture features. Shape
and size descriptors are all about capturing the 3D form of the
tumors. Intensity-based measures look at the spread of voxel

intensities using basic statistical tools. On the flip side, texture
features dig into the patterns and how voxel intensities are
arranged in space, using more complex statistical methods like
second-order and higher-order analyses.

In analyzing the texture, we utilized well-established meth-
ods including the gray-level co-occurrence matrix (GLCM),
gray-level run-length matrix (GLRLM), gray-level size zone
matrix (GLSZM), and neighborhood gray-tone difference
matrix (NGTDM). Each specified subregion underwent feature
extraction using the PyRadiomics tool (version 3.0.1), following
the protocols established by the Imaging Biomarker Standard-
ization Initiative (IBSI) meticulously.

Feature selection

In the feature selection process, we adopted a layered approach.
We began by standardizing the features using Z-scores, fol-
lowed by t-tests to assess their significance. Any feature with
a P value below 0.05 was approved to proceed to the next
round. Next, features with high reproducibility were evaluated
using Pearson’s correlation coefficient. For pairs of features
that exhibited a correlation greater than 0.9, we implemented
a strategic recursive elimination process to retain a single rep-
resentative feature from each highly correlated pair, thereby
minimizing redundancy. Finally, we refined the radiomic sig-
nature using Least Absolute Shrinkage and Selection Operator
(LASSO) regression, which effectively reduced the influence of
non-contributory features. The optimal regularization parame-
ter (λ) was determined using 10-fold cross-validation.

Radiomics signature

Following feature refinement via LASSO regression, risk
evaluation was conducted utilizing both linear models (such
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as logistic regression [LR]) and tree-based models (including
random forest and LightGBM). Model hyperparameter
optimization was performed through 10-fold cross-validation
within the training dataset, employing the GridSearch algo-
rithm to fine-tune parameters. The parameters demonstrating
the highest median efficacy were selected for final model
training.

Deep learning procedure
Data preparation

Crop ROI: In our methodology, we identified the slice with
the largest ROI for each patient as the representative image.
To streamline analysis and minimize interference, the ROI
was confined to its minimal bounding rectangle, extended by
10 pixels. This expansion recognizes the significance of peritu-
moral regions, as highlighted by recent studies [26].

Data augmentation: The intensity distribution across RGB
channels for the input images was standardized using Z-score
normalization. During the training stage, real-time data aug-
mentation enhanced model resilience through random crops
and horizontal/vertical flips. For test images, processing was
limited to normalization to maintain consistency.

Model training

Transfer Learning: Previous studies have demonstrated that
DenseNet121 [27, 28], with its unique dense connection mecha-
nism, significantly outperforms traditional CNN models (such
as ResNet and VGG) in feature reuse, parameter efficiency,
training stability, and task adaptability. Its advantages are par-
ticularly pronounced in scenarios requiring high precision and
efficient feature extraction, such as medical imaging and tar-
get detection. This study utilized the advanced architecture of
DenseNet121 to achieve superior performance compared to tra-
ditional CNN-based models. We conducted comparative analy-
ses of these networks to identify the most effective model for
our specific research needs.

Hyperparameters: Our strategy incorporated transfer learn-
ing to accommodate diverse patient populations and variability.
The models were initialized with ImageNet-derived param-
eters for enhanced adaptability. Our methodology focused
on meticulous calibration of the learning rate, employing a
cosine decay strategy to maximize generalization across varied
datasets.

ηt = ηi
min + 1

2

(
ηi

max − ηi
min

) (
1 + cos

(
Tcur

Ti
π

))

Here, ηi
min = 0 represents the minimum learning rate,

ηi
max = 0.01 sets the maximum learning rate, and Ti = 30

denotes the number of epochs for each training cycle. Addi-
tional critical hyperparameters included the use of stochas-
tic gradient descent (SGD) as the optimizer and softmax
cross-entropy as the loss function.

Deep learning signature

In our model, the probabilities outputted by the DenseNet121 are
defined as the deep learning signature, representing the model’s
predictive capabilities.

Clinical use
Clinical signature: We employed the same model used for the
radiomics signature to model our clinical task. We then selected
the model that performed best on the test set for subsequent
comparisons of the signatures. This approach ensured that
the most effective predictive model was utilized for clinical
evaluation.

Combined model: To enhance its clinical utility, we carried
out univariable and stepwise multivariable analyses on all clin-
ical features to identify significant predictors. These selected
clinical features were integrated with outputs from our deep
learning model to develop an LR linear model, resulting in the
formation of the combined signature. We employed a nomo-
gram for effective visualization of this signature.

Metrics: We gauged how well our models could distinguish
between true and false positives by using receiver operat-
ing characteristic (ROC) curves. To see if our models were
well calibrated, we plotted calibration curves and then ran
Hosmer-Lemeshow (HL) tests to really put them through their
paces. On top of that, we performed decision curve analysis
(DCA) to figure out if our predictive models would actually be
helpful in a clinical setting.

Ethical statement
This study was conducted according to the ‘Helsinki Declara-
tion.’ Besides, this study was carefully reviewed by the Eth-
ical Review Committee of Northern Jiangsu People’s Hospital
and Taizhou People’s Hospital (Ethical Review No. 2021ky211;
No. KY 2024-093-01), which unanimously agreed that the
patients’ hospitalization data and images used in this retrospec-
tive study were exempted from the informed consent applica-
tion in the ethics committees and approved by the committees.

Statistical analysis
We randomly split the dataset, earmarking 70% for training
and setting aside the remaining 30% for internal validation.
To really put our model through its paces and see how well it
generalized, we also tapped into data from an outside center,
using it as an external validation set. Table 1 shows the baseline
characteristics of this study.

We ran our analyses using Python 3.7.12 and the statsmodels
package, version 0.13.2. When it came to building our machine
learning models, we leaned on scikit-learn, specifically version
1.0.2. For the deep learning side of things, we harnessed the
power of an NVIDIA 4090 GPU, along with the MONAI (version
0.8.1) and PyTorch (version 1.8.1) frameworks.

Results
Clinical features analysis
Univariable and multivariable analysis: In our research, we per-
formed an extensive univariate analysis of all clinical features,
calculating the OR and associated P values for each. Features
with a P value less than 0.05 were selected for inclusion in
the nomogram construction (Figure 2). Additionally, we con-
structed a clinical model based on these clinical features,
including EGFR, TNM, SIINI, and gender. To some extent, these
indicators present the body’s nutritional inflammation status
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Table 1. Baseline characteristics

Feature_name Train-label = 0 Train-label = 1 P-value Val-label = 0 Val-label = 1 P value

Age 65.97 ± 10.21 67.61 ± 8.34 0.499 66.87 ± 10.22 65.71 ± 10.02 0.702
BMI 22.76 ± 3.75 22.47 ± 3.94 0.618 24.21 ± 4.55 22.67 ± 4.58 0.253
Modality 3.17 ± 1.92 3.11 ± 1.60 0.992 3.07 ± 1.98 3.40 ± 1.74 0.605
NLR 4.83 ± 2.93 3.41 ± 1.01 0.002 3.99 ± 1.61 3.27 ± 0.95 0.298
PLR 202.05 ± 107.29 191.07 ± 94.95 0.784 189.75 ± 75.05 197.81 ± 127.05 0.67
ALI 290.00 ± 236.72 403.32 ± 1086.61 0.717 284.93 ± 141.93 317.74 ± 250.06 0.905
SII 1109.62 ± 924.00 922.70 ± 852.36 0.255 994.24 ± 591.15 794.51 ± 648.57 0.116
PNI 45.73 ± 5.97 46.97 ± 5.65 0.272 47.91 ± 5.24 48.77 ± 5.65 0.604
SIINI 179.80 ± 69.18 120.42 ± 59.06 <0.001 169.75 ± 49.88 123.02 ± 70.43 0.003
Gender 0.025 0.835
Female 10 (28.57) 11 (10.78) 3 (20.00) 6 (13.33)
Male 25 (71.43) 91 (89.22) 12 (80.00) 39 (86.67)
Smoking 0.826 0.343
0 13 (37.14) 42 (41.18) 7 (46.67) 13 (28.89)
1 22 (62.86) 60 (58.82) 8 (53.33) 32 (71.11)
Basic_disease 0.317 0.536
0 16 (45.71) 35 (34.31) 7 (46.67) 15 (33.33)
1 19 (54.29) 67 (65.69) 8 (53.33) 30 (66.67)
ECOG 0.095 0.013
0 null 3 (2.94) null 2 (4.44)
1 13 (37.14) 58 (56.86) 4 (26.67) 25 (55.56)
2 15 (42.86) 31 (30.39) 6 (40.00) 16 (35.56)
3 7 (20.00) 10 (9.80) 5 (33.33) 2 (4.44)
EGFR <0.001 0.002
0 6 (17.14) 86 (84.31) 7 (46.67) 40 (88.89)
1 29 (82.86) 16 (15.69) 8 (53.33) 5 (11.11)
PD_L1 0.247 0.339
0 32 (91.43) 78 (76.47) 12 (80.00) 38 (84.44)
1 2 (5.71) 11 (10.78) 1 (6.67) 5 (11.11)
2 1 (2.86) 8 (7.84) 1 (6.67) 2 (4.44)
3 null 5 (4.90) 1 (6.67) null
Medication_regimen 0.291 0.318
1 13 (37.14) 29 (28.43) 7 (46.67) 13 (28.89)
2 19 (54.29) 69 (67.65) 8 (53.33) 29 (64.44)
3 3 (8.57) 4 (3.92) null 3 (6.67)
Treatment_lines 0.389 0.342
1 20 (57.14) 69 (67.65) 8 (53.33) 28 (62.22)
2 12 (34.29) 23 (22.55) 6 (40.00) 10 (22.22)
3 3 (8.57) 10 (9.80) 1 (6.67) 7 (15.56)

Type 0.578 0.732

1 33 (94.29) 100 (98.04) 15 (100.00) 42 (93.33)
2 2 (5.71) 2 (1.96) null 3 (6.67)

Pathological_type 0.399 1.0

0 16 (45.71) 57 (55.88) 7 (46.67) 20 (44.44)
1 19 (54.29) 45 (44.12) 8 (53.33) 25 (55.56)

TNM 0.004 0.408

3 3 (8.57) 37 (36.27) 6 (40.00) 11 (24.44)
4 32 (91.43) 65 (63.73) 9 (60.00) 34 (75.56)

Notes: Gender (female = 0/male = 1), smoking history (current or former smokers = 1/Never smokers = 0), basic disease (with basic disease = 1/without
basic disease = 0), medication regimen (Pembrolizumab = 1/ Nivolumab = 2/ Sintilimab = 3), EGFR mutation (Postive = 1/Negative = 0), TNM (IIIB =
3/IV = 4), pathological type (adenocarcinoma = 1/squamocellular carcinoma = 0), PD-L1 expression (No record = 0, TPS <1% = 1, TPS≥1%–49% = 2,
TPS≥50% = 3). PD-LI: Programmed death ligand-1; SIINI: Systemic immune-inflammatory-nutritional index.

Yuan et al.
CT-based DL and inflammation in NSCLC 5 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


Table 2. Metrics of clinical model

Model_name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

LR 0.905 0.929 0.871–0.986 0.931 0.829 0.941 0.806 train

LR 0.767 0.741 0.597–0.884 0.800 0.667 0.878 0.526 val

LR 0.776 0.868 0.758–0.978 0.750 1.000 1.000 0.312 test

SVM 0.883 0.965 0.934–0.995 0.863 0.943 0.978 0.702 train

SVM 0.700 0.794 0.672–0.916 0.644 0.867 0.935 0.448 val

SVM 0.796 0.855 0.750–0.959 0.773 1.000 1.000 0.333 test

LightGBM 0.891 0.938 0.892–0.984 0.912 0.829 0.939 0.763 train

LightGBM 0.650 0.830 0.726–0.933 0.533 1.000 1.000 0.417 val

LightGBM 0.571 0.820 0.693–0.947 0.523 1.000 1.000 0.192 test

PPV: Positive predictive value; CI: confidence interval; LR: Logistic regression.

Figure 2. OR of clinical features: (A) OR of clinical features in uni-
variable analysis; (B) OR of clinical features in multivariable analysis.
CI: Confidence interval; PD-LI: Programmed death ligand-1; SIINI: Systemic
immune-inflammatory-nutritional index.

and tumor heterogeneity of unresectable NSCLC patients using
ICIs, which can be included in the prediction model after multi-
variate variable analysis (Table S1 and Table S2).

The LightGBM model exhibited the highest AUC of 0.820 in
the test set (Table 2). This performance highlights its capability
to differentiate between the classes, marking its importance in

evaluating binary classification models in medical diagnostics
(Figure S2).

Rad signature
In this study, we compiled a comprehensive dataset of
1,834 handcrafted radiomic features, organized into three
primary categories: shape, first-order, and texture. This
dataset includes 360 first-order metrics, 14 shape descriptors,
and a broad array of texture characteristics. These features
were extracted using a specialized program created with
Pyradiomics, as detailed at http://pyradiomics.readthedocs.io.
The distribution of handcrafted features across the different
categories is illustrated in Figure 3.

Radiomics Feature Selection: We employed the Las-
soCV methodology, integrating it with a rigorous 10-fold
cross-validation framework to select salient radiomic fea-
tures. The intricate details of this feature selection process
are vividly depicted in Figure 1, offering a comprehensive
visual representation of our approach. Figure 4 showcases the
coefficients obtained through Lasso regression using 10-fold
cross-validation, a technique we utilized in both our Radiomics
Signature and INTRA Signature analyses. The left and right
sub-figures display the Lasso regularization paths, mean
squared error (MSE) values, and relevant radiomic feature
weights.

Metrics
Table 3 shows that LightGBM achieves the highest AUC score on
the validation set, with a value of 0.624. While this score does
not drastically outperform the competition, it surpasses LR and
RandomForest, which scored 0.551 and 0.622, respectively. This
result indicates that the LightGBM model, being non-linear, is
better equipped to capture and generalize the complex relation-
ships within the dataset compared to linear models like LR (see
Figure 5).

The higher AUC value for LightGBM highlights its improved
ability to distinguish between positive and negative classes
across diverse and complex scenarios. This supports the
notion that non-linear models, due to their capacity to model
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Figure 3. The distribution of radiomic features: (A) Pie chart: Number of handcrafted radiomic features; (B) Bar chart: Ratio of handcrafted radiomic
features. GLCM: Gray-level co-occurrence matrix; GLRLM: Gray-level run-length matrix; GLSZM: Gray-level size zone matrix; NGTDM: Neighborhood gray-
tone difference matrix.

Figure 4. Dimensionality reduction and selection of radiomic features. They showcase the coefficients obtained through Least Absolute Shrinkage and
Selection Operator regression using 10-fold cross-validation: (A) LASSO regularization path plot; (B) MSE cross-validation error plot; (C) Feature coefficient
bar chart. MSE: Mean squared error.

intricate interactions and non-linear dependencies, are often
more effective for tasks where relationships between features
are not straightforward, thus providing a more robust fit to
the data.

Deep learning radiomics signature
Results

The performance of the DenseNet121 model, as indicated in the
provided data (Table 4), shows promising results in terms of its
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Table 3. Rad signature results

Model_name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

LR 0.679 0.801 0.722–0.880 0.618 0.857 0.926 0.435 train

LR 0.717 0.551 0.360–0.742 0.822 0.400 0.804 0.429 val

LR 0.755 0.673 0.457–0.888 0.773 0.600 0.944 0.231 test

SVM 0.839 0.912 0.847–0.977 0.804 0.943 0.976 0.623 train

SVM 0.700 0.517 0.319–0.715 0.822 0.333 0.787 0.385 val

SVM 0.490 0.718 0.523–0.913 0.432 1.000 1.000 0.167 test

LightGBM 0.591 0.817 0.748–0.886 0.461 0.971 0.979 0.382 train

LightGBM 0.333 0.624 0.469–0.779 0.133 0.933 0.857 0.264 val

LightGBM 0.469 0.652 0.411–0.894 0.432 0.800 0.950 0.138 test

RandomForest 0.803 0.861 0.788–0.935 0.794 0.829 0.931 0.580 train

RandomForest 0.683 0.622 0.445–0.800 0.733 0.533 0.825 0.400 val

RandomForest 0.755 0.632 0.332–0.931 0.773 0.600 0.944 0.231 test

PPV: Positive predictive value; CI: Confidence interval; LR: Logistic regression.

Figure 5. Comparison of ROC curves for the prediction model of early response to ICI based on radiomic features and four machine learning
algorithms in 3 datasets: (A) Training set; (B) Validation set; (C) Test set.

ability to discriminate between classes, particularly highlighted
by its AUC scores across different cohorts (Figure S3).

• Training cohort: The DenseNet121 model attained an AUC of
0.846, with a 95% confidence interval (CI) between 0.7793
and 0.9126. This high AUC indicates strong discriminative
capability during the training phase.

• Validation cohort: In the validation set, the model achieved
an AUC of 0.751, with a CI from 0.6300–0.8722, still reflect-
ing a relatively high predictive accuracy.

• Test cohort: On the test dataset, the AUC measured 0.691,
with a CI ranging from 0.4747–0.9071. Although lower than
the training and validation phases, this score still suggests
a moderate ability to distinguish between the positive and
negative outcomes.

In all phases, especially notable are the high specificity and
positive predictive value (PPV) scores, reaching 1.000 in both
the validation and test cohorts. This result illustrates that when
the model forecasts a positive class, it is notably accurate, with
no false positives documented. However, the sensitivity scores

are comparatively lower, suggesting that while the model is
excellent at confirming cases when present, it misses a signif-
icant number of positive cases (low true positive rate).

When contrasting these results with the radiomics signa-
ture, the DenseNet121 deep learning approach potentially offers
an improvement due to its capability to automatically learn
and generalize from intricate image features across multiple
levels of abstraction. This capability often translates into a
more nuanced understanding and exploitation of the under-
lying patterns in medical images compared to more conven-
tional radiomic approaches, which rely on predefined features.
Thus, DenseNet121’s performance, particularly in terms of its
high specificity and PPV in the test cohort, underscores its
potential for more accurate and reliable clinical applications,
although there might be room for improvement in its sensitivity
to ensure fewer positive cases are missed.

Gradient-weighted Class Activation Mapping (Grad-CAM)
visualization

To probe the deep learning models’ recognition capabili-
ties across different samples, we employed the Grad-CAM
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Table 4. Metric results for deep learning radiomics signature

Model_name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Densenet121 0.730 0.846 0.7793–0.9126 0.667 0.914 0.958 0.485 train

Densenet121 0.633 0.751 0.6300–0.8722 0.511 1.000 1.000 0.405 val

Densenet121 0.490 0.691 0.4747–0.9071 0.432 1.000 1.000 0.167 test

PPV: Positive predictive value; CI: Confidence interval.

Figure 6. Visual analysis of heat map based on Grad-CAM technology. They present the gradient-weighted class activation mapping visualizations for
two typical samples: (A) Identified as “689166”; (B) Identified as “866891”. These visualizations are instrumental in demonstrating how the model focuses
on different regions of the images for making its predictions. Among them, red highlights the area with the largest contribution, and blue represents the area
with the smallest contribution.

technique for visualization. In the implementation of Grad-
CAM, we focused on the analysis of the last convolutional
layer feature map of DenseNet121 and used it to generate a
heat map that reflects the metabolically active region at the
edge of the tumor. Due to the dense connection mechanism of
DenseNet, deep features can retain fine-grained semantic infor-
mation through cross-layer aggregation. Experiments show
that the convolutional layer at the end of the last dense block of
DenseNet121 contributes the most to the final classification deci-
sion. After the global average pooling of the high-dimensional
feature map output by this layer, the channel gradient weight
directly reflects the degree of attention of the model to the
tumor area. Through Grad-CAM, we further localized the image
areas associated with lung malignant tumors (such as irregu-
larly enhanced areas on the edges and peripheral edema zones),

while the activation areas of benign tumors were concentrated
in the internal uniform texture areas. This analysis verifies the
interpretability of the model decision, and the relevant heat
map comparison will be presented in Figure 6 of the results
section.

Clinical use
Analyzing the AUC scores across different models and cohorts
(Table 5), the Combined model consistently demonstrates an
improvement over the single signature model (Figure 7). This
trend is evident in training, validation, and test cohorts,
underscoring the efficacy of integrating multiple types of data
or analytical approaches.

Calibration Curve: The HL test plays a crucial role in eval-
uating the calibration of a predictive model by comparing the
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Figure 7. Comparison of ROC curves for the single signature model and combined model of early response prediction to ICI in 3 datasets: (A) Training
set; (B) Validation set; (C) Test set. The combined model consistently outperforms the single signature model across training, validation, and test cohorts,
demonstrating the efficacy of integrating multi-modal data and analytical approaches.

Figure 8. Results of DeLong test performed separately for the single signature model and combined model of early response prediction to ICI in
3 datasets: (A) Training set; (B) Validation set; (C) Test set. The results show that the AUC values of combined model compared with radiomics and
DeepLearning model in the training set showed statistically significant differences (P < 0.05), indicating that the performance of combined model was
significantly better than that of Radiomics and DeepLearning model. In the validation set, the AUC values of combined model compared with radiomics
model show statistically significant differences (P < 0.05).

Table 5. Metrics on different signature

Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Clinical 0.891 0.938 0.8924–0.9840 0.912 0.829 0.939 0.763 train

Radiomics 0.591 0.817 0.7478–0.8861 0.461 0.971 0.979 0.382 train

DeepLearning 0.730 0.846 0.7793–0.9126 0.667 0.914 0.958 0.485 train

Combined 0.942 0.966 0.9322–0.9995 0.971 0.857 0.952 0.909 train

Clinical 0.650 0.830 0.7258–0.9334 0.533 1.000 1.000 0.417 val

Radiomics 0.333 0.624 0.4687–0.7787 0.133 0.933 0.857 0.264 val

DeepLearning 0.633 0.751 0.6300–0.8722 0.511 1.000 1.000 0.405 val

Combined 0.800 0.865 0.7709–0.9595 0.778 0.867 0.946 0.565 val

Clinical 0.571 0.820 0.6934–0.9475 0.523 1.000 1.000 0.192 test

Radiomics 0.469 0.652 0.4109–0.8937 0.432 0.800 0.950 0.138 test

DeepLearning 0.490 0.691 0.4747–0.9071 0.432 1.000 1.000 0.167 test

Combined 0.612 0.823 0.6627–0.9827 0.568 1.000 1.000 0.208 test

PPV: Positive predictive value; CI: Confidence interval.

predicted probabilities with the actual outcomes. Higher HL
P values indicate better calibration, reflecting closer alignment
between the model’s predictions and observed outcomes. In our
study, the Combined model exhibited outstanding calibration,

as evidenced by HL test statistics of 0.964 in the training cohort,
0.633 in the validation cohort, and 0.140 in the test cohort.
These results highlight the model’s high effectiveness in accu-
rately mirroring observed data (Figure S4).
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Figure 9. Comparison of DCA curves of prediction models (Clinical, Radiomics, DeepLearning, Combined model) in different datasets: (A) Training
set; (B) Validation set; (C) Test set. The results show that in 3 datasets, the DCA curve of the combined model is higher than other models in most of the
risk threshold intervals, that is, in most of the threshold ranges, the decision made by the combined model can bring higher net benefits. DCA: Decision curve
analysis.

Figure 10. Nomogram constructed based on the EGFR, TNM, SIINI,
gender, and DeepLearning model. It show that EGFR mutation-negative
status, TNM stage III, low SIINI score, male and elevated deep learning index
collectively predict a heightened likelihood of early response to ICIs.

DeLong Test: The DeLong test is a method for comparing
whether there is a significant difference in the AUC of two or
more models. In other words, it helps us to judge whether a
model is significantly better than another model. If the P-value
is less than 0.05, one of the models is significantly better than
the other. While the DeLong test confirmed no significant AUC
difference between the Deep Learning model and Clinical model
in the external test cohort (P = 0.298; AUC 95% CI overlap:
Deep Learning model [0.475–0.907] vs. Clinical model [0.693–
0.947]), the Combined model demonstrated superior overall
performance in both the training and validation cohorts, as
shown in Figure 8.

DCA: Figure 9 presents the DCA for the training and testing
sets. These curves demonstrate that our fusion model offers
significant advantages in terms of its predictive probabilities.

Nomogram: Figure 10 Nomograms suggest that EGFR, TNM,
SIINI, gender, and Deep Learning are incorporated into the
combined model, and the corresponding scores can predict the
unresectable NSCLC response to ICI treatment in the early
stage. Therefore, EGFR mutation negative, TNM stage III, low
SIINI score, and high deep learning index indicate a greater
tendency to have an early response to ICIs.

Discussion
The persistent global burden of lung cancer, characterized
by high incidence and mortality rates, has driven multidis-
ciplinary efforts to identify clinically actionable biomarkers
for predicting ICI response in unresectable NSCLC. Current
biomarker discovery paradigms span traditional histopatholog-
ical evaluation to molecular profiling [29–31]. Prior studies have
identified numerous hematological parameters as prospective
prognostic markers, including PD-L1, TMB, the NLR, dNLR, the
PLR, the PNI, the SII, the ALI, alongside hemoglobin concen-
trations, among others [15, 32–34]. These parameters reflect
distinct aspects of the tumor-host interface, yet their clini-
cal application remains constrained by high costs, inherent
biological variability, and limited capacity to capture the com-
plex multidimensional nature of antitumor immunity.

Throughout immunotherapy for NSCLC, lymphocytes play
an instrumental role in tumor defense by inducing apoptosis
and inhibiting tumor cell proliferation and migration [33]. The
reduction in lymphocytes may reflect a decrease in CD4+ T lym-
phocytes, leading to a weakened lymphocyte-mediated immune
response to malignant tumors [35]. Furthermore, a study by Lee
et al. [36] suggests a possible link between serum hemoglobin
levels and outcomes in lung cancer patients. Additionally,
some studies indicate that NSCLC patients with lower baseline
platelet (PLT) and NLR levels tend to have better prognoses [34].
These findings suggest that the tumor inflammatory microen-
vironment may be closely related to anti-tumor immune
responses, which can significantly impact the prognosis of
NSCLC patients [32, 37, 38]. Therefore, our study identifies
a novel indicator (SIINI), which considers various aspects
of the body, offering a more comprehensive evaluation of
immune, inflammatory, and nutritional indicators. The SIINI
integrates neutrophil count, lymphocyte count, platelet count,
hemoglobin level, serum albumin level, and BMI, offering a
comprehensive evaluation of the nutritional, inflammatory,
and immune status in patients with NSCLC. SIINI can be used
not only to predict patient prognosis but also to assess treat-
ment efficacy and potentially offers greater clinical significance
compared to established indicators such as NLR, PLR, PNI, SII,
and ALI.
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Furthermore, within this landscape, CT-based radiologi-
cal biomarkers hold unique translational potential due to
their intrinsic non-invasive nature and universal acquisition
during standard diagnostic workflows [39]. Unlike invasive
tissue sampling techniques, which are limited by spatial sam-
pling bias, advanced imaging modalities enable comprehen-
sive three-dimensional tumor characterization, capturing both
intralesional heterogeneity and peritumoral microenviron-
mental features with millimeter-level spatial resolution [40].
A paramount advantage of deep learning in radiomics feature
extraction lies in its adaptability and proficiency in discerning
patterns from image data [41, 42]. Presently, it epitomizes the
pinnacle of image analysis and categorization, consistently
surpassing antecedent image analysis methodologies [43, 44].
Rakaee et al. [45] constructed a machine learning model
based on TIL scoring to forecast the response of NSCLC to
ICIs. In a parallel vein, Vanguri et al.amalgamated radiolog-
ical, histopathological, and genomic attributes to gauge the
predictive potential of immune therapy responses in NSCLC.
Through the application of machine learning, they consoli-
dated multimodal attributes into a risk prediction paradigm.
The investigation revealed that the multimodal framework
attained an AUC of 0.80, surpassing any solitary variable. These
discoveries provide a quantitative foundation for harnessing
multimodal integrated attributes in conjunction with machine
learning to augment the precision of anticipating immune ther-
apy responses in NSCLC patients [46]. In our research, the
DenseNet121 model manages to categorize responses at each
evaluation point, essentially augmenting the training dataset,
even with a small sample size. Furthermore, the validation set
proves to be an unexpectedly good predictor in distinguishing
responders from non-responders. Moreover, external valida-
tion demonstrated good generalizability (AUC = 0.823), con-
firming the universality of the core predictive factors.

This study primarily focused on patients with unre-
sectable NSCLC at advanced TNM stages. For patients with
EGFR-positive NSCLC, targeted therapy remains the preferred
treatment approach. However, the emergence of resistance
to targeted therapy presents an inevitable challenge. In
this context, ICIs have emerged as a promising therapeutic
option for patients with unresectable NSCLC. This study
suggests that EGFR mutation status is associated with the
response to ICIs, with EGFR-negative patients more likely
to exhibit an early response to ICI treatment, consistent
with the findings of Jiang and colleagues [47, 48]. The SIINI
serves as both a clinical efficacy biomarker and a prognostic
indicator, offering distinct advantages in accessibility, safety,
cost efficiency, reproducibility, and adaptability for longi-
tudinal monitoring. These strengths arise from its calcula-
tion using routine clinical parameters, including complete
blood count, biochemical profiles, and BMI. However, some
inflammatory components in SIINI are susceptible to vari-
ous confounding factors, which may lead to differences in
model performance across different data sets and introduce
bias into the research results. To mitigate these limitations,
integrating SIINI with complementary inflammatory biomark-
ers and adopting longitudinal assessments could effectively

enhance diagnostic accuracy and reduce measurement
variability.

Although the results are promising, this research faced
several constraints. Initially, the number of participants was
limited. While data from two medical centers in China were
included, further validation through larger prospective stud-
ies is needed. Additionally, real-world data collection reveals
challenges in obtaining indicators such as TMB and circu-
lating tumor DNA (ctDNA) [49], which may be due to high
detection costs or inconsistent detection standards in local
medical centers. Future investigations should synergistically
integrate multi-omics biomarker panels, expand prospective
multicenter validation frameworks, and achieve statistically
powered cohort sizes (n ≥ 400), collectively addressing the
current limitations in predictive robustness and the scalability
of clinical implementation.

Conclusion
This study examined the early predictive capability of a
CT-based deep learning model, combined with the inflamma-
tion parameter SIINI, to forecast the response of unresectable
NSCLC patients to ICIs. By facilitating the selection of appropri-
ate candidates for ICI treatment, this research seeks to minimize
unnecessary financial and time burdens on patients while offer-
ing a viable approach to precision therapy.
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