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R E S E A R C H A R T I C L E

Predicting overactive bladder from inflammatory
markers: A machine learning approach using
NHANES 2005–2020
Haoxun Zhang , Guoling Zhang , and Chunyang Wang ∗

Overactive bladder (OAB), a prevalent condition characterized by urgency and nocturia, imposes significant burdens on both quality of
life and healthcare systems. Emerging evidence implicates systemic inflammation in OAB pathogenesis; however, the role of complete
blood count (CBC)-derived inflammatory biomarkers remains underexplored. This cross-sectional study analyzed data from 35,394
participants in the National Health and Nutrition Examination Survey (NHANES, 2005–2020) to evaluate associations between
CBC-derived biomarkers—such as the Systemic Immune-Inflammation Index (SII), Systemic Inflammation Response Index (SIRI), and
Neutrophil-to-Lymphocyte Ratio (NLR)—and OAB (defined by an OAB Symptom Score ≥3). Multivariable logistic regression, threshold
analysis, and machine learning models (Random Forest [RF], Extreme Gradient Boosting) were employed, adjusting for
sociodemographic, lifestyle, and clinical covariates. Elevated levels of SII, SIRI, NLR, Monocyte-to-Lymphocyte Ratio (MLR), and
Neutrophil-MLR (NMLR) were significantly associated with increased OAB risk (all P < 0.05), with adjusted odds ratios for the highest
quartiles ranging from 1.21 (SII; 95% CI: 1.10–1.34) to 1.31 (NMLR; 1.19–1.44). Nonlinear associations were observed, with inflection
points (e.g., NLR = 1.071, MLR = 0.174) marking abrupt increases in risk. RF models showed strong predictive performance (area under
the curve = 0.89 for training; 0.76 for testing), identifying SII and SIRI as key predictors. Subgroup analyses demonstrated consistent
associations across most demographic groups, with the exception of hyperlipidemia, which modified the effects of SIRI, NLR, and
NMLR. These findings highlight the role of systemic inflammation in OAB and suggest that CBC-derived biomarkers could serve as
cost-effective tools for risk stratification. The integration of epidemiological analysis and machine learning enhances our
understanding of OAB’s inflammatory underpinnings, although longitudinal studies are needed to establish causal relationships and
therapeutic implications.
Keywords: Overactive bladder, OAB, inflammatory biomarkers, machine learning, National Health and Nutrition Examination
Survey, NHANES, predictive modeling.

Introduction
Overactive bladder (OAB) is defined by the International Con-
tinence Society as urinary urgency, usually accompanied by
frequency and nocturia, with or without urgency urinary
incontinence, in the absence of urinary tract infection or other
identifiable pathology [1]. Although patients typically do not
present with obvious clinical abnormalities (such as urinary
tract infections), common symptoms include increased day-
time frequency and nocturia [2]. An epidemiological survey in
China reported an overall OAB prevalence of approximately
6.0% [3]. In the United States, the prevalence among adult
males and females is 16% and 16.9%, respectively, with rates
increasing with age [4]. Despite its prevalence, OAB is often
underdiagnosed in both men and women, with only a minority
of affected individuals seeking treatment. Notably, OAB signifi-
cantly diminishes quality of life, interferes with daily activities,

and can lead to depression or anxiety [5]. Current treatment
options have notable limitations and are frequently associated
with adverse effects. Additionally, the aging population con-
tributes to a growing OAB burden, underscoring its impor-
tance as a healthcare challenge [6]. In the U.S., OAB imposes
a substantial annual economic burden, with healthcare costs
for patients exceeding those of non-OAB individuals by more
than 2.5 times—making it a pressing public health concern [7].
Nevertheless, the risk factors and underlying pathological
mechanisms of OAB remain poorly understood. Emerging
research suggests that immune-inflammatory responses may
play a key role in OAB pathogenesis [8]. Studies have iden-
tified significantly elevated levels of inflammatory mark-
ers—including C-reactive protein, prostaglandins, adipokines,
nerve growth factor, and brain-derived neurotrophic fac-
tor—in the serum and urine of OAB patients, suggesting
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that heightened inflammation may contribute to the con-
dition’s clinical features [9–12]. Inflammation may lead to
peripheral nerve sensitization, which could trigger hallmark
symptoms, such as increased urinary frequency and urgency.
Clinically, white blood cell counts and their differential sub-
types serve as accessible surrogate markers for evaluating
systemic inflammation [13]. Neutrophils—the most abundant
white blood cells—initiate innate immune responses and are
involved in both acute injury repair and chronic inflammation.
Monocytes contribute to pathogen clearance and the removal
of damaged cells during inflammation [14, 15]. Lymphocytes,
which govern both cellular and humoral immune responses,
regulate the overall inflammatory environment [16]. The
dynamic interplay among these immune cells is essential for
immune surveillance, defense, and homeostasis; disruptions in
this balance may contribute to disease development. Research
into inflammation-related biomarkers has gained momentum,
particularly with the rise of novel indices derived from com-
plete blood count (CBC) data. Biomarkers, such as the Systemic
Immune-Inflammation Index (SII), Systemic Inflammation
Response Index (SIRI), Neutrophil-to-High-Density Lipopro-
tein Ratio (NHR), Neutrophil-to-Lymphocyte Ratio (NLR),
Monocyte-to-Lymphocyte Ratio (MLR), and Neutrophil-MLR
(NMLR) offer insights into both localized immune activity and
overall systemic inflammation [17–19]. However, the relation-
ship between these CBC-derived inflammatory markers and
OAB remains insufficiently explored. Therefore, this study
leverages publicly available data from the National Health
and Nutrition Examination Survey (NHANES) to examine the
association between systemic inflammation—as measured by
CBC-derived biomarkers—and OAB in a cross-sectional anal-
ysis. The goal is to better understand the potential connec-
tion between inflammation and OAB, ultimately informing
improved clinical prevention and treatment strategies.

Materials and methods
Study population
The data used in this study were obtained from the NHANES,
https://wwwn.cdc.gov/nchs/nhanes/Default.aspx, a nation-
ally representative, open-access survey that collects dietary,
demographic, physical, and medical information to assess
the health status of the U.S. civilian population. Between
2005 and 2020, a total of 76,496 participants were initially
screened across eight survey cycles: 2005–2006, 2007–2008,
2009–2010, 2011–2012, 2013–2014, 2015–2016, 2017–2018,
and 2019–2020. Participants with incomplete data on OAB
syndrome (n = 39,061) and those lacking information on
inflammatory markers (n = 2041) were excluded, resulting
in a final sample of 35,394 individuals for further analysis.
Figure 1 presents a detailed flowchart of the participant
selection process. As this study involved secondary analysis of
publicly available, anonymized cross-sectional data, additional
institutional review board approval was not required.

Assessment of CBC-derived inflammatory biomarkers
CBCs were performed using a Coulter® DxH 800 analyzer, with
results expressed as ×103 cells/μL. Based on these data, six

Figure 1. Flowchart of participant selection from the NHANES
2005–2020 dataset. NHANES: National Health and Nutrition Examination
Survey.

systemic inflammation markers were calculated: the SII, SIRI,
NHR, NLR, MLR, and NMLR. The formulas are as follows:

SII = (Platelet count × Neutrophil count)/Lymphocyte count
SIRI = (Neutrophil count × Monocyte count)/Lymphocyte
count
NHR = Neutrophil count/High-density Lipoprotein cholesterol
NLR = Neutrophil count/Lymphocyte count
MLR = Monocyte count/Lymphocyte count
NMLR = (Neutrophil count + Monocyte count)/Lymphocyte
count.

Definition of OAB
Data on OAB were collected using the NHANES Kidney
Disease-Urology Questionnaire, which included questions
about urgency urinary incontinence and nocturia. The severity
of urgency incontinence was assessed through two items: (1) In
the past 12 months, have you leaked or lost control of your urine
due to a sudden urge or pressure to urinate and couldn’t get to
the toilet fast enough? (2) “How often does this happen?” The
severity of nocturia was evaluated based on another question:
“In the last 30 days, from going to bed at night to getting up in
the morning, how many times per night do you typically wake
up to urinate?” Symptom severity was quantified using the
validated OAB Symptom Score (OABSS) developed by Blaivas
et al. [20, 21]. Scoring criteria (detailed in Table S1) assigned
points based on the frequency of urgency incontinence episodes
and nocturia. Each subject’s OABSS in NHANES was calculated
by summing their urgency incontinence and nocturia scores. A
cumulative score of ≥3 was used as the diagnostic threshold for
OAB.

Covariates
The study included the following covariates: gender
(male/female), age (in years), race/ethnicity (Mexican Amer-
ican, Other Hispanic, Non-Hispanic White, Non-Hispanic
Black, Other Race), education level (less than 9th grade, 9–11th
grade, high school graduate, some college or associate degree,
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college graduate or above), marital status (married or living
with a partner, divorced/separated/widowed, never married),
poverty-income ratio (PIR; <1.3, 1.3–1.85, 1.85–3.5, >3.5), body
mass index (BMI: <25, 25–30, >30 kg/m2), alcohol use history,
smoking history, and diagnoses of diabetes, hypertension,
hyperlipidemia, and coronary heart disease (CHD; all recorded
as Yes/No).

Ethical statement
The NHANES protocol was approved by the Research Ethics
Review Board of the CDC’s National Center for Health Statistics,
and all participants provided written informed consent. This
study used anonymized secondary data and did not involve
direct interaction with human subjects.

Statistical analysis
CBC-derived inflammatory markers were categorized into
quartiles, with the lowest quartile serving as the reference
group. To meet the normality assumptions required for sta-
tistical analysis, a log10 transformation was applied to the
SII markers, enhancing interpretability. Continuous variables
were reported as mean ± standard deviation, while categorical
variables were presented as proportions. Group comparisons
were conducted using chi-square tests for categorical variables
and t-tests for continuous variables. A total of 35,394 partici-
pants were randomly split into training (n = 24,775) and testing
(n = 10,619) cohorts using a 7:3 ratio. Variable selection was car-
ried out using the extended Boruta algorithm and Least Abso-
lute Shrinkage and Selection Operator (LASSO) regression. The
common variables selected—gender, age, race, education, mar-
ital status, PIR, BMI, smoking status, hypertension, diabetes,
SII, and SIRI—were used to construct predictive models. The
random forest (RF) prediction model was developed using the
randomForest package in R, with hyperparameters specified as
follows: ntree = 500 (number of trees), mtry = sqrt(p) (num-
ber of variables randomly sampled at each split, where p is
the total number of predictors), and nodesize = 1 (minimum
terminal node size for classification). Model performance was
evaluated using 10-fold cross-validation stratified by outcome
prevalence. Missing covariates were imputed using the Joint
Modeling Multiple Imputation (JOMO) method with 10 imputa-
tions. Convergence was assessed using 500 burn-in iterations
and 100 iterations between imputations [22]. The imputation
model included complete covariates (e.g., age, gender, and race)
and SDMVPSU. All exposure variables (CBC-derived biomark-
ers) and the outcome variable (OAB diagnosis) were included in
the imputation under the missing-at-random assumption. Par-
ticipants with missing exposure or outcome data were retained
during imputation but excluded from the final complete-case
analysis. Sensitivity analyses under missing-not-at-random
(MNAR) assumptions were performed by systematically vary-
ing key imputed variables (e.g., CBC biomarkers) using delta
adjustments (±0.5 SD). The results remained robust, with <5%
change in the primary association effect estimates (Table S2).
Statistical significance was defined as P < 0.05. All analyses
were conducted using R software (version 4.3.1) and Empow-
erStats (version 4.0).

Results
Participant characteristics
Table 1 summarizes the comparison of CBC-derived inflamma-
tory biomarker levels and key demographic variables between
subjects with and without OAB. Of the 35,394 participants
included, 27,864 (78.73%) did not have OAB, while 7530 (21.27%)
were diagnosed with the condition. Females accounted for 51%
of the study population, and the weighted mean age was 49.94
years (SD = 17.76). Table 2 indicates that clinical character-
istics—including obesity, alcohol consumption, smoking, and
comorbidities, such as diabetes, hypertension, hyperlipidemia,
and CHD—were significantly associated with the prevalence
of OAB. All CBC-derived biomarkers—SII, SIRI, NHR, NLR,
MLR, and NMLR—were significantly elevated in OAB patients
compared to controls (P < 0.001). For example, the mean SII
was 597.25 in the OAB group vs 540.35 in the control group,
while the mean SIRI was 1.43 compared to 1.25 in non-OAB
participants.

Multivariate logistic regression models
Four groups were established based on CBC-derived biomark-
ers, and logistic regression analyses revealed a positive correla-
tion between increasing biomarker quartiles and the incidence
of OAB. In Model 1, a dose-response relationship was observed,
which persisted after adjusting for age, race, and gender. In
Model 2, higher levels of CBC-derived biomarkers remained
significantly associated with an increased prevalence of OAB. In
Model 3—adjusted for all covariates—significant associations
were maintained for all biomarkers except NHR. The odds ratios
comparing the highest to the lowest quartile were as follows:
log10 (SII) (1.21 [1.10–1.34]), SIRI (1.28 [1.16–1.41]), NHR (1.11
[0.98–1.25]), NLR (1.30 [1.18–1.44]), MLR (1.27 [1.15–1.40]), and
NMLR (1.31 [1.19–1.44]) (Table 3).

Smooth curve fitting (SCF) and threshold effect analysis
To further investigate the relationship between CBC-derived
biomarkers and OAB, we conducted an SCF analysis using a
generalized additive model based on Model 3. As shown in
Figure 2, the SCF analysis revealed significant nonlinear asso-
ciations between all CBC-derived biomarkers and the incidence
of OAB (all P < 0.05). To quantify these nonlinear relationships,
we performed a threshold effect analysis, which identified dis-
tinct inflection points for each biomarker: 0.272 for log10 (SII),
0.467 for SIRI, 1.436 for NHR, 1.071 for NLR, 0.174 for MLR,
and 1.114 for NMLR (Table 4). The log-likelihood ratio tests for
all threshold models were statistically significant (P < 0.05),
supporting the robustness of these nonlinear associations.

Subgroup analysis
Subgroup analysis based on Model 3 evaluated the consis-
tency of associations between CBC-derived biomarkers and
OAB across various demographic and clinical strata, including
gender, age, race, education level, marital status, PIR, BMI,
smoking status, alcohol use, hypertension, hyperlipidemia, dia-
betes, and cardiovascular disease. Forest plots showed a con-
sistently positive association between elevated CBC-derived
inflammatory biomarkers (SII, NHR, and MLR) and OAB risk
across all subgroups (e.g., gender, age, race, education level;
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Table 1. Demographic characteristics of participants from NHANES 2005–2020

Variables Overall OAB P value

(n = 35,394) NO (n = 27,864) **YES (n = 7530)

Gender, n (%) 0.261

Male 17,422 (49%) 13,683 (49%) 3739 (50%)
Female 17,972 (51%) 14,181 (51%) 3791 (50%)

Age, Mean + SD 49.94 ± (17.76) 49.91 ± (17.72) 50.05 ± (17.93) 0.747

Age strata, n (%) 0.773

20–40 11,694 (33%) 9212 (33%) 2482 (33%)
40–60 11,631 (33%) 9177 (33%) 2454 (33%)
≥60 12,069 (34%) 9475 (34%) 2594 (35%)

Race, n (%) 0.101

Mexican American 5452 (15%) 4288 (15%) 1164 (15%)
Other Hispanic 3459 (9.8%) 2761 (9.9%) 698 (9.2%)
Non-Hispanic White 15,193 (43%) 11,932 (43%) 3261 (44%)
Non-Hispanic Black 7549 (21%) 5994 (21%) 1555 (20%)
Other race 3741 (11%) 2889 (10%) 852 (12%)

Education level, n (%) 0.214

Less than 9th grade 3519 (9.5%) 2794 (9.5%) 725 (9.4%)
9–11th grade 4859 (14%) 3834 (14%) 1025 (14%)
High school graduate 8188 (23%) 6434 (23%) 1754 (22%)
Some college or associates degree 10,630 (30%) 8410 (30%) 2220 (29%)
College graduate or above 8198 (24%) 6392 (23%) 1806 (25%)

Marital status, n (%) 0.394

Married/Living with a partner 21,156 (60%) 16,594 (60%) 4562 (61%)
Divorced/Separated/Widowed 9284 (26%) 7367 (26%) 1917 (25%)
Never married 4954 (14%) 3903 (14%) 1051 (14%)

Poverty-income ratio, n (%) 0.220

<1.3 10,343 (29%) 8225 (29%) 2118 (28%)
1.3–1.85 4754 (13%) 3746 (13%) 1008 (14%)
1.85–3.5 9513 (27%) 7524 (27%) 1989 (26%)
≥3.5 10,784 (32%) 8369 (31%) 2415 (33%)

NHANES: National Health and Nutrition Examination Survey; OAB: Overactive bladder.

P-interaction > 0.05; Figure 3). Notably, hyperlipidemia was
the only factor that significantly modified the relationship
between specific biomarkers (SIRI, NLR, NMLR) and OAB risk
(P-interaction < 0.05), while no significant interaction effects
were observed for the other stratification variables.

Boruta and LASSO regression
A total of 35,394 participants were divided into a training set of
24,775 and a testing set of 10,619, following a 7:3 ratio to sup-
port robust model development and validation. Feature selec-
tion was conducted using two complementary methods: the
Boruta algorithm, an extension of RF, and LASSO regression.
Boruta, a wrapper method around RF that iteratively evaluates
feature importance, identified 19 key predictors: NMLR, MLR,
NLR, NHR, SIRI, SII, CHD, diabetes, hyperlipidemia, hyper-
tension, alcohol use, smoking status, BMI, PIR, marital status,
education level, race, age, and gender (Figure 4A). Meanwhile,
LASSO regression—a penalized method that performs variable
selection by applying an L1 penalty to regression coefficients—
identified 12 significant features: gender, age, race, education,

marital status, PIR, BMI, smoking status, hypertension, dia-
betes, SII, and SIRI (Figure 4B and 4C). A comparative analysis
revealed a consensus set of 12 variables, which were subse-
quently used for model construction (Figure 4D).

Model evaluation and comparison
Figure 5A shows the receiver operating characteristic (ROC)
curves for nine machine learning models—RF, Light Gradient
Boosting Machine (LightGBM), Decision Tree (DT), Extreme
Gradient Boosting (XGBoost), Multilayer Perceptron (MLP),
Support Vector Machine (SVM), k-Nearest Neighbors (KNN),
Elastic Net (ENET), and Logistic Regression—evaluated on
the training set. Figure 5B presents the corresponding ROC
curves for these models on the independent test set. Per-
formance benchmarking indicated that RF and KNN exhib-
ited the strongest predictive capabilities. RF achieved area
under the curve (AUC) values of 0.89 on the training set
and 0.76 on the test set, while KNN reached 0.93 and 0.70,
respectively. Comprehensive performance metrics—including
accuracy, sensitivity, positive predictive value, and negative

Zhang et al.
Inflammatory markers predict OAB 4 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


Table 2. Clinical characteristics of participants from NHANES 2005–2020

Variables Overall OAB P value

(n = 35,394) NO (n = 27,864) YES (n = 7530)

BMI, n (%) <0.001

<25 9836 (29%) 8362 (31%) 1474 (20%)
25–30 11,718 (33%) 9520 (34%) 2198 (30%)
≥30 13,840 (38%) 9982 (36%) 3858 (50%)

Alcohol use, n (%) <0.001

Yes 26,706 (81%) 21,371 (82%) 5335 (75%)
No 8688 (19%) 6493 (18%) 2195 (25%)

Smoking, n (%) <0.001

Yes 15,864 (45%) 12,080 (44%) 3784 (51%)
No 19,530 (55%) 15,784 (56%) 3746 (49%)

Diabetes, n (%) <0.001

Yes 4869 (10%) 2903 (8.1%) 1966 (22%)
No 30,525 (90%) 24,961 (92%) 5564 (78%)

Hypertension, n (%) <0.001

Yes 12,928 (32%) 8674 (28%) 4254 (52%)
No 22,466 (68%) 19,190 (72%) 3276 (48%)

Hyperlipidemia, n (%) <0.001

Yes 13,289 (36%) 9636 (34%) 3653 (48%)
No 22,105 (64%) 18,228 (66%) 3877 (52%)

Coronary heart disease, n (%) <0.001

Yes 1488 (3.6%) 914 (2.9%) 574 (7.4%)
No 33,906 (96%) 26,950 (97%) 6956 (93%)

SII, Mean + SD 549.70 ± (336.72 ) 540.35 ± (314.28) 597.25 ± (430.10) <0.001

SIRI, Mean + SD 1.28 ± (0.89) 1.25 ± (0.84) 1.43 ± (1.07) <0.001

NHR, Mean + SD 3.46 ± (1.92) 3.43 ± (1.86) 3.62 ± (2.22) <0.001

NLR, Mean + SD 2.2 1 ± (1.16) 2.17 ± (1.11) 2.40 ± (1.37) <0.001

MLR, Mean + SD 0.29 ± (0.13) 0.28 ± (0.12) 0.31 ± (0.14) <0.001

NMLR, Mean + SD 2.50 ± (1.24) 2.46 ± (1.19) 2.71 ± (1.47) <0.001

NHANES: National Health and Nutrition Examination Survey; OAB: Overactive bladder; SII: Systemic Immune-Inflammation Index; SIRI: Systemic Inflam-
mation Response Index; NHR: Neutrophil-to-High-Density Lipoprotein Ratio; NLR: Neutrophil-to-Lymphocyte Ratio; MLR: Monocyte-to-Lymphocyte Ratio;
NMLR: Neutrophil-MLR.

predictive value—were compared between the training and test
cohorts, as summarized in Figure 5C and 5D. Among all models,
RF consistently outperformed the others across both datasets.
Its ROC curve was separately highlighted in Figure 5E to empha-
size its robust predictive ability, underscoring its effective-
ness in capturing complex relationships between CBC-derived
biomarkers and OAB risk.

Discussion
The current study provides compelling evidence that systemic
inflammation, as quantified by readily accessible CBC-derived
biomarkers, is closely associated with the risk of OAB [23].
Our comprehensive analysis of 15 years of NHANES data
demonstrates that elevated levels of SII, SIRI, NLR, MLR, and
NMLR are significantly linked to OAB, even after adjusting

for multiple confounders [24]. These findings suggest that
chronic, low-grade inflammation may play a key role in OAB
pathogenesis—a hypothesis further supported by the non-
linear relationships observed between biomarker levels and
OAB incidence. Importantly, our results align with and extend
prior histopathological evidence of localized bladder inflamma-
tion in OAB [25, 26]. Previous studies have reported mast cell
infiltration, elevated pro-inflammatory cytokines (e.g., IL-6,
TNF-α), and neuronal sensitization in bladder biopsies from
both neurogenic and non-neurogenic OAB patients [27, 28]. We
propose that systemic inflammation—reflected by increased
neutrophil, monocyte, and platelet activity—may contribute
to or exacerbate this local inflammatory milieu. Circulating
mediators such as IL-1β or CRP could permeate the blad-
der mucosa, activating resident immune cells and amplify-
ing tissue-level inflammation, thus linking systemic immune

Zhang et al.
Inflammatory markers predict OAB 5 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


Table 3. Association between CBC-derived inflammatory biomarkers and OAB

Model 1 OR (95% CI) Model 2 OR (95% CI) Model 3 OR (95% CI)

SII

Continuous 1.56 (1.40, 1.73) 1.56 (1.41, 1.73) 1.33 (1.19, 1.48)

Q1 Reference Reference Reference

Q2 0.88 (0.80, 0.98) 0.88 (0.80, 0.98) 0.88 (0.80, 0.98)

Q3 1.02 (0.92, 1.14) 1.02 (0.92, 1.14) 0.96 (0.86, 1.06)

Q4 1.39 (1.26, 1.54) 1.40 (1.26, 1.54) 1.21 (1.10, 1.34)

P for trend <0.001 <0.001 <0.001

SIRI

Continuous 1.23 (1.19, 1.26) 1.23 (1.19, 1.26) 1.14 (1.10, 1.17)

Q1 Reference Reference Reference

Q2 0.93 (0.84, 1.04) 0.93 (0.84, 1.04) 0.90 (0.81, 1.01)

Q3 1.09 (0.97, 1.22) 1.09 (0.97, 1.22) 0.97 (0.86, 1.09)

Q4 1.59 (1.45, 1.75) 1.60 (1.46, 1.76) 1.28 (1.16, 1.41)

P for trend <0.001 <0.001 <0.001

NHR

Continuous 1.05 (1.03, 1.07) 1.05 (1.04, 1.07) 1.03 (1.01, 1.06)

Q1 Reference Reference Reference

Q2 1.00 (0.90, 1.11) 1.01 (0.90, 1.13) 1.00 (0.89, 1.11)

Q3 1.08 (0.97, 1.21) 1.10 (0.98, 1.23) 1.07 (0.95, 1.21)

Q4 1.21 (1.10, 1.33) 1.24 (1.12, 1.37) 1.11 (0.98, 1.25)

P for trend <0.001 <0.001 0.067

NLR

Continuous 1.16 (1.12, 1.19) 1.16 (1.12, 1.19) 1.10 (1.07, 1.13)

Q1 Reference Reference Reference

Q2 0.92 (0.82, 1.03) 0.92 (0.82, 1.03) 0.90 (0.80, 1.02)

Q3 1.08 (0.98, 1.20) 1.08 (0.98, 1.20) 0.98 (0.89, 1.09)

Q4 1.56 (1.42, 1.72) 1.56 (1.42, 1.72) 1.30 (1.18, 1.44)

P for trend <0.001 <0.001 <0.001

MLR

Continuous 3.52 (2.71, 4.58) 3.54 (2.73, 4.59) 2.38 (1.83, 3.10)

Q1 Reference Reference Reference

Q2 0.90 (0.82, 1.00) 0.91 (0.82, 1.00) 0.92 (0.82, 1.02)

Q3 0.97 (0.87, 1.07) 0.97 (0.88, 1.07) 0.96 (0.86, 1.08)

Q4 1.44 (1.31, 1.59) 1.45 (1.32, 1.59) 1.27 (1.15, 1.40)

P for trend <0.001 <0.001 <0.001

NMLR

Continuous 1.15 (1.12, 1.18) 1.15 (1.12, 1.18) 1.09 (1.07, 1.12)

Q1 Reference Reference Reference

Q2 0.88 (0.79, 0.99) 0.89 (0.79, 0.99) 0.87 (0.77, 0.98)

Q3 1.02 (0.92, 1.12) 1.02 (0.92, 1.12) 0.93 (0.84, 1.03)

Q4 1.56 (1.43, 1.71) 1.57 (1.43, 1.72) 1.31 (1.19, 1.44)

P for trend <0.001 <0.001 <0.001

CBC: Complete blood count; OAB: Overactive bladder; SII: Systemic Immune-Inflammation Index; SIRI: Systemic Inflammation Response Index; NHR:
Neutrophil-to-High-Density Lipoprotein Ratio; NLR: Neutrophil-to-Lymphocyte Ratio; MLR: Monocyte-to-Lymphocyte Ratio; NMLR: Neutrophil-MLR.
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Figure 2. The nonlinear relationship between inflammatory index and OAB. The solid red line indicates a smooth curve fit between the variables.
The blue band indicates the 95% confidence interval of the fit. (A) SII; (B) SIRI; (C) NHR: High-density Lipoprotein Cholesterol Ratio; (D) NLR; (E) MLR;
(F) NMLR. OAB: Overactive bladder; SII: Systemic Immune-Inflammation Index; SIRI: Systemic Inflammation Response Index; NHR: Neutrophil-to-High-
Density Lipoprotein Ratio; NLR: Neutrophil-to-Lymphocyte Ratio; MLR: Monocyte-to-Lymphocyte Ratio; NMLR: Neutrophil-MLR.

dysregulation to bladder hypersensitivity [29]. The weaker
association observed for NHR (OR = 1.11, P = 0.067) may reflect
the dual role of HDL-C as both an anti-inflammatory medi-
ator and a metabolic regulator. HDL-C’s ability to suppress
cytokine signaling and neutralize oxidative stress could miti-
gate neutrophil-driven inflammation, especially in individuals
with metabolic comorbidities such as hyperlipidemia [30–32].
Additionally, unmeasured variability in HDL functionality or
the use of lipid-lowering therapies may account for the attenu-
ated effect size. Future studies incorporating lipid subfractions
and longitudinal biomarker profiles are needed to better clarify
NHR’s role in OAB pathophysiology. To validate these associa-
tions and identify the most predictive biomarkers, we employed
advanced machine learning techniques, including an RF model
and the extended Boruta algorithm. These methods identi-
fied SII and SIRI as the most robust predictors of OAB risk
(AUC = 0.89 in training, 0.76 in testing), reinforcing their
potential clinical utility in identifying inflammation-driven
bladder dysfunction [33]. Collectively, our findings not only
validate the role of inflammation in OAB but also high-
light the potential of CBC-derived biomarkers as noninva-
sive, cost-effective screening tools in clinical settings. The
biological plausibility of our findings is supported by the
established roles of neutrophils, monocytes, and lymphocytes
in inflammatory responses. Neutrophils are central to acute
inflammation and tissue repair, while monocytes contribute to
chronic inflammation by differentiating into macrophages and
releasing pro-inflammatory cytokines [34, 35]. Lymphocytes,
crucial for adaptive immunity, also help regulate inflammatory
processes [36]. An imbalance in these cell types—captured by

ratios, such as NLR and MLR—may reflect a proinflamma-
tory state that predisposes individuals to tissue dysfunction,
including altered bladder sensory signaling. This inflammatory
environment can sensitize peripheral nerves, leading to the
urgency and frequency characteristic of OAB. The nonlinear
associations revealed in our threshold effect analysis suggest
the presence of critical inflection points at which inflammation
becomes pathological [37]. This pattern mirrors that seen in
other chronic conditions, where a tipping point in systemic
inflammation triggers clinical symptoms. Thus, our data pro-
vide a plausible mechanistic link between subclinical systemic
inflammation and the development of OAB, underscoring the
need for further research into the molecular pathways involved.

Methodologically, our study presents several strengths that
enhance the credibility of its findings. The use of the NHANES
database—with its nationally representative sample and rigor-
ous data collection protocols—ensures broad generalizability
to the U.S. population. Additionally, the large sample size and
comprehensive statistical adjustments for a wide range of con-
founders—including age, gender, race, socioeconomic status,
and comorbid conditions—minimize potential bias. The inte-
gration of both conventional logistic regression and advanced
machine learning techniques (e.g., RF, LASSO, and Boruta)
further strengthens the robustness of our results [38]. These
methods enhance variable selection and improve predictive
accuracy, as demonstrated by the high area under the ROC
curve achieved by the RF model [39]. In combining tradi-
tional epidemiologic approaches with modern data science
tools, our study offers a model for addressing complex clinical
questions and advancing big data research into multifactorial
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Table 4. Threshold effect analysis of CBC-derived inflammatory biomarkers on
OAB using a two-piecewise logistic regression model in the NHANES
2005–2020

Threshold effect analysis OAB OR (95% CI) P value

SII

Inflection point (K) 0.272

<K slope 0.232 (0.093, 0.578) 0.0017

>K slope 1.444 (1.333, 1.564) < 0.0001

Log-likelihood ratio test <0.001

SIRI

Inflection point (K) 0.467

<K slope 0.540 (0.273, 1.070) 0.0775

>K slope 1.164 (1.130, 1.199) < 0.001

Log-likelihood ratio test 0.031

NHR

Inflection point (K) 1.436

<K slope 0.613 (0.478, 0.787) 0.0001

>K slope 1.034 (1.018, 1.050) < 0.001

Log-likelihood ratio test <0.001

NLR

Inflection point (K) 1.071

<K slope 0.644 (0.462, 0.900) 0.0099

>K slope 1.117 (1.092, 1.142) < 0.001

Log-likelihood ratio test 0.002

MLR

Inflection point (K) 0.174

<K slope 0.061 (0.008, 0.441) 0.0056

>K slope 2.542 (2.037, 3.172) < 0.001

Log-likelihood ratio test <0.001

NMLR

Inflection point (K) 1.114

<K slope 0.539 (0.346, 0.839) 0.0063

>K slope 1.109 (1.086, 1.132) < 0.001

Log-likelihood ratio test 0.002

CBC: Complete blood count; OAB: Overactive bladder; SII: Systemic
Immune-Inflammation Index; SIRI: Systemic Inflammation Response Index; NHR:
Neutrophil-to-High-Density Lipoprotein Ratio; NLR: Neutrophil-to-Lymphocyte
Ratio; MLR: Monocyte-to-Lymphocyte Ratio; NMLR: Neutrophil-MLR.

disease mechanisms. Despite these strengths, several limita-
tions warrant consideration. Most notably, the cross-sectional
design of NHANES precludes causal inference. While we
observed a strong association between elevated inflammatory
biomarkers and OAB, it remains uncertain whether inflam-
mation is a cause or consequence of bladder dysfunction.
Residual confounding, despite our comprehensive covariate
adjustment, may still influence the findings. Additionally,
reliance on self-reported symptoms and questionnaire-based
OAB diagnoses may introduce misclassification bias due to

subjectivity in symptom perception and reporting. CBC-derived
biomarkers, though practical indicators of systemic inflamma-
tion, are nonspecific and susceptible to influence by other con-
ditions, such as infections, autoimmune disorders, or transient
inflammatory states [40, 41]. Furthermore, while statistically
significant thresholds were identified, these require valida-
tion in prospective cohorts and experimental studies to con-
firm clinical utility. The use of machine learning also intro-
duces challenges—particularly the risk of overfitting and the
necessity for external validation of model performance. These
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Figure 3. Subgroup analysis of the association between CBC-derived inflammatory biomarkers and OAB risk across various stratification factors,
including gender, age, race, education, marital status, PIR, BMI, smoking status, alcohol use, and comorbidities. (A) SII; (B) SIRI; (C) NHR: High-density
Lipoprotein Cholesterol Ratio; (D) NLR; (E) MLR; (F) NMLR. CBC: Complete blood count; OAB: Overactive bladder; SII: Systemic Immune-Inflammation Index;
SIRI: Systemic Inflammation Response Index; NHR: Neutrophil-to-High-Density Lipoprotein Ratio; NLR: Neutrophil-to-Lymphocyte Ratio; MLR: Monocyte-
to-Lymphocyte Ratio; NMLR: Neutrophil-MLR; BMI: Body mass index; PIR: Poverty-income ratio.

limitations underscore the need for longitudinal studies to
clarify the temporal relationship between systemic inflamma-
tion and the onset of OAB. The clinical implications of our
findings are substantial. Identifying CBC-derived inflamma-
tory biomarkers as independent predictors of OAB risk cre-
ates opportunities for earlier detection and intervention. In
practice, these biomarkers could be incorporated into stan-
dard laboratory panels, facilitating the identification of at-risk
individuals before clinical symptoms emerge. This may allow
for timely lifestyle modifications or targeted anti-inflammatory

treatments, potentially slowing OAB progression and improv-
ing outcomes. Furthermore, machine learning-based predic-
tive models could support individualized risk assessments
and help tailor treatment strategies [42, 43]. Given the sig-
nificant economic and quality-of-life burdens associated with
OAB, such strategies could yield considerable public health
benefits. Future research should examine the efficacy of
anti-inflammatory interventions among individuals with ele-
vated CBC-derived markers and determine whether reducing
systemic inflammation translates to meaningful improvements
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Figure 4. Predictor screening results. (A) Boruta; (B) Factor screening based on the LASSO regression model, with the left dashed line indicating the
best lambda value for the evaluation metrics (lambda. min) and the right dashed line indicating the lambda value for the model where the evaluation
metrics are in the range of the best value by one standard error (lambda. 1se = 0.01121794); (C) LASSO regression model screening variable trajectories;
(D) Common predictors between Boruta and LASSO. LASSO: Least Absolute Shrinkage and Selection Operator; CHD: Coronary heart disease; SII: Systemic
Immune-Inflammation Index; SIRI: Systemic Inflammation Response Index; NHR: Neutrophil-to-High-Density Lipoprotein Ratio; NLR: Neutrophil-to-
Lymphocyte Ratio; MLR: Monocyte-to-Lymphocyte Ratio; NMLR: Neutrophil-MLR; BMI: Body mass index; PIR: Poverty-income ratio.

in OAB symptoms and healthcare utilization. In conclusion,
our study provides compelling evidence supporting the role of
systemic inflammation in the pathogenesis of OAB. By inte-
grating large-scale epidemiological data with cutting-edge sta-
tistical and machine learning methods, we identified nuanced
dose-response relationships between inflammatory markers
and OAB risk. These findings deepen our understanding of OAB
pathophysiology and lay the groundwork for innovative diag-
nostic and therapeutic approaches. Moving forward, we plan to
implement systematic model tuning and validation using inde-
pendent datasets in prospective cohort studies. Interventional
trials targeting systemic inflammation may ultimately reveal

whether modulating the inflammatory response constitutes an
effective treatment strategy for OAB.

Conclusion
This study highlights a significant association between sys-
temic inflammation—measured by CBC-derived biomarkers—
and the risk of OAB. Elevated levels of markers, such as SII
and SIRI were strongly linked to OAB, suggesting a pivotal
role for inflammation in its pathogenesis. The application of
machine learning models reinforced the predictive value of
these biomarkers, supporting their potential use in early OAB
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Figure 5. Evaluation and comparison of machine learning models. (A and B) ROC curves for nine machine learning models (RF, LightGBM, DT, XGBoost,
MLP, SVM, KNN, ENET, Logistic) in both the training set (A) and the test set (B); (C and D) Summarization model performance metrics; (E) ROC curves
for highlighting the superior predictive performance of the RF model. RF: Random forest; LightGBM: Light Gradient Boosting Machine; DT: Decision Tree;
XGBoost: Extreme Gradient Boosting; MLP: Multilayer perceptron; SVM: Support vector machine; KNN: k-Nearest Neighbors; ENET: Elastic Net; ROC:
Receiver operating characteristic.

detection. While these findings are promising, further longi-
tudinal studies are needed to establish causality. Ultimately,
integrating these biomarkers into clinical practice could enable
earlier intervention and improve management strategies for
patients with OAB.
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Supplemental data

Table S1. Standardized operationalization of NHANES symptom frequency. Metrics into OABSS

NHANES symptom frequency metrics OABSS

Urgency urinary incontinence frequency Urgency urinary incontinence score

Never 0

Less than once a month 1

A few times a month 1

A few times a night 2

Every day or night 3

Nocturia frequency Nocturia score

0 0

1 1

2 2

3 3

4 3

5 or more 3

OABSS: Overactive bladder symptom score; NHANES: National Health and Nutrition Examination
Survey.

Table S2. Sensitivity analysis of CBC-derived biomarkers under MNAR assumptions

Biomarker
Original analysis
(OR, 95% CI)

MNAR (+0.5 SD)
(OR, 95% CI)

MNAR (−0.5 SD)
(OR, 95% CI)

�% (original
analysis vs MNAR)

SII 1.21 (1.10–1.34) 1.18 (1.06–1.31) 1.25 (1.13–1.38) −2.5% / +3.3%

SIRI 1.28 (1.16–1.41) 1.22 (1.10–1.35) 1.34 (1.21–1.48) −4.7% / +4.7%

NLR 1.30 (1.18–1.44) 1.26 (1.14–1.39) 1.33 (1.20–1.47) −3.1% / +2.3%

MLR 1.27 (1.15–1.40) 1.21 (1.09–1.34) 1.31 (1.19–1.44) −4.7% / +3.1%

NMLR 1.31 (1.19–1.44) 1.25 (1.13–1.38) 1.36 (1.23–1.50) −4.6% / +3.8%

MNAR: Missing-not-at-random; SII: Systemic Immune-Inflammation Index; SIRI: Systemic Inflammation Response Index; NHR: Neutrophil-to-High-Density
Lipoprotein Ratio; NLR: Neutrophil-to-Lymphocyte Ratio; MLR: Monocyte-to-Lymphocyte Ratio; NMLR: Neutrophil-MLR.
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