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R E S E A R C H A R T I C L E

OncoImmune machine-learning model predicts immune
response and prognosis in leiomyosarcoma
Jingrong Deng 1#, Changfa Shu 1,2,3#, Dong Wang 4, Richard Nimbona 1, Xingping Zhao 1,2,3∗ , and Dabao Xu 1,2,3∗

Leiomyosarcoma (LMS) is one of the most aggressive tumors originating from smooth muscle cells, characterized by a high recurrence
rate and frequent distant metastasis. Despite advancements in targeted therapies and immunotherapies, these interventions have
failed to significantly improve the long-term prognosis for LMS patients. Here, we identified OncoImmune differentially expressed
genes (DEGs) that influence monocyte differentiation and the progression of LMS, revealing varied immune activation states in LMS
patients. Using a machine learning (ML) approach, we developed a prognostic model based on OncoImmune hub DEGs, which offers
moderate accuracy in predicting risk levels among LMS patients. Mechanistically, we found that ATRX mutation may regulate
coiled-coil domain-containing protein 69 (CCDC69) expression, leading to functional alterations in mast cells and immune
unresponsiveness through the modulation of various immune-related signaling pathways. This ML-based prognostic model, centered
on seven OncoImmune hub DEGs, along with ATRX gene status, represent promising biomarkers for predicting prognosis, molecular
characteristics, and immune features in LMS.
Keywords: Leiomyosarcoma, LMS, monocyte differentiation, ATRX, immune response, machine learning, ML.

Introduction
Leiomyosarcoma (LMS) is a malignant tumor characterized
by smooth muscle cell differentiation and can develop in var-
ious parts of the body, including muscle, the gastrointesti-
nal tract, and the uterus. It is one of the most common sub-
types of adult soft tissue sarcoma [1, 2]. First-line treatment
for metastatic and/or unresectable LMS results in a median
progression-free survival of approximately 5 months and an
overall survival of 14–16 months [3], significantly affecting
patients’ physical and mental health and increasing the overall
disease burden. Although immunotherapy has shown promise
in various cancers, immune-based treatments for LMS are
still under active investigation. So far, only a small subset
of patients appears to benefit from these therapies, and the
overall efficacy remains unsatisfactory [4–7]. Therefore, iden-
tifying biomarkers that reflect immune activity or predict
the effectiveness of immunotherapy is essential to guide clin-
ical decision-making, prevent disease progression, uncover
new therapeutic targets, and improve treatment outcomes in
LMS. The tumor immune microenvironment (TIME) consists
of tumor cells, immune cells, and cytokines, which can have
either anti-tumor or pro-tumor functions. The interactions
among these components shape the dynamics of the anti-tumor
immune response [8, 9]. Studies suggest that myeloid-derived
cells, particularly monocytes within the TIME, are important

indicators of the effectiveness of anti-PD1 immunotherapy; a
higher monocyte ratio is associated with better responses to
PD1 inhibitors [10]. Moreover, activated CD103+ dendritic cells
(DCs) have also been identified as potential biomarkers for anti-
PD1 therapy [11, 12]. These findings suggest that monocytes play
a critical role in TIME, particularly in mounting an anti-tumor
immune response. The complexity of monocyte behavior—
including their differentiation and function—is influenced by
local factors such as nutrient availability, pH, oxygen levels,
and tumor-secreted soluble factors. These environmental cues
activate stress-related molecular pathways within monocytes,
shaping their phenotype and determining whether they adopt
pro-tumor or anti-tumor roles [13]. In essence, the character-
istics of the tumor microenvironment define the phenotype of
monocytes. Once in tissues, monocytes can differentiate into
macrophages or dendritic cells [14]. Blood-borne monocytes
display substantial plasticity, with the potential to transition
into tumor-associated macrophages [15]. Studying this differ-
entiation process may provide valuable insights into tumor
biology and the anti-tumor immune response. However, there
remains a significant gap in research exploring the relationship
between monocyte differentiation status and patient prognosis
or immunotherapy responsiveness in LMS.

Gene mutations—key drivers of abnormal and uncon-
trolled cellular growth—are hallmarks of cancer [16].
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In leiomyosarcoma (LMS), the most commonly mutated genes
include TP53, RB1, and ATRX [17]. These mutations can promote
or drive tumorigenesis, with individual tumors typically
harboring between two and eight such driver mutations [18].
Importantly, gene mutations can also influence immune func-
tion and the tumor immune microenvironment (TIME), both
of which are closely tied to tumor development. For example,
certain mutations may reduce the expression of cell surface
antigens, enabling tumor cells to evade immune detection
and destruction [19]. Therefore, analyzing the patterns and
functional consequences of gene mutations in LMS is crucial for
deepening our understanding of disease initiation, identifying
novel therapeutic targets, and improving the effectiveness
of immunotherapy. In this study, we identified the gene
regulatory network underlying monocyte differentiation, as
well as key OncoImmune-related hub genes that regulate
both monocyte differentiation and LMS progression. Using
a machine learning approach, we developed a risk model
to predict patient prognosis and immune response in LMS.
Additionally, we found that ATRX gene mutations significantly
impact risk scores, clinical outcomes, and immune function in
LMS patients. This discovery highlights ATRX as a potential
biomarker or therapeutic target, warranting further validation
for its role in guiding clinical interventions in LMS.

Materials and methods
Data collection
In this study, we analyzed 104 leiomyosarcoma (LMS) samples
from The Cancer Genome Atlas (TCGA; GDC, cancer.gov), 87
LMS samples from the GSE159847 [20] dataset available in the
Gene Expression Omnibus (GEO; ncbi.nlm.nih.gov/geo), and
142 normal uterus samples from the Genotype-Tissue Expres-
sion (GTEx) Project (gtexportal.org). For the TCGA-LMS cohort,
we obtained and processed expression matrices (measured as
transcripts per kilobase of exon model per million mapped
reads, TPM), along with relevant clinical data and mutation
profiles, in accordance with the protocols provided by the
respective public data repositories. In addition, we obtained
single-cell RNA sequencing (scRNA-seq) data related to mono-
cyte differentiation from the GSE218483 dataset in GEO [21].

Pseudo-time analysis of scRNA seq and identification of
differential genes for monocyte differentiation
The “Seurat” package was employed to import and process
the scRNA-seq data from GSE218483. Initially, the data under-
went quality control to eliminate unqualified cells based on
the following criteria: (1) 500 < nFeature_RNA < 4,000;
(2) percent < 10%. The samples were then combined using
the “harmony” package to address batch effects. Principal com-
ponent analysis (PCA) was conducted to extract the top 20
principal components (PCs) from the 2000 highest-variance
genes. Subsequently, unsupervised clustering was performed
using t-distributed stochastic neighbor embedding (t-SNE),
allowing for unbiased visualization of cell subpopulations on a
two-dimensional map [22]. The FindAllMarkers tool was uti-
lized to identify differential genes between each cluster and all

other clusters, applying criteria of |log2 (fold change) | > 0.5
and an adjusted P value 0.05. Cell types were annotated using
the “SingleR” package [23]. Finally, the “monocle” package was
employed to identify distinct states and differential genes dur-
ing the process of monocyte differentiation [24].

Identification of the oncoImmune DEGs related to monocyte
differentiation and leiomyosarcoma progression
After converting data from FPKM to TPM, differentially
expressed genes (DEGs) for 104 LMS patients in the TCGA
database and 142 normal uterine samples in the GTEx database
were identified using the “limma” package. The intersection
of genes associated with monocyte differentiation and LMS
progression was then subjected to Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.
Additionally, the STRING database (STRING: functional protein
association networks (string-db.org)) was utilized to illustrate
the internal connections among the OncoImmune DEGs [25].

Construction of immune subtypes
The TIMER2.0 database (TIMER2.0 (cistrome.org)) was
employed to analyze the composition of TIME in each
sample [26]. Following this, unsupervised clustering of LMS
samples from the TCGA and GEO databases was performed
using nonnegative matrix factorization (NMF). The optimal
rank was determined by selecting the first point in the
cophenetic coefficient curve that exhibited the steepest decline.
Differences in immune cell composition, immune microenvi-
ronment, and immune activity among various subtypes were
then examined to assess whether distinct subtypes exhibit
differing immune functions.

The establishment and validation of risk model
LMS specimens from the TCGA and GEO databases were uti-
lized to develop a predictive signature, with samples from the
GEO database serving as external validation data to assess the
model’s reliability. The TCGA samples were divided into a train-
ing cohort and a test cohort in a 7:3 ratio. A predictive model was
developed using multivariate analysis and LASSO regression,
based on the expression matrices of OncoImmune DEGs and
patient prognosis in the training cohort [27]. The reliability of
the risk prognostic model was further evaluated using deci-
sion curve analysis (DCA), a nomogram, and receiver operating
characteristic (ROC) curve analysis.

Evaluation of tumor immune microenvironment
The molecular pathway gene set for correlation enrichment
analysis was obtained from GSEA | MSigDB (gsea-msigdb.org).
Gene Set Enrichment Analysis (GSEA) was conducted to iden-
tify molecular pathways associated with risk scores. Addition-
ally, the relationship between risk scores and TIME was also
investigated.

Identification of genomic mutation pattern in leiomyosarcoma
Mutation data for LMS were obtained from TCGA and visu-
alized using the “maftools” package [28]. To identify charac-
teristic gene mutation in LMS, we analyzed the relationship
between mutation probabilities and risk groups. Subsequently,
we examined the differences in risk models, immune function,
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Figure 1. The whole analysis process of this research.

and prognosis between groups with characteristic gene muta-
tions and those without.

Relationship between target gene and TIME
To identify the target gene, differential gene expression
between mutation and non-mutation groups was analyzed.
First, the relationship between the target gene and immune cells
within the LMS immune microenvironment was assessed using
the “CIBERSORT” package. Subsequently, we explored the asso-
ciation between the target gene and immune function, as well as
its involvement in cellular processes related to immunotherapy.

Statistical analysis
Statistical analysis was performed using R version 4.2.1.
Non-parametric tests were applied to compare the two risk
categories, with a P-value of less than 0.05 indicating statistical
significance. True associations were determined using Spear-
man rank correlation analysis.

Results
OncoImmune differential expressed genes (DEGs) revealed
different immune active state in LMS
Given the critical role of TIME in monocyte differentiation, gene
expression levels during this process likely reflect both tumor
growth and TIME status. Identifying such gene populations
could aid clinical decision-making by serving as biomarkers or
potential targets for precision therapy (Fig. 1). Based on data
from GSE218483, two cell types—dendritic cells and mono-
cytes—were successfully identified and labeled (Figure 2A).
Dendritic cells are believed to derive from monocytes through
a specific differentiation process. According to the pseudo-time
analysis performed using the “monocle” package, this process
was divided into five distinct states (Figure 2B–2D). A total
of 943 differentially expressed genes (DEGs) were identified
across these states; these genes are hypothesized to play critical
roles in monocyte differentiation and to possess immunomodu-
latory functions (Table S1).
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Figure 2. Identifying theOncoImmune DEGs and exploring their functions. (A) Identification of 2 types cells during monocyte differentiation; (B–D)
Pseudo-time series analysis revealed the different states of monocyte in the process of driving the polarization of differentiation of monocyte; (E) Intersection
of genes involved in monocyte differentiation and differentially expressed genes in LMS revealed 311 overlapping genes between the two gene sets; (F) Bar
plot showed the genes encoding proteins that had 20 or more nodes interacting with each other (confidence > 0.7); (G) Bubble plot showed the main
molecular pathways involved in OncoImmune DEGs based on GO functional enrichment analysis (P < 0.05); (H) Bubble plot showed the main molecular
pathways involved in OncoImmune DEGs based on KEGG functional enrichment analysis (P < 0.05).
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The immune-related DEGs associated with monocyte dif-
ferentiation were thought to reflect the immune response and
tumor survival within the TIME. We hypothesized that similar
DEGs may exist in tumor tissue and potentially influence
tumor progression, either positively or negatively. To validate
this hypothesis, we identified 4937 oncology-related DEGs
between normal smooth muscle and LMS samples from the
GTEx and TCGA databases (Figure S1). Notably, 311 DEGs
overlapped between immune-related and oncology-related
DEGs (Figure 2E). These 311 genes were defined as OncoImmune
DEGs, which may significantly impact immune responses
and tumor progression. Analysis using the STRING database
revealed intricate interactions among the OncoImmune DEGs,
highlighting their multifunctional roles (Figure S2). Over
60 protein-coding genes exhibited interactions with twenty
or more other nodes (Figure 2F). Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses indicated that these genes are primarily involved in
various immune-related pathways, such as cytokine-mediated
signaling, cell adhesion molecules, viral processes, and antigen
presentation—all of which play essential roles in the LMS TIME
(Figure 2G and 2H).

Given that 311 OncoImmune DEGs were identified from
the monocyte differentiation process, we anticipated that the
differential expression levels of these OncoImmune-related
genes would reflect the immune response within the TIME.
To investigate this, we classified LMS patients into three
subtypes using the NMF algorithm based on the expression
profiles of the 311 OncoImmune DEGs (Figure 3A and 3B). Sub-
sequent comparisons revealed significant differences in tumor
microenvironment composition among the subtypes. Notably,
subtype C2 exhibited a higher stromal score and a relatively
lower tumor purity score compared to subtypes C1 and C3
(Figure 3C), indicating a greater presence of stromal compo-
nents, including immune cells, within the TIME. Additionally,
higher ImmuneScore and ESTIMATEScore values—derived
from established immune scoring algorithms—confirmed an
active immune status in subtype C2 LMS patients (Figure 3C).
The heatmap further illustrated that immune cells such as
CD4+ T cells, CD8+ T cells, and macrophages were more abun-
dant in the C2 group compared to C1 and C3 (Figure 3D). Fur-
thermore, immune checkpoint genes, including CD274, CTLA4,
IDO1, IDO2, and others, exhibited elevated expression levels in
subtype C2 relative to C1 and C3, suggesting that this subtype
represents an immune-activating or immunologically “hot”
phenotype within the TIME (Figure 3E).

OncoImmune hub DEGs based prognostic model establishment
through machine learning approach
Since the OncoImmune DEGs reflect intratumoral immune
activity in LMS patients, it was reasonable to speculate that
these DEGs could indicate the risk level of LMS patients, includ-
ing survival time. To identify essential genes and establish a
prognostic model among the 311 OncoImmune DEGs, we first
extracted clinical features from LMS datasets. Extra-uterine
LMS (excluding uterine LMS) and uterine LMS (uLMS) sam-
ples from the TCGA database were used as internal data to

create a predictive model, serving as the training cohort and test
cohort, respectively. Additionally, LMS samples from the GEO
database were selected as external data to validate the model’s
reliability. Next, LASSO regression and multivariate analysis
were employed to develop a risk predictive model based on
the expression matrices of the 311 OncoImmune DEGs and
patient prognosis (Figure 4A and 4B). Ultimately, seven hub
genes (CCDC69, FLI1, RPS23, ORAI1, CES1, APOL6, AHNAK) were
selected to construct the prognostic risk model. These genes
were derived from overlapping results of two machine learning
analyses, and a risk score was generated for each LMS patient.
To evaluate the correlation between the risk score and patient
prognosis, multivariate analysis was conducted to assess risk
factors, including clinical features (age, gender), immune acti-
vation state (based on subtype), and the risk score derived from
the seven hub genes. As anticipated, the risk score was signif-
icantly associated with patient prognosis (Figure 4C), indicat-
ing that a higher risk score correlates with poorer outcomes.
Although no statistically significant differences were observed
in survival across the subtypes based on immune activity,
subtype C2 demonstrated better survival than the other two
subtypes (P = 0.081), consistent with earlier findings.

Based on the median risk score in the training cohort, each
sample in both the TCGA and test cohorts was classified as
either high-risk or low-risk. Kaplan–Meier analysis revealed
that patients in the low-risk group exhibited better overall
survival than those in the high-risk group across all cohorts.
To evaluate the performance of the risk prognostic model, the
area under the curve (AUC) of the receiver operating charac-
teristic (ROC) curve was used as a metric. The model showed
AUC values greater than 0.8 in all TCGA cohorts, including the
training, validation, and test cohorts (Figure 4D–4F). Similarly,
the model applied to the external test cohort also demonstrated
clinical predictive value for LMS patients, with a significant
difference in survival probability between the high-risk and
low-risk groups (Figure S3A). However, AUC values in the
external test cohort ranged from 0.588 to 0.660 across dif-
ferent survival years, which were relatively lower than those
observed in the internal test cohort (Figure S3B). This discrep-
ancy between internal and external datasets may stem from
variations in the clinical characteristics of LMS patients.

The clinical features of LMS patients significantly impact
prognosis [29], particularly factors such as age, gender, pathol-
ogy, and metastasis. To address this, we constructed a nomo-
gram model that incorporated risk score, gender, and age to
predict one-, three-, and five-year survival in the internal TCGA
cohorts (Figure 4G). Notably, the nomogram-predicted overall
survival (OS) closely aligned with the observed OS, indicating
moderate accuracy in survival prediction (Figure 4H). In addi-
tion, the nomogram model enabled calculation of risk scores
for each LMS sample. Cumulative risk increased over time for
both the nomo-high-risk and nomo-low-risk groups (Figure 4I),
with significantly higher cumulative risk observed in the nomo-
high-risk group—consistent with the risk score model based
on the seven OncoImmune DEGs. For the external validation
cohort, the nomogram model incorporated additional clini-
cal features, including grade, differentiation, and metastasis
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Figure 3. Construction of immune subtypes. (A and B) Dimensionality reduction matrix for rank = 2 was obtained by applying NMF clustering; (C) Box
plot showed the difference in immune microenvironment composition between each immune subtypes, subtype C2 exhibits a more favorable immune
microenvironment composition; (D) Heatmap showed immune cell differences between immune subtypes (P < 0.05); (E) The bar plot showed the difference
in the expression level of immune related genes among immune subtypes, with subtype C2 exhibiting a higher expression levels.

Deng et al.
OncoImmune ML predicts prognosis and immunity in LMS 6 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


Figure 4. The establishment of risk model. (A and B) 7 OncoImmune hub DEGs regulating the differentiation of monocyte and the progression of LMS
were screened by LASSO regression and multivariate analysis; (C) Multivariate analysis reveals the relationship between clinical features and risk-score
and prognosis; (D–F) The KM curve and time-dependent ROC curve in all TCGA cohort, train cohort and test cohort; (G) Nomogram for 1, 3, and 5-year
overall survival of samples combined risk model with clinical features; (H) Calibration curves compare the model prediction probability with the observed
probability, the dotted line refers to the ideal nomogram; (I) The cumulative risk curve based on nomogram.
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(Figure S3C). This may explain the relatively low AUC values
for survival prediction observed when using only the risk score
model. Reliability validation and the cumulative risk curve
exhibited similar patterns between the internal and external
cohorts’ nomogram models (Figure S3D and S3E). In summary,
the prognostic model based on a machine learning approach
for calculating risk scores can significantly aid in the clini-
cal management of LMS patients. For high-risk LMS patients,
intensive or targeted therapies are essential to improve clinical
outcomes.

Molecular and immune characteristics of different risk level
groups of LMS based on OncoImmune hub DEGs model
Although the risk level can be calculated using a machine
learning-based prognostic model, the underlying molecular
and immune characteristics of different risk groups remain
unclear. Gene Set Enrichment Analysis (GSEA) was per-
formed to compare the intrinsic differences between LMS
patients across varying risk levels. Signaling pathways—
including the transforming growth factor beta (TGF-β) signal-
ing pathway, Hedgehog signaling pathway, and Wnt signaling
pathway—were significantly enriched in the high-risk group
(Figure 5A). These pathways are essential for cell proliferation,
survival, and metastasis in various malignancies, including
LMS [30, 31]. Furthermore, pathways such as TGF-β signaling
are known to contribute to immune suppression within the
tumor microenvironment [32], suggesting that alterations in
these pathways may exacerbate disease progression. In con-
trast, the signaling pathways enriched in the low-risk group
included the calcium signaling pathway, cardiac muscle con-
traction, hypertrophic cardiomyopathy, and vascular smooth
muscle contraction—pathways primarily associated with mus-
cle tissue function. This implies that tumor tissue in low-risk
patients exhibits fewer abnormalities relative to normal smooth
muscle tissue (Figure 5B). Overall, these results highlight the
molecular heterogeneity among LMS patients with different
risk profiles. Additionally, assessment of immune function
scores revealed that the macrophage function score was ele-
vated in the high-risk group, while the mast cell function
score was significantly lower compared to the low-risk group
(Figure 5C).

To investigate immune characteristics, we employed
four well-established algorithms—XCELL, MCPCOUNTER,
CIBERSORT-ABS, and CIBERSORT—to generate a coefficient
plot illustrating the relationships between immune cell pop-
ulations and risk scores (Figure 5D). Interestingly, activated
mast cells, M1 macrophages, and NK cells were significantly
negatively associated with risk scores, while M0 macrophages
and resting mast cells exhibited a positive correlation. This
suggests that the differentiation of macrophages from M0 to
M1 may be linked to a reduced risk score, as M1 macrophages are
known to exert anti-tumor effects [33]. These results strongly
support the initial hypothesis that monocyte cell differentiation
reflects tumor progression. Furthermore, we identified a
correlation between risk scores and immune-related signaling
pathways, with FLI1 and APOL6 showing strong associations
with these pathways (Figure 5E). Additionally, risk scores and
the seven OncoImmune hub DEGs were significantly correlated

with immune checkpoint proteins, particularly FLI1 and APOL6
(Figure 5F).

Relationship between onco-genetic status and OncoImmune
hub DEGs model of LMS
Tumor evolution occurs through the accumulation of muta-
tions in driver genes, including tumor suppressor genes and
oncogenes [34]. We hypothesized that mutations in specific
genes in LMS could alter risk levels by affecting their normal
functions related to immune response modulation, cell prolifer-
ation, and survival. Analyzing mutation data from LMS samples
in the TCGA, we observed numerous mutations across several
genes, with TP53, RB1, ATRX, and TTN exhibiting mutation fre-
quencies above 10% (Figure 6A). These mutation frequencies
are consistent with previous reports [17, 35]. This analysis not
only highlights the unique oncogenic landscape of LMS patients
but also reveals shared features with other malignancies. More-
over, these mutated oncogenes and tumor suppressors may sig-
nificantly influence the risk levels of LMS patients. To evaluate
this, we examined the association between oncogenic mutation
status and the prognostic risk model based on the OncoImmune
hub DEGs. Notably, the mutation frequency of ATRX was signif-
icantly higher in the high-risk group compared to the low-risk
group (Figure 6B), suggesting a potential link between ATRX
mutation and elevated risk scores. In contrast, other genes such
as TP53, RB1, and TTN did not show statistically significant dif-
ferences in mutation frequency between the two risk groups.

The types of ATRX mutations were primarily nonsense, mis-
sense, and frameshift deletions, which are classified as loss-
of-function mutations (Figure 6A). Inactivating mutations in
ATRX have been shown to disrupt immune signaling path-
ways, such as promoting immunosuppressive mechanisms in
IDH1-mutant gliomas and impairing cGAS-STING signaling
in sarcomas [36–38]. We hypothesized that ATRX mutations
could modulate the expression of genes involved in anti-tumor
responses, including immune checkpoint-related genes and
components of the tumor TIME. Surprisingly, the expres-
sion levels of immune checkpoint-related genes did not dif-
fer significantly between the ATRX mutant and non-mutant
groups (Figure 6C). When evaluating TIME differences using
immune function scores, most scores were not statistically
significant, with the exception of mast cells (Figure 6D). The
immune function score for mast cells was significantly higher
in ATRX wild-type LMS patients compared to those with
ATRX mutations. Mast cells, derived from the myeloid lin-
eage, are closely associated with monocyte differentiation [39].
Their accumulation in and around tumors has been linked
to effective immune control, potentially facilitating T cell
recruitment [40]. Therefore, we hypothesized that ATRX muta-
tions may influence the prognosis of LMS patients—such as
risk score (Figure 6F)—through modulation of mast cell activ-
ity rather than via immune checkpoint expression or other
immune components. However, no significant association was
observed between ATRX mutation status and overall survival
in LMS patients (Figure 6E), which may be attributable to the
limited sample size. Thus, further research with larger patient
cohorts and experimental validation is needed to confirm this
hypothesis.
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Figure 5. Correlation analysis between risk-score and TIME. (A and B) GSEA in high-risk group and the low-risk group; (C) Box plots illustrating immune
function scores in low- and high-risk groups. Macrophage function score is elevated in the high-risk group, while mast cell function score is lower compared
to the low-risk group; (D) Coefficient plot between immune cells and risk scores; (E) Heatmap of correlation between key signaling pathways and risk scores
(P < 0.05); (F) The correlation heatmap assessed the relationship between immune checkpoint-related genes and prognostic genes and risk-score.

ATRX-CCDC69-mast cells axis serving as potential regulatory
machinery involving in monocytes differentiation and tumor
progression in LMS
As gene mutations represent an initial step in tumorigenesis [41],
mutated genes were considered potential regulators of OncoIm-
mune DEG expression, potentially leading to varying risk

levels and prognoses. Consequently, we hypothesized that
ATRX mutations could alter the expression levels of the seven
OncoImmune hub DEGs. A comparative analysis was conducted
to examine the association between ATRX mutation status and
the expression level of these hub genes. Interestingly, among
the seven genes included in the risk prognostic model, CCDC69
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Figure 6. Identifying the gene mutation and exploring the relationship between gene mutation and TIME as well as risk model in LMS. (A) Waterfall
map of mutation data in LMS samples; (B) Circos plot assessed the relationship between the mutation probability and risk groups, ATRX mutations occur
more frequently in the high-risk group; (C) Boxplot compared the checkpoint-related genes expression level between ATRX mutation and non-mutation
groups; (D) Box plot comparing immune function with or without ATRX mutation, ATRX mutations significantly impair mast cell function; (E) The KM curve
in ATRX mutation (n = 11) and non-mutation groups (n = 80) (P = 0.083); (F) The difference of risk score between ATRX mutation and non-mutation groups,
ATRX mutations are associated with a higher risk score.

was the only gene that exhibited a significant difference in
expression between the ATRX mutant and non-mutant groups
(Figure 7A). This finding supports the hypothesis that ATRX
mutations may suppress CCDC69 expression.

Coiled-coil domain-containing protein 69 (CCDC69) plays
a crucial role in the assembly of the central spindle and
the recruitment of midzone components, which are essential

for cytoplasmic division in animal cells [42]. CCDC69 has
been identified as a prognostic biomarker in multiple solid
tumors [43, 44]. In this study, the expression level of CCDC69
was significantly higher in the low-risk group compared to the
high-risk group (Figure 7B). The AUC from the ROC curve was
0.873 (95% CI: 0.802–0.934) for risk prediction of LMS sam-
ples based on CCDC69 expression (Figure 7C), indicating high

Deng et al.
OncoImmune ML predicts prognosis and immunity in LMS 10 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


Figure 7. Correlation analysis of CCDC69 with prognosis and TIME. (A) Box plot comparing the expression level of CCDC69 in ATRX mutation and
non-mutation groups, the expression level of CCDC69 is lower in the ATRX mutation group; (B) Box plot was used to compare the expression level of CCDC69
in high-risk and low-risk groups, the expression level of CCDC69 is lower in the high-risk group; (C) The time-dependent ROC of predicting the risk group of
patients based on CCDC69 expression; (D) Correlations between CCDC69 and the enrichment scores of immunotherapy-predicted pathways; (E) Relationship
between CCDC69 and immune function in LMS microenvironment, CCDC69 is positively correlated with mast cell function; (F) A diagram showing the effects
and mechanism of ATRX-CCDC69-mast cell axis in LMS.
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accuracy in predicting prognosis using CCDC69 levels. Changes
in CCDC69 expression resulting from ATRX mutation may influ-
ence tumor progression and immune responses in LMS tissue.
To further support this conclusion, we analyzed the correlation
between immune function and CCDC69 expression, revealing
that CCDC69 exhibited the strongest correlation coefficient with
mast cell function within the TIME (Figure 7E). This correla-
tion between CCDC69 expression and mast cells was consistent
with ATRX mutation status. Although no direct evidence links
ATRX mutations to M1/M2 macrophage polarization or func-
tion, mast cells are known to interact closely with macrophages
in the tumor microenvironment [45]. Collectively, these find-
ings suggest intrinsic differences in the TIME associated with
varying ATRX statuses and CCDC69 expression levels, which
could inform immunotherapy responsiveness. From a molec-
ular perspective, several predicted immunotherapy-related
pathways showed differential correlations with CCDC69 expres-
sion levels (Figure 7D). Notably, the proteasome pathway was
among the most significantly enriched pathways associated
with CCDC69 expression (Figure 7D). Interestingly, proteases—
among the most abundant proteins in mast cells—play mul-
tifaceted roles in their function [46], further supporting a
mechanistic link between CCDC69 expression and mast cell
activity.

In summary, CCDC69 expression is associated with the risk
level of LMS patients, reflecting intrinsic differences in TIME,
particularly with respect to mast cell activity. The ATRX–
CCDC69–mast cell axis likely plays a crucial role in modu-
lating the immune response in LMS (Figure 7F), suggesting
its potential as a therapeutic target for improving disease
management.

Discussion
Leiomyosarcoma (LMS) is characterized by a high rate of
recurrence and distant metastasis [47]. Advanced LMS patients
are often treated with first-line chemotherapy, such as gem-
citabine or doxorubicin; however, these therapies frequently
result in only a limited duration of response [3, 48]. There
is an urgent need for novel therapeutic strategies, as current
targeted therapies and immunotherapies have not significantly
improved long-term prognoses. In this study, we identified 311
OncoImmune differentially expressed genes (DEGs) associated
with monocyte differentiation and LMS progression. Monocyte
differentiation is influenced by the tumor microenvironment. It
has been reported that retinoic acid (RA) produced by sarcoma
cells inhibits the expression of IRF4, a transcription factor
that facilitates dendritic cell differentiation, thereby driving
monocytes to differentiate into tumor-associated macrophages
(TAMs) [49]. Cho and colleagues [50] demonstrated that
cancer-associated fibroblasts (CAFs) activated by cancer cells
release IL-6 and GM-CSF cytokines, which synergistically
induce monocytes to differentiate into M2 macrophages. These
findings are consistent with our results, which show that
OncoImmune DEGs are enriched in cytokine- and immune
response–related pathways. Differentiated monocytes play
a critical role in the tumor immune response, and their

differentiation states can reflect the overall immune status
of the tumor microenvironment [13]. Our analysis revealed
DEGs that are differentially expressed across various monocyte
differentiation states. Notably, several of these DEGs appear to
be regulated by intrinsic molecular features of tumors during
tumorigenesis. Therefore, we integrated immune-related
DEGs—genes associated with monocyte differentiation—with
oncological DEGs—genes involved in LMS pathogenesis. This
approach yielded 311 OncoImmune DEGs, which may offer
critical insights into the molecular characteristics of the
LMS TIME.

Additionally, we established a machine learning (ML)–
based prognostic model that effectively captures the progno-
sis and immune microenvironment of LMS patients. Machine
learning techniques are widely used to construct predictive
models from diverse datasets and to identify patterns within
large-scale data collections [51]. By integrating data from vari-
ous omics layers—such as genomics and proteomics—ML algo-
rithms can help elucidate complex biological interactions [52].
In this study, we employed a predictive algorithm based on
LASSO regression and multivariate analysis, identifying seven
OncoImmune hub DEGs to construct a prognostic model for
LMS. The model demonstrated strong internal performance
(AUC > 0.80), but more modest performance in external val-
idation (AUC: 0.59–0.66). This decline may be attributed to
overfitting and differences in clinical characteristics between
the training and external validation cohorts. In a previous
study [53], a prognostic model for extremity LMS was devel-
oped using machine learning, achieving an external validation
c-index of 0.87–0.96. That model incorporated clinical features
such as age, race, sex, tumor size, and grade, and was validated
on an external cohort of 46 patients. In contrast, our model
was constructed based on the expression profiles of OncoIm-
mune DEGs and validated using 87 external cases. Although
our model showed only moderate external performance, it
offers additional insights into immune-related mechanisms and
may support immunotherapeutic stratification of LMS patients
beyond conventional prognostic evaluation. The model classi-
fied LMS patients into high-risk and low-risk groups. Patients
in the low-risk group demonstrated better overall survival
and increased activation of immune components, including
mast cells, M1 macrophages, and natural killer (NK) cells.
These findings suggest that individuals in the low-risk group
exhibit a more favorable prognosis and a more active immune
response. Furthermore, cytokine-related signaling pathways—
such as TGF-β and WNT signaling—were notably enriched in
the high-risk group. The TGF-β signaling pathway is particu-
larly important in tumor immune response and progression.
Within the tumor microenvironment, TGF-β can inhibit the
anti-tumor activity of immune cells [54], promote M2 polariza-
tion of tumor-associated macrophages [55], and enhance tumor
invasion and metastasis [56]. In conclusion, our ML-based prog-
nostic model not only predicts LMS patient outcomes but also
reflects the status of the tumor immune microenvironment.
This model may assist in clinical decision-making, particularly
regarding immunotherapeutic and targeted treatment strate-
gies in LMS.
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Genetic mutation are fundamental driving forces behind
tumor development. Numerous studies have shown that LMS
frequently harbors mutations in genes such as TP53, ATRX,
RB1, and PTEN [57, 58], which our findings corroborate. In our
study, the most commonly mutated genes in LMS were TP53,
RB1, ATRX, and TTN. Surprisingly, only the ATRX mutation was
significantly more frequent in the high-risk group than in the
low-risk group, suggesting that it may play a pivotal role in
the malignant progression of LMS. ATRX (alpha-thalassemia
mental retardation X-linked) is known to regulate essential
processes such as chromatin remodeling, gene expression,
and DNA damage repair, thereby contributing to genomic
stability and exerting potent tumor-suppressive functions [59].
Hu et al. [36] found that ATRX inactivation led to immune
checkpoint upregulation and altered cytokine/chemokine
expression, fostering an immunosuppressive response in
IDH1R132H/TP53mut astrocytoma and enhancing tumor aggres-
siveness. Similarly, another study reported that reduced
ATRX expression accelerates tumor growth and promotes
immune escape by decreasing the presence of active mast
cells in the sarcoma microenvironment [60]. In our study,
ATRX mutations in LMS were predominantly inactivating.
Although they did not significantly impact patient survival
(P = 0.083), these mutations were associated with a higher
risk of LMS. Additionally, previous studies have shown that
ATRX mutations are linked to poor prognosis in uterine LMS
(uLMS) patients [61]. We believe that with larger clinical
cohorts and future experimental validation, the prognostic
relevance of ATRX mutations in LMS will become clearer.
Apart from downregulating mast cell immune function, this
mutation did not appear to significantly affect the expression
of immune checkpoint genes or alter the immune activity of
other components within the TIME. Notably, a previous study
reported that gliomas with ATRX mutations are more likely
to be infiltrated by immunosuppressive monocytic-lineage
cells derived from circulation [62]. Given that our prognostic
model partially incorporates monocyte differentiation, it
is reasonable to hypothesize that ATRX mutations in LMS
may induce monocytes to adopt an immunosuppressive
state by impairing mast cell function within the TIME,
thereby influencing the tumor’s immune response and overall
prognosis.

Genetic mutations are often the initial drivers of
tumorigenesis [63], and they can significantly influence the
expression of OncoImmune differentially expressed genes
(DEGs), including those involved in immune responses and
tumor progression [64]. In our study, the ATRX mutation
notably affected the expression of CCDC69, one of the seven
OncoImmune hub DEGs. Consistent with this, CCDC69 expres-
sion was positively correlated with mast cell immune function.
The role of mast cells in tumor progression remains contro-
versial, with studies reporting conflicting findings on their
prognostic significance [65]. For instance, in gastric cancer,
mast cells promote tumor growth by releasing vascular and
lymphatic growth factors [66]. Conversely, in breast cancer,
mast cells recruited and activated by tumor cells can induce
transcriptional changes in genes such as SPP1, PDCD1, IL17A,

TGFB1, KITLG, and IFNG, leading to anti-tumor effects [67]. In
our study, both ATRX mutations and reduced CCDC69 expres-
sion were associated with higher risk in LMS patients and
were linked to diminished mast cell immune function. These
findings suggest that mast cells may have a tumor-suppressive
role in LMS, aligning with prior reports [60]. Given the known
association between CCDC69 and monocyte differentiation,
we hypothesize that mast cells may influence this process in
LMS. Supporting this, a previous study [39] showed that mast
cells activated by P17—a peptide derived from Tetramorium
bicarinatum ant venom—can induce monocyte differentiation
into macrophages. Our results further revealed that activated
mast cells and M1 macrophages were negatively correlated with
high risk scores. This suggests that mast cells may promote
monocyte differentiation toward immune-activating pheno-
types in LMS, a pathway potentially disrupted by ATRX muta-
tions via downregulation of CCDC69. Although macrophage
polarization and its effects on the tumor microenvironment
have been widely studied [68], it remains unclear whether
macrophage functional orientation is pre-determined during
early monocyte differentiation. Based on our findings, the
intrinsic molecular characteristics of LMS—such as specific
gene mutation patterns—may play a key role in directing
monocyte differentiation toward either pro- or anti-tumor
states.

We believe our findings can pave the way for new directions
in LMS research. The scientific hypothesis at the core of
this study focused on the regulation of immune compo-
nents and tumorigenesis, enabling a comprehensive analysis
of the immune landscape of LMS tumors—particularly in
relation to monocyte differentiation. As a proof of concept,
our machine learning (ML)-based prognostic risk model,
which leverages OncoImmune hub DEGs, demonstrates prac-
tical utility in predicting long-term outcomes for individual
patients. Beyond the development of the ML-based prog-
nostic tool, we also investigated the underlying mechanisms
and characteristics associated with different risk groups in
LMS samples. A growing body of research highlights the
crucial role of TIME heterogeneity in shaping responses to
immunotherapy and influencing clinical outcomes [69, 70].
Additionally, immune cell infiltration and immune-related
gene expression significantly affect both the prognosis of
LMS and its responsiveness to immunotherapy [61]. In
this context, our findings suggest that the ATRX–CCDC69–
mast cell axis may serve as a relevant immunological and
prognostic marker in LMS. This axis offers promising
insights for future research aimed at improving anti-tumor
immune responses and developing more effective therapeutic
strategies.

However, we acknowledge several limitations, including the
relatively small sample size, the lack of experimental valida-
tion, and the need for further investigation. It is necessary to
collect additional samples and conduct experimental research
to validate the performance of our prognostic model and fur-
ther test the ATRX-CCDC69-mast cell axis hypothesis. As more
basic and clinical data from LMS patients, particularly those
undergoing immunotherapy, become available, this ML-based
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research on OncoImmune DEGs holds promise for advanc-
ing precision medicine and developing more effective targeted
immunotherapies.

Conclusion
This machine learning (ML)-based prognostic risk model uti-
lizing OncoImmune hub DEGs represents promising biomark-
ers for distinguishing prognosis, molecular characteristics, and
immune features in LMS. The ATRX-CCDC69-mast cell axis may
serve as an immunologically relevant prognostic indicator in
LMS patients.
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