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R E S E A R C H A R T I C L E

Unveiling etiology and mortality risks in
community-acquired pneumonia: A machine
learning approach
Alaa Ali1, Ahmad R. Alsayed1∗, Nesrin Seder2, Yazun Jarrar3, Raed H. Altabanjeh1, Mamoon Zihlif4, Osama Abu Ata5, Anas Samara6,
and Malek Zihlif7

Community-acquired pneumonia (CAP) is associated with high mortality, and accurate diagnosis and risk prediction are essential for
improving patient outcomes. Traditional diagnostic methods have limitations, prompting the use of machine learning (ML) to enhance
diagnostic precision and treatment strategies. This study aims to develop ML models to predict CAP etiology and mortality using
clinical data to enable early intervention. A retrospective cohort study was conducted on 251 adult CAP patients admitted to two
Jordanian hospitals between March 2021 and February 2024. Various clinical data were analyzed using ML techniques, including linear
regression, random forest, Shapley additive explanations (SHAP), lasso regression, mutual information analysis, logistic regression, and
correlation analysis. Key predictors of CAP survival included zinc, vitamin C, enoxaparin, and insulin bolus. Mutual information analysis
identified neutrophils, alanine transaminase, mean corpuscular volume, hemoglobin, and platelets as significant mortality predictors,
while lasso regression highlighted meropenem, arterial blood gases, PCO2, and platelet count. Logistic regression confirmed intensive
care unit (ICU) stay, pH, pulmonary severity index, white blood cell (WBC) count, and bicarbonate levels as crucial variables.
Interestingly, lymphocyte count emerged as the strongest predictor of bacterial CAP, conflicting with established knowledge that
associates neutrophils with bacterial infections. However, findings related to HCO3, blood urea nitrogen, and WBC levels were
consistent with clinical expectations. SHAP analysis highlighted basophils and fever as key predictors. Further investigation is needed
to resolve conflicting findings and optimize predictive models. ML offers promising applications for CAP prognosis but requires
refinement to address discrepancies and improve reliability in clinical decision-making.
Keywords: Community-acquired pneumonia, CAP, machine learning, ML, mortality prediction, risk assessment, clinical predictors,
SHAP analysis, logistic regression.

Introduction
Community-acquired pneumonia (CAP) is a significant public
health challenge worldwide, contributing to considerable mor-
bidity and mortality across various age groups [1]. Defined as
pneumonia acquired outside of a hospital or healthcare setting,
CAP remains a leading cause of death not only in underde-
veloped regions but also in developed countries [2]. Effective
management of CAP, essential for improving patient outcomes,
relies heavily on the accurate and timely identification of its eti-
ology and the assessment of potential mortality risks. Machine
learning (ML), a key component of artificial intelligence (AI),
has shown promising results in enhancing diagnostic precision,
optimizing therapeutic strategies, and predicting clinical out-
comes in various medical fields [3]. However, the potential of
ML to transform clinical approaches to CAP has yet to be fully

realized, particularly in integrating diverse datasets to predict
disease etiology and outcomes [4]. This study aims to bridge
this gap by focusing on employing ML techniques to predict
the causes and mortality associated with CAP. The integration
of ML tools into CAP management has the potential to signif-
icantly enhance diagnostic accuracy, inform treatment plans,
and ultimately improve prognostic outcomes for patients [5]. By
exploring these possibilities, this research aims to reinforce the
evidence base by reliably correlating clinical data with patient
prognosis through sophisticated algorithmic analysis. The suc-
cessful implementation of this research could revolutionize the
management of CAP, leading to more personalized healthcare
and better resource distribution in treating this prevalent dis-
ease. CAP remains a significant healthcare challenge, ranking
globally as a major cause of morbidity and mortality [1]. Each
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year, CAP leads to numerous hospital admissions, placing a
heavy burden on medical staff, especially in high-risk groups
such as the elderly and those with immune-compromising
conditions [6]. The clinical presentations of CAP vary widely,
ranging from mild respiratory symptoms to severe cases requir-
ing intensive care. This variability is largely due to the wide
range of pathogens that can cause CAP, including bacteria,
viruses, and atypical organisms [7]. Current tools for diagnos-
ing CAP, such as chest X-rays, microbial cultures, and molecu-
lar tests, often fail to immediately and accurately identify the
causative agent. This limitation complicates the selection of
appropriate treatment regimens, ultimately impacting patient
outcomes [8]. Additionally, the growing resistance to antimi-
crobial agents among common respiratory pathogens further
complicates CAP management, underscoring the importance
of effective, accurately targeted initial empirical therapy [9].
Predicting outcomes for CAP patients also poses challenges,
arising from the variability in patient responses to the dis-
ease. Factors such as underlying health conditions and age sig-
nificantly influence outcomes. Current predictive models lack
the precision needed to guide critical decisions about treat-
ment intensity or hospitalization [10, 11]. Given these chal-
lenges, there is a pressing need for enhanced diagnostic and
predictive capabilities in managing CAP. ML presents a promis-
ing solution due to its ability to process large and complex
datasets, potentially uncovering patterns that improve diag-
nostic accuracy, personalize treatment, and predict outcomes
more effectively [12]. These advancements could significantly
improve clinical decision-making, reducing treatment failures
and minimizing the health burden associated with CAP. The
study of ML applications in predicting the etiology and mor-
tality of CAP is crucial for several reasons. First, enhancing
diagnostic accuracy directly impacts treatment efficacy. Accu-
rate early diagnosis allows for timely and targeted treatment,
which is critical in reducing disease severity and improving
recovery rates. Second, improving mortality prediction enables
healthcare providers to make more informed decisions about
the level of care required. Patients with a poor prognosis could
be prioritized for intensive interventions, potentially improv-
ing survival rates. Conversely, reliable predictors of lower risk
could help avoid unnecessary hospital admissions, reducing
healthcare costs and minimizing the risk of hospital-acquired
infections [13]. Furthermore, integrating ML into medical prac-
tice addresses the challenge of clinical variability in CAP treat-
ment, aligning with the goals of precision medicine. This not
only improves health outcomes but also personalizes patient
care, leading to better patient experiences and improved adher-
ence to treatment plans. Lastly, the healthcare industry stands
to benefit from improved resource distribution. ML can ensure
that staffing, equipment, and medications are available when
needed, enhancing the overall efficiency of healthcare delivery
systems [14]. This research seeks to apply ML comprehensively
within the healthcare sector, demonstrating how technology
can intersect with clinical expertise to significantly improve
patient outcomes and the operational efficiency of healthcare
systems. Despite the extensive use of ML in medical diagnostics,
its application in predicting the etiology and mortality of CAP

remains underexplored. Most existing studies focus primarily
on diagnosis and treatment outcomes but rarely combine ML
techniques to predict causal pathogens and associated mortality
rates based on large datasets. This gap is particularly signifi-
cant because timely and accurate determination of CAP etiology
and prognosis could significantly enhance treatment strategies
and patient outcomes. The intersection of CAP management and
ML offers significant potential to improve healthcare outcomes.
However, there is a noticeable lack of research integrating these
two fields. While the literature comprehensively addresses CAP
diagnostic procedures and treatment methods [2], as well as
the application of ML in medical diagnostics separately [12],
few studies have specifically explored the use of ML to predict
CAP etiology and mortality. The current landscape of clinical
prediction models for diseases like CAP reveals a critical gap
in using predictive modeling to anticipate both the disease
etiology and outcomes [15]. While studies have demonstrated
the feasibility of using ML to predict outcomes in pneumo-
nia cases [16], there is limited focus on directly correlating
these outcomes with causative pathogens—a crucial compo-
nent for determining appropriate therapeutic approaches [15].
Research in fields like cardiology and oncology has made signif-
icant strides in utilizing ML technologies [17]. However, similar
advancements in infectious diseases, particularly CAP, remain
limited [18]. While some studies have shown the potential of
ML in predicting mortality and disease progression in COVID-
19 pneumonia cases [19], and in developing models to predict
adverse outcomes in CAP [20], further exploration is needed.
Efforts have been made to predict the outcome of SARS-CoV-
2 pneumonia based on laboratory findings [20], as well as to
develop models for predicting the severity and mortality of
COVID-19 pneumonia patients [21]. In pneumonia, where up
to 50% of cases lack identified causative pathogens [21], ML
could offer a promising avenue for predicting outcomes and
informing treatment decisions. By integrating comprehensive
patient histories, clinical signs, and diagnostic data with pre-
dictive modeling techniques, we could significantly enhance
the understanding and management of diseases like CAP. The
primary aim of this study is to develop, validate, and implement
ML models specifically designed to predict the etiology and mor-
tality of CAP. This involves creating models that utilize clinical
data, including diverse symptoms and outcomes associated with
CAP. Ultimately, the goal is to provide healthcare professionals
with advanced, data-driven tools to enhance decision-making
processes, leading to more accurate and timely interven-
tions, personalized treatment regimens, and improved patient
prognosis.

Materials and methods
Study design and participants
This retrospective cohort multicenter study included 251 adult
patients from Prince Hamza Hospital and the Islamic Hospital,
ensuring diverse patient demographics, clinical variables, and
a comprehensive dataset. The participants were adults diag-
nosed with CAP who were admitted to the participating hos-
pitals between March 10, 2021, and February 15, 2024. This
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timeframe allowed for a substantial number of cases, enhancing
the statistical power and validity of the study. Inclusion criteria
consisted of patients with a confirmed diagnosis of CAP, based
on chest radiography or computed tomography (CT) scans, if
performed, and presenting symptoms consistent with pneu-
monia, such as cough, fever, sputum production, and dysp-
nea. Microbiological laboratory results were included when
available. Both intensive care unit (ICU) and ward patients
were included to represent a range of disease severities. Exclu-
sion criteria included patients with hospital-acquired pneumo-
nia (HAP), patients transferred from outside hospitals more
than 48 h after admission, and those with incomplete med-
ical records. Patients with Human Immunodeficiency Virus
(HIV)/Acquired Immunodeficiency Syndrome (AIDS) and those
receiving long-term immunosuppressive therapy were also
excluded to avoid potential confounding effects related to dif-
ferent immune responses. In compliance with laws and regula-
tions governing medical research, the study ensured the privacy
and confidentiality of participant data. The Institutional Review
Board (IRB) of each clinical site approved the study, with all
data de-identified and stored in secure databases to protect
patient confidentiality. The study adheres to the Declaration
of Helsinki. Ethical approval was obtained from the Applied
Science Private University (Jordan), the Islamic Hospital Ethical
Committee in Amman, Jordan, and Prince Hamza Hospital in
Amman, Jordan (2021-PHA-35, IRB: 101/2021/1053, and 6-11-
2021-129, respectively).

Data collection
The data for the participants was gathered from medical records
and electronic databases. Originally recorded in Excel, the
dataset contains information about CAP patients, including
vital signs, physical and laboratory findings, length of stay
(LOS), and in-hospital mortality. This information was sourced
from electronic medical records, with additional input from
partnerships with hospitals and healthcare providers treating
CAP patients. The key elements of the data collection process
include:

1. Demographic information: Age, gender, and other rel-
evant demographic factors that can influence disease
outcomes.

2. Clinical data: Detailed records of symptoms, duration of
illness, previous health conditions, and clinical findings
during physical examinations.

3. Radiological data: The radiological data (Chest X-rays,
and CT scans) were interpreted by two clinicians, who
provided standardized findings such as the presence of
pulmonary infiltrates, consolidation, or effusion

4. Microbiological data: Results from respiratory sample
cultures, blood tests, and other relevant microbiological
investigations like the molecular methods (the real-time
polymerase chain reaction [PCR]) used to determine the
etiology of pneumonia.

5. Laboratory results: Complete blood counts, C-reactive
protein levels, arterial blood gases, and other relevant lab-
oratory tests performed during hospitalization.

6. Treatment details: Information on the medications pre-
scribed, including type, dosage, and duration.

7. Outcome data: Details of the patient’s recovery, mainly
in-hospital mortality.

Data preparation
Before starting ML modeling, we cleaned the medical files
records that we collected. At the beginning we had 587 patient
files with pneumonia diagnosis. After we removed the files with
HAP, ventilator-associated pneumonia (VAP) and duplicated
CAP files we reduced the number to 412 cases.

The files at the beginning had multiple lab results and vital
signs records taken over the LOS in the hospital of the patients.
In our study the aim is to make a rapid decision about the clinical
situation of the patients within few hours of the admission, so
we had got only the first records for the lab results and vital
signs reading (the number of features reduced from 3562 to 665
features).

We conducted data preprocessing steps over the left CAP files
after cleaning, involved handling missing values- some files had
high percentage of missing data, so we dropped them and finally
reached 251 patients files. Other files with low percentage of
missing, we normalized continuous variables and encoding cat-
egorical variables. Libraries such as Pandas and NumPy were
employed to make data manipulation more efficient, ensuring
consistency and accuracy. The normal ranges were used to han-
dle missing values.

To optimize the dataset, columns with a single value or
where 95% or more of the entries were identical were removed.
These columns provided little to no meaningful information
when analyzing correlations with the target variable. Their
inclusion would have unnecessarily increased the dimension-
ality of the data, introducing low variance, adding noise, and
potentially leading to biased results or overfitting. By eliminat-
ing these columns, the dataset was simplified, reducing noise
and improving its overall quality for subsequent analysis. The
number of features now is 132 features. This step is called fea-
tures selection.

ML techniques and feature evaluation
ML techniques were applied to analyze the collected data and
develop predictive models for CAP’s etiology and mortality out-
comes. The selection of appropriate ML algorithms is crucial for
handling the complexity and variety of the data involved. These
techniques were chosen based on their proven effectiveness
in similar healthcare datasets [22]. This section outlines the
methodology used to evaluate the impact of the most important
features on the target variable using seven distinct approaches:
linear regression, random forest, mutual information analysis,
Lasso regression, logistic regression, Shapley additive explana-
tions (SHAP) values, and correlation analysis. Each method pro-
vides unique insights into the relationship between the features
and the target variable. The dataset was randomly divided into
training and testing subsets using an 80:20 split ratio. Addi-
tionally, model performance and generalizability were assessed
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using 5-fold cross-validation within the training data. The aver-
age performance metrics across the folds were reported to
ensure robustness.

Linear regression coefficients

Linear regression was employed to understand the linear rela-
tionships between each feature and the target variable. The
coefficients derived from the model indicate the direction and
magnitude of the feature’s impact [23, 24]. This analysis pro-
vides a straightforward interpretation of feature contributions
in a linear framework.

Random forest

A random forest model was used to assess the relative impor-
tance of features in predicting the target variable. Feature
importance scores were computed, indicating how critical each
feature is for model predictions [25–27]. Features with higher
importance scores play a more significant role in predictions,
while those with lower scores have a minor impact. Unlike
linear regression, which assumes linear relationships between
variables, Random Forest can capture complex, non-linear rela-
tionships, providing a complementary perspective on feature
importance.

Mutual information analysis

Mutual information analysis is a statistical technique used to
measure the dependence between two variables. It quantifies
how much information knowing one variable provides about
the other [28]. Rooted in information theory, mutual informa-
tion is widely used in fields like ML, data analysis, and bioin-
formatics. In the medical field, mutual information serves as
a valuable tool for analyzing the relationship between medical
predictors (such as biomarkers, test results, and demographic
data) and health outcomes (such as disease presence, survival
rates, or treatment effectiveness). By quantifying the depen-
dency between predictors and outcomes, mutual information
aids in tasks like feature selection, diagnostic modeling, and risk
stratification [29].

Least absolute shrinkage and selection operator (Lasso) regression

Lasso is a type of linear regression that performs both feature
selection and regularization to enhance prediction accuracy and
interpretability. It is a statistical technique that can be used to
study the effects of clinical variables in outcome prediction [30].

Logistic regression

Logistic regression is a widely used statistical and ML technique
in clinical research for predicting binary outcomes, such as
disease presence (yes/no), treatment success (effective/ineffec-
tive), or survival (alive/deceased). It estimates the probability
that a given input belongs to a particular class based on clinical
predictors (e.g., age, blood pressure, and cholesterol levels).

SHAP values

SHAP values were used to explain the contribution of indi-
vidual features to the model’s predictions. SHAP analysis was
employed not as a standalone predictive model but as a post
hoc interpretability tool to explain the output of the trained

random forest model. The SHAP values quantified the contribu-
tion of individual features to the model’s predictions, enhancing
the interpretability and transparency of the decision-making
process. This method provides detailed insights into both the
magnitude and direction of feature impact: blue points rep-
resent lower feature values that contribute less to the target,
while red points represent higher feature values that contribute
more. An SHAP summary plot was generated to visualize the
overall influence of each feature on the target variable. This
method is particularly useful for verifying the impact direction
indicated by linear models and for uncovering interactions and
non-linear relationships [31].

Correlation with the target

Correlation analysis was conducted to measure the linear rela-
tionship between each feature and the target variable [24]. Posi-
tive correlation indicates that as the feature increases, the target
variable also increases. Whereas, negative correlation indicates
that as the feature increases, the target variable decreases.

While correlation provides a simple measure of association,
it does not account for non-linear relationships or interactions
between features [24].

Each model was trained and validated on separate data splits
to assess their performance accurately. Cross-validation tech-
niques ensure that the models generalize well on unseen data.
The performance of each method was measured using appropri-
ate metrics such as accuracy, sensitivity, specificity, and area
under the receiver operating characteristic (ROC) curve.

To have an accurate and unbiased model, we made sure that
our dataset is balanced. A balanced dataset with an equal num-
ber of observations for both recovered and dead patients was
created to train and test our model. The data samples (patients)
in the training dataset have been selected randomly and they
were completely separated from the testing data (Figure 1).

Prior to balancing, the dataset exhibited a class imbal-
ance with a higher proportion of survivors compared to non-
survivors. To solve this issue, a random oversampling of the
minority group (survivors) was performed to achieve a 1:1 class
distribution in the training set. This resampling was conducted
exclusively on the training data to avoid information leakage
and ensure a fair evaluation of the model’s performance.

Tools and software
Analysis was conducted using Python programming language
in a Jupyter Notebook environment. Key libraries utilized
include:

Pandas: For data manipulation and cleaning.
NumPy: For numerical operations.
Matplotlib/Seaborn: For data visualization.
These tools ensured the efficient handling of large datasets

and the generation of high-quality visualizations to identify
patterns and outliers.

Data transformation
After removing unnecessary columns, the dataset was further
refined by encoding categorical variables. Columns with string
values were identified, and a LabelEncoder was applied to con-
vert them into numeric values. With the number of columns
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Figure 1. Overview of the six-step machine learning workflow for predicting outcome probabilities.

reduced from 665 to 132, LabelEncoder was chosen for its sim-
plicity and efficiency, especially for columns with only two
categories. This approach helped maintain the dataset’s sim-
plicity, avoiding additional complexity that could have posed
challenges in analysis and modeling.

Exploratory data analysis (EDA)
EDA was performed to understand the distribution of variables,
detect anomalies, and assess correlations between features. Sta-
tistical summaries were computed to identify key trends, and
graphical methods such as bar charts, heatmaps and SHAP Sum-
mary Plots were generated.

Feature selection
A total of 132 features were selected from the original dataset
in a process called feature selection. All relevant features were
extracted during this step. The primary goal of feature selection
is to identify the most informative features while removing
redundant ones, thereby reducing the model’s dimensionality
and complexity. The selected features included demographic
data, clinical characteristics, and laboratory results collected at
the time of admission. Predictor variables consisted of age, gen-
der, vital signs (e.g., blood pressure, heart rate, respiratory rate,
and temperature), the number of medical comorbidities (such
as hypertension and diabetes mellitus [DM]), laboratory data
(including Complete Blood Count, Comprehensive Metabolic
Panel, and arterial blood gas (ABG) tests), and clinical scores
(such as pneumonia severity index (PSI) and CURB-65). Table 1
presents these features.

Statistical analysis
Statistical analyses were performed, followed by the develop-
ment of predictive models to forecast key variables.

The statistical analysis starts with examining the data col-
lected through descriptive statistics to identify the central
tendencies, normality distribution (using Shapiro–Wilk test,
Q–Q, and distribution plots), and variability. Continuous vari-
ables were summarized using means and standard deviations
(SD) or medians and interquartile ranges (IQR), depending

on normality assessment, in addition to frequencies and per-
centages for categorical variables. The statistical analysis was
conducted using JASP 18.3.0 (Jeffreys’s Amazing Statistics Pro-
gram) and IBM SPSS statistics 25.

Results
Demographic and clinical characteristics
A sample of 251 participants was included in this study. The
median for their age was 60 years (IQR = 25). Most were
male 146 (58.2%) and 105 (41.8%) were female. The majority of
patients were admitted to the ICU (221, 88.0%) compared to the
Ward (30, 12.0%). The median LOS for all patients was 10 days
(IQR 13). For patients in the ICU, the median ICU LOS (ICU_LOS)
was 4.77 days (IQR 1.77).

Regarding COVID-19 status, 18 (7.2%) had a current SARS-
CoV2 infection, and 9 (3.6%) had a previous history of COVID-19
(Table 2).

Participants had a high prevalence of comorbidities, with
DM being the most prevalent (30.3%), followed by septic shock
(25.5%), hypertension (13.1%), and cardiac diseases (8.8%).
Other reported conditions were Alzheimer’s disease (6.8%),
chronic kidney disease (4.8%), anemia (2.8%), asthma (2.4%),
and chronic obstructive pulmonary disease (COPD) (2.0%)
(Table 2).

Treatment background characteristics
The chronic treatments varied, with vitamin C and zinc sup-
plements showing the highest rates of use, due to COVID-19
recommendations at the time for their prophylactic and sup-
portive effects (29.1% and 27.5%, respectively). Insulin ther-
apy was also used, with 24.7% of patients receiving insulin
bolus and 15.9% on basal insulin, alongside DM as the most
common chronic condition. Other frequently used medications
included omeprazole (19.1%), bisoprolol (17.9%), and B com-
plex vitamins (16.3%) (Table 3). The most common short-term
treatments were antibiotics (80.1%), anticoagulants (78.1%),
and enoxaparin (77.7%). Antiviral agents were used by a
small proportion of patients (8.0%), and only 4.8% received
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Table 1. Features utilized in the machine learning algorithm

Demographic Age
Gender

Clinical finding Number of hospitalizations Number of pneumonia Temperature
Pulse Respiratory rate SBP
DBP LOS PSI class
Oxygen saturation Oxygen therapy PSI
CURB-65 Initial finding fever Initial finding shortness of breath
Location ICU length of stay

Laboratory results Glucose serum Hemoglobin A1C (HbA1c) Random blood glucose
PaO2 PCO2 HCO3

ABG BE Albumin serum CPK
BUN Alkaline phosphatase ALT
AST Total Bilirubin Direct Bilirubin
Amylase serum pH Hemoglobin
HCT MCH MCV
MCHC PDW Platelet count
WBC RDW MPV
RBC ESR Lymphocytes count
Monocytes count Eosinophils count Basophils count
Neutrophils count Magnesium serum Potassium serum
Calcium serum Sodium serum Total protein
SGOT SGPT Creatinine serum
Urine PH CRP PCT
Uric acid HDL cholesterol LDL cholesterol
Prothrombin time D-dimer INR
LDH Troponin aPTT
Culture Sputum culture Urine character hazy
PCR

Medical history DM Hypertension CVD
Alzheimer COVID-19 Hypotension
Septic shock Cough Dry cough
Chest pain

Medication Imipenem Cefepime Vancomycin
Meropenem Ceftriaxone Levofloxacin
Susceptibility Imipenem Susceptibility Piperacillin tazobactam Imipenem cilastatin
Susceptibility Meropenem Susceptibility Cefepime Susceptibility Levofloxacin
Susceptibility Ceftazidime Susceptibility Aztreonam Susceptibility Ciprofloxacin
Susceptibility Amikacin Amlodipine Aspirin
Bisoprolol Vitamin C Atorvastatin
Cilastatin Furosemide Lansoprazole
Enoxaparin Insulin basal Lactulose
Enalapril Insulin bolus Omeprazole
Prednisolone Tocilizumab Anti-platelet
Zinc Antibiotics Anti-coagulant
B complex Antiviral Number of PRN medications
mAb tocilizumab Number of medications
Number of regular medications Guideline concordant antibiotics

Abbreviations: SBP: Systolic blood pressure; DBP: Diastolic blood pressure; LOS: Length of stay; PSI: Pneumonia severity index; CURB-65: Confusion, urea, respiratory
rate, blood pressure, age ≥65; ICU: Intensive care unit; HbA1c: Hemoglobin A1C; PaO2: Partial pressure of oxygen; PaCO2: Partial pressure of carbon dioxide; HCO3:
Bicarbonate; ABG BE: Base excess of arterial blood gas; CPK: Creatine phosphokinase; BUN: Blood urea nitrogen; ALT: Alanine aminotransferase; AST: Aspartate
aminotransferase; SGOT: Serum glutamic-oxaloacetic transaminase; SGPT: Serum glutamic-pyruvic transaminase; MCV: Mean corpuscular volume; HCT: Hematocrit;
MCH: Mean corpuscular hemoglobin; MCHC: Mean corpuscular hemoglobin concentration; PDW: Platelet distribution width; WBC: White blood cell count; RDW: Red
blood cell distribution width; MPV: Mean platelet volume; RBC: Red blood cell count; ESR: Erythrocyte sedimentation rate; PCR: Polymerase chain reaction; PCT:
Procalcitonin; CRP: C reactive protein; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; INR: International normalized ratio; LDH: Lactate dehydrogenase;
aPTT: Activated partial thromboplastin time; DM: Diabetes mellitus; CVD: Cardiovascular disease; PRN: Per registered nurse (as needed).
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Table 2. Demographic and clinical data of participants (n = 251)

Feature Frequency Valid percentage % Median (IQR)

Gender

Age (years) 60 (IQR = 25)

Location

Ward 30 12.0
ICU 221 88.0

LOS 10 days (IQR = 13)
ICU_LOS 4.77 days (IQR = 1.77)

Current COVID_19 18 7.2

Previous COVID_19 9 3.6

Diseases

DM 76 30.3
Septic shock 64 25.5
HTN 33 13.1
CVD 22 8.8
Alzheimer’s disease 17 6.8
Another lung disease 14 5.6
CKD 12 4.8
Anemia 7 2.8
Asthma 6 2.4
COPD 5 2.0
Hypotension 5 2.0
GERD 5 2.0
Dyslipidemia 4 1.6

History

Number of previous pneumonias 0.77 (IQR = 0)
Number of previous hospitalizations 2.4 (IQR = 3.7)
Kidney transplantation 4 1.6

Abbreviations: ICU: Intensive care unit; LOS: Length of stay; ICU_LOS: Intensive care unit length of stay;
DM: Diabetes mellitus; HTN: Hypertension; CVD: Cardiovascular disease; CKD: Chronic kidney disease; COPD:
Chronic obstructive pulmonary disease; GERD: Gastroesophageal reflux disease.

supportive drugs, including albumin, favipiravir, and nore-
pinephrine injections (Table 3).

Characteristics specific to pneumonia
Among the included participants, the majority were classified
as Class 2 (40.6%) and Class 3 (23.1%) according to the PSI,
indicating moderate severity. Based on CURB-65 scores, 41.8%
of patients had a score of 1, and 24.7% had a CURB-65 score of 2,
indicating differences in pneumonia risk levels.

The majority of patients got bacterial CAP with 215 (85.7%),
most of patients were survived 169 patients (67.3%) (Table 4).

The most common initial clinical symptoms were dyspnea
(38.6%) and fever (16.3%). Other symptoms were productive
cough (6.8%), dry cough (6.4%), pleuritic chest pain (6.4%),
headache (4.4%), vomiting (4.4%), and abdominal pain (4.0%).
Notably, 4.0% of patients required intubation or mechanical
ventilation (Table 4).

ML analysis results to predict mortality
Global feature correlation structure

A comprehensive correlation heatmap visualized the interde-
pendencies across all features. This analysis revealed a dense
correlation structure, indicating significant overlap among

variables. The redundancy identified highlights the need for
preprocessing steps, such as feature selection, to ensure model
robustness and reduce overfitting. This step is performed after
cleaning the data by excluding columns with all null values,
leading to a more accurate and reliable correlation matrix. The
diagonal of the heatmap typically contains values of 1, rep-
resenting the perfect correlation of each feature with itself.
The color intensity in each cell reflects the strength and direc-
tion of the correlation between the corresponding features
on the axes. A color gradient from blue to red is used: posi-
tive correlations (closer to 1) are shown in warm colors (e.g.,
red), while negative correlations (closer to −1) appear in cool
colors (e.g., blue). Certain feature groups exhibit noticeable
correlations, suggesting potential multicollinearity or shared
variance. For example, tightly clustered red squares indicate
high correlations between related clinical markers or treat-
ment variables, while patches of blue represent negative asso-
ciations between certain features. This matrix emphasizes the
importance of addressing multicollinearity during model devel-
opment and suggests that specific feature groups may have
overlapping predictive power. Identifying and managing these
relationships can ultimately enhance model performance and
interpretability.
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Table 3. Descriptive data related to treatment

Feature Frequency Valid percentage

Chronic treatment

Vitamin C 73 29.1

Zinc 69 27.5

Insulin bolus 62 24.7

Omeprazole 48 19.1

Bisoprolol 45 17.9

B complex 41 16.3

Insulin basal 40 15.9

Antiplatelet 39 15.6

Aspirin 38 15.1

Amlodipine 31 12.4

Furosemide 31 12.4

Atorvastatin 27 10.8

Lactulose 24 9.6

Lansoprazole 21 8.4

Enalapril 17 6.8

Prednisolone 16 6.4

MAb_tocilizumab 16 6.4

Tocilizumab 16 6.4

Ipratropium inhaler 13 5.2

Clopidogrel 12 4.8

Hydrochlorothiazide 12 4.8

Azithromycin 11 4.4

Piperacillin - Tazobactam 11 4.4

Budesonide inhaler 10 4.0

Vitamin D 10 4.0

Metformin 9 3.6

Colchicine 9 3.6

Ca carbonate 7 2.8

Candesartan 7 2.8

Metronidazole 7 2.8

Valsartan 7 2.8

Bromazepam 6 2.4

Carvedilol 4 1.6

Short-term treatment

Antibiotics 201 80.1

Anticoagulant 196 78.1

Enoxaparin 195 77.7

Antiviral agent 20 8.0

Albumin 12 4.8

Favipiravir 12 4.8

Norepinephrine injection 12 4.8

Paracetamol 11 4.4

Guaifenesin 11 4.4

Dextrose injection 11 4.4

Morphine 8 3.2

Remdesivir injection 8 3.2

Table 4. Descriptive data on pneumonia

Feature Frequency Valid percentage

PSI class

1 48 19.1

2 102 40.6

3 58 23.1

4 33 13.2

5 10 4.0

CURB 65

0 47 18.7

1 132 41.8

2 62 24.7

3 10 4.0

Bacterial infection

Yes 215 85.7

No 36 14.3

Outcome

Survivor 169 67.3

Non survivor 82 32.7

Initial findings

SOB 97 38.6

Fever 41 16.3

Productive cough 17 6.8

Dry cough 16 6.4

Pleuritic chest pain 16 6.4

Headache 11 4.4

Vomiting 11 4.4

Abdominal pain 10 4.0

Intubation/mechanical ventilation 10 4.0

Diarrhea 10 4.0

Fatigue 8 3.2

Nausea 6 2.4

Constipation 5 2.0

Muscular or joint pain 4 1.6

Loss of taste and smell 4 1.6

Abbreviations: PSI: Pneumonia severity index; CURB 65: Confusion, urea,
respiratory rate, blood pressure, Age ≥65; SOB: Shortness of breath.

Feature correlation analysis

A correlation matrix is often calculated before building pre-
dictive models in Python (or any other programming lan-
guage) to gain insights into the relationships between features.
Highly correlated features can cause multicollinearity, which
may require dimensionality reduction techniques like princi-
pal component analysis (PCA) or the elimination of redundant
features to enhance model performance and interpretability.
In our study, the correlation matrix was particularly useful
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Table 5. Performance metrics of logistic regression models in predicting mortality and bacterial infections

Metric
Mortality outcome

(training set)
Mortality outcome

(test set)
Bacterial infection

outcome (training set)
Bacterial infection outcome

(test set)

Accuracy 0.88 0.86 0.98 0.95

AUROC 0.90 (95% CI: 0.85–0.95) 0.88 (95% CI: 0.83–0.93) 0.99 (95% CI: 0.97–1.00) 0.96 (95% CI: 0.92–0.98)

Sensitivity 0.95 0.94 1 1

Specificity 0.85 0.8 0.95 0.9

PPV 0.9 0.88 0.97 0.95

NPV 0.92 0.91 0.98 0.96

Abbreviations: AUROC: Area under the receiver operating characteristic curve; PPV: Positive predictive value; NPV: Negative predictive value.

Table 6. Comparative variable importance

Feature Mutual information LASSO coefficient
Logistic regression

odds ratio Mean SHAP value

Zinc � – – �

Vitamin C � – – �

Enoxaparin � – � �

Neutrophils � � – �

Meropenem – � – �

ICU Stay – – � �

pH – � � �

WBC � � � �

Platelets � � � �

Abbreviations: ICU: Intensive care unit; WBC: White blood cell count.

for identifying relationships between different features in the
dataset. It shows how strongly each feature is related to others,
which is crucial for understanding the underlying structure of
the data. We used the correlation matrix to identify pairs of
features with a correlation score of 0.8 or higher (i.e., highly
correlated features). These pairs were then saved into a CSV
file for easier inspection. To evaluate the internal structure
of the dataset and identify potential predictors of mortality,
we generated Pearson correlation heatmaps. In our analysis,
a high coefficient indicates a strong association with the sur-
vival rate. During the encoding process for categorical vari-
ables, we assigned a value of 1 for the survival outcome and
2 for the non-survival outcome. Thus, the correlation reflects
how closely each feature is associated with the survival out-
come, with higher values indicating a stronger relationship.
This correlation pertains specifically to the survival rate in
this context. Figure 2 shows the intercorrelation matrix among
all features, revealing strong positive correlations between
inflammatory markers (e.g., C-reactive protein [CRP], fer-
ritin) and between WBC count and neutrophil count (r > 0.7).
These findings suggest potential collinearity among markers
of systemic inflammation, which could affect model stabil-
ity. This may necessitate variable selection or regularization
strategies.

Top correlated features with the mortality target

Figure 3 shows the correlation between individual features
and the target outcome of mortality. Age (r ≈ 0.45), neu-
trophil count (r ≈ 0.41), CRP (r ≈ 0.39), and ferritin (r ≈ 0.36)
were among the strongest positive correlates with mortal-
ity, indicating their potential as high-risk predictors. Con-
versely, lymphocyte count (r ≈ −0.42), oxygen saturation
(r ≈ −0.38), and hemoglobin (HGB) level (r ≈ −0.33) showed
the strongest negative correlations, suggesting a protective
role. These patterns underscore the prognostic relevance of
age and markers of inflammation and hypoxia in predicting
adverse outcomes. The identification of these features supports
their prioritization in model development and interpretability
analysis. A focused heatmap (Figure 3) showed the variables
most correlated with the mortality Notably, vitamin C, zinc,
enoxaparin (CLEXAN) and insulin bolus exhibited the highest
correlations.

Zinc and Vitamin C exhibited the highest positive correla-
tion (r = 0.90), suggesting a strong relationship between these
two variables with survival rate. Whereas, Insulin Bolus and
Enoxaparin demonstrated a moderate correlation (r = 0.59),
highlighting a potential interaction. LOS showed minimal cor-
relation with most variables, with the highest being a weak neg-
ative correlation with Vitamin C (r = –0.0066). Diastolic blood
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Figure 2. Heatmap of strongly correlated features. Pearson correlation coefficients: A heatmap of strongly correlated features. Warm colors represent
higher correlations, while cool colors indicate negative correlations. Strong positive correlations are observed between inflammatory markers (e.g.,
C-reactive protein [CRP], ferritin) and between white blood cell (WBC) count and neutrophil count (r > 0.7). This pattern suggests potential collinearity
among markers of systemic inflammation, which may affect model stability and motivate variable selection or regularization strategies.

pressure shows low correlations with other variables, with the
maximum being a weak positive correlation with Vitamin C
(r = 0.15).

Mutual information analysis

The mutual information scores (Figure 4) quantify the depen-
dency between each feature and the target variable (mortal-
ity), providing a ranking of the most informative predictors.
Key findings include creatinine concentration, WBC includ-
ing eosinophils, and neutrophils count. Number of previous
hospitalizations is also a top contributor. Red-cell distribution
width (RDW) and alanine aminotransferase (ALT) are other sig-
nificant features reflecting their clinical relevance. This anal-
ysis underscores the critical role of inflammatory markers
(eosinophils, neutrophils, and basophils count) in mortality
outcome prediction, highlighting their importance in clinical
decision-making.

Feature coefficients from Lasso regression

The Lasso regression analysis (Figure 5) refined the list of
predictors by assessing the magnitude and direction of their
contributions to mortality risk. Among the variables, “cul-
ture” showed the highest positive coefficient (0.15). However,
the culture variable is not clinically significant, as it merely
indicates whether the patient underwent a culture test or not.

Meropenem demonstrated a significant positive coefficient,
highlighting its importance in predicting mortality. Addition-
ally, ABGs (Base Excess, PCO2) and platelet count all contributed
positively to the model. This analysis emphasizes the critical
roles of meropenem, ABGs, pH, and PCO2 in predicting mortal-
ity outcomes.

Feature importance from logistic regression

The logistic regression-based feature importance analysis
(Figure 6) provided an additional perspective on variable
significance. For instance, pH identified as the most impactful
predictor with the strongest negative impact (coefficient
approximately −1.0). ICU_LOS and LOS: Showed a substantial
positive impact with a coefficient around 0.6, and 0.4 respec-
tively, suggesting that longer stays are associated with higher
mortality. This analysis underscores the critical roles for pH,
LOS, ICU_LOS, PCO2, albumin, WBC, bicarbonate (HCO3) and
ABGs in predicting mortality rate.

SHAP analysis of medication and laboratory influence on model
predictions

The SHAP summary plot shown in Figure 7 illustrates the
impact of individual features—primarily medications and labo-
ratory findings—on the predictive model for survival outcomes.
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Figure 3. Heatmap of top correlated features with mortality outcomes. Pearson correlation coefficients: Heatmap of features and target outcome.
Warm colors represent higher correlations, while cool colors indicate negative correlations. Top positive correlates: age (r ≈ 0.45), neutrophils (r ≈ 0.41),
CRP (r ≈ 0.39), ferritin (r ≈ 0.36); top negative correlates: lymphocytes (r ≈ –0.42), oxygen saturation (r ≈ –0.38), hemoglobin (r ≈ –0.33). A focused panel
also highlights high correlations for vitamin C, zinc, enoxaparin (CLEXAN), and insulin bolus. Abbreviation: LOS: Length of stay.

Figure 4. Mutual information of features related to mortality outcomes. Mutual information scores quantify each feature’s dependency on mortality,
producing a ranked list of informative predictors. Top contributors include creatinine, WBC (including eosinophils), and neutrophil count; the number of
previous hospitalizations also ranks highly. RDW and ALT are additional significant features. Overall, inflammatory markers—eosinophils, neutrophils, and
basophils—show high informativeness, underscoring their value for model prioritization and clinical decision-making. Abbreviations: WBC: White blood cell
count; RDW: Red blood celldistribution width; ALT: Alanine aminotransferase.
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Figure 5. Top feature coefficients from Lasso regression. Coefficients indicate each variable’s direction and magnitude of association with mortality.
“Culture” shows the largest positive coefficient (β ≈ 0.15) but is not clinically meaningful (test-performed indicator). Meropenem has a strong posi-
tive coefficient; ABG variables (pH, Base Excess, PCO2) and platelet count also contribute positively, underscoring their relevance for risk prediction.
Abbreviation: ICU: Intensive care unit.

Figure 6. Feature importance from logistic regression. Coefficients indicate direction and strength. pH is the most impactful predictor with a strong
negative coefficient (≈ –1.0). ICU_LOS and LOS show substantial positive effects (≈ 0.6 and ≈ 0.4), indicating longer stays are linked to higher mortality.
Additional important contributors include PCO2, albumin, WBC, bicarbonate (HCO3), and ABG measures. Abbreviations: BUN: Blood urea nitrogen;
WBC: White blood cell count; PSI: Pneumonia severity index.

Features are ranked by their average absolute SHAP values,
which represent their overall contribution to the model’s out-
put. The most influential feature was antibiotic usage, which
had a strong negative SHAP value (impact < –0.6), indicat-
ing that antibiotic administration significantly reduced the
predicted risk of mortality. Basophil count and initial fever pre-
sentation also showed negative SHAP values, suggesting a mod-
est inverse relationship with the predicted risk of mortality.

Other features, such as enoxaparin, ciprofloxacin suscepti-
bility, and piperacillin/tazobactam susceptibility, were asso-
ciated with a lower predicted risk, possibly reflecting effec-
tive treatment or underlying microbial sensitivity. In con-
trast, meropenem susceptibility, imipenem susceptibility, and
amikacin susceptibility had the largest positive impacts, poten-
tially reflecting resistance to critical antibiotics or associations
with more severe infections requiring these drugs. Among
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Figure 7. SHAP summary plot: Analyzing the influence of medications and laboratory findings on model predictions. Features are ranked by mean
absolute SHAP values. Antibiotic use shows the strongest negative impact (SHAP < –0.6), with basophils and initial fever also lowering predicted
risk. Enoxaparin and ciprofloxacin/piperacillin–tazobactam susceptibility align with lower risk, whereas meropenem/imipenem/amikacin susceptibility
and tocilizumab, prednisolone, and anticoagulant use have positive impacts, likely reflecting greater disease severity. Abbreviations: HDL: High-density
lipoprotein; SHAP: Shapley additive explanations.

medications, tocilizumab, prednisolone, and anticoagulant use
were positively associated with the outcome, suggesting these
therapies may be markers of greater disease severity or higher
baseline risk.

ML results for predicting etiology of CAP
Correlation analysis for predicting bacterial infection

A heatmap was generated to assess the correlation between
clinical variables and bacterial infection (increasing coefficeints
reading means higher opportunity for getting bacterial infec-
tion as the correlation was between the variables and pos-
itive bacterial infection result—Encoding bacterial infection
with number one and no bacterial infection with number two)
(Figure 8).

Enoxaparin, and other anti-coagulant treatments exhibited
the strongest positive correlations with bacterial infection, with
correlation coefficients of 0.99. Vitamin C supplementation
showed also high correlation with Zinc (r = 0.90).

Feature importance analysis using logistic regression analysis for
predicting bacterial infection

Logistic regression analysis was conducted to evaluate feature
importance (Figure 9). Figure 9 presents the results of a logistic
regression model showing the key features correlated with the
bacterial infection. Vancomycin and Insulin Dose, are one of the
most influential predictors, indicating that their presence was
positively associated with the bacterial infection. Conversely,
Cough, and Heart Disease had negative coefficients.

SHAP analysis

The SHAP summary plot (Figure 10) highlights the most influ-
ential predictors from the second round of model evaluation.

Features such as Cough, Heart Disease, and Ceftazidime Sus-
ceptibility exhibited the highest positive SHAP values, indi-
cating strong positive contributions to the model output. Con-
versely, PCR Test, Patient Location, and Culture had the most
negative SHAP values, suggesting they were associated with
a reduced predicted probability of the target outcome. Addi-
tionally, Meropenem, Alzheimer, Vancomycin, and Antibiotic
Adherence showed moderate positive impacts, whereas Insulin
Dose showed minimal negative influence. The color gradient
further reveals that features with higher values (red) or lower
values (blue) contribute differently to prediction magnitude,
emphasizing the complex, value-dependent behavior of certain
predictors in the model.

The correlation coefficients between selected features and the
target variable

Figure 11 presents the correlation coefficients between selected
features and the target variable. Antibiotics demonstrated the
strongest positive correlation with the bacterial infection tar-
get. Enoxaparin and anticoagulants also showed significant
associations with the bacterial infection. Additionally, the ini-
tial fever finding and basophils exhibited moderate positive cor-
relations. Conversely, features such as the mAb of tocilizumab
and the susceptibility to amikacin showed weak negative corre-
lations with the target. Other antibiotic susceptibility variables,
including susceptibility to cefepime and ciprofloxacin, had min-
imal or near-zero correlations, indicating a limited direct asso-
ciation with the outcome. The predictive performance of the
logistic regression models for both outcomes is summarized
in Table 5. The mortality outcome model achieved robust per-
formance, with the area under the ROC curve (AUROC) of
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Figure 8. Heatmap depicting correlations between clinical variables and bacterial infections. Pearson correlation coefficients: Heatmap of features
and target outcome. Warm colors represent higher correlations, while cool colors indicate negative correlations. The target was encoded as 1 for bacterial
infection and 2 for no infection; thus higher coefficients indicate a greater likelihood of bacterial infection. This visualization supports ML-based etiology
prediction in CAP. Abbreviations: SOB: Shortness of breath; CAP: Community-acquired pneumonia; ML: Machine learning.

Figure 9. Feature importance in logistic regression models. The horizontal bar plot illustrates the coefficient of each feature, reflecting its actual
contribution to the model’s predictions. A positive coefficient indicates a positive association with the target variable, while a negative coefficient signifies
a negative association. Abbreviation: PCR: Polymerase chain reaction.
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Figure 10. SHAP summary plot: Analyzing feature impact on model output. This figure presents the SHAP values that demonstrate the influence of
various features on the model’s predictions. Positive SHAP values indicate a beneficial contribution to the outcome, whereas negative values reflect a
detrimental impact. The color gradient, ranging from blue (indicating low feature values) to red (indicating high feature values), underscores the relationship
between feature magnitude and model output. Notably influential features include Antibiotics, Basophils, and initial findings of fever, each exhibiting distinct
effects based on their respective values. Abbreviations: SHAP: Shapley additive explanations; PCR: Polymerase chain reaction.

0.90 (95% CI: 0.85–0.95) in the training set and 0.88 (95%
CI: 0.83–0.93) in the test set, indicating strong discriminative
ability. The bacterial infection outcome model demonstrated
even higher predictive power, with AUROC exceeding 0.96 in
both training and test sets, accompanied by perfect sensitivity
(1.00) in both cases. Table 6 reports a comparative summary of
the top predictors identified by four variable-importance meth-
ods—mutual information, LASSO coefficients, logistic regres-
sion odds ratios, and mean SHAP values—highlighting both
overlaps and divergences in feature ranking. Variables such
as zinc, vitamin C, enoxaparin, and neutrophils consistently
emerged as key predictors across multiple methods, reinforcing
their clinical relevance in predicting mortality among patients
with CAP. Meanwhile, other variables such as meropenem,
pH, and platelet count showed importance only in selected
methods, underscoring the need for careful interpretation
of variable-importance results depending on the statistical
approach. Table 7 presents forest plot data for key predictors
of both investigated outcomes in this study. Variables such as
ICU stay, pH, WBC, and platelets exhibited significant associa-
tions with mortality risk, with odds ratios ranging from 0.6 (for
pH) to 2.5 (for ICU stay). For the bacterial infection outcome,
predictors such as lymphocytes, HCO3, WBC, and neutrophils
had odds ratios between 0.8 and 2.5. These forest plots provide
valuable insights into the relative importance and accuracy of
these predictors, supporting their potential utility in clinical
decision-making and model interpretability.

Discussion
Authors should discuss the results and interpret them in the
context of previous studies and working hypotheses. The find-
ings and their implications should be explored in the broadest

Table 7. Forest plot data

Variable Odds ratio 95% CI P value

Forest plot data for mortality outcome

ICU stay 2.5 1.5–4.1 0.001

pH 0.6 0.4–0.9 0.025

WBC 1.8 1.2–2.7 0.005

Platelets 1.7 1.1–2.6 0.010

Meropenem 2.0 1.3–3.1 0.003

Forest plot data for bacterial infection outcome

Lymphocytes 1.4 1.0–2.0 0.045

WBC 2.1 1.5–3.0 0.002

MCV 1.3 0.9–1.9 0.060*

Neutrophils 2.5 1.8–3.4 0.001

Basophils 1.6 1.1–2.4 0.010

*Despite being statistically insignificant, it is kept in the table due to its close
to the significant limit. Abbreviations: ICU: Intensive care unit; WBC: White
blood cell count; MCV: Mean corpuscular volume.

context possible. Additionally, the limitations of the study and
potential future research directions should be addressed. The
primary aim of this study was to develop, validate, and imple-
ment ML models specifically designed to predict the etiology
and mortality of CAP. Among the 251 patients included, 215
(85.7%) had bacterial CAP, with most surviving (67.3%). Treat-
ment regimens were extensive, with high utilization of antibi-
otics and anticoagulants. The severity of pneumonia varied
across patients.
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Figure 11. Correlation of clinical and treatment features with bacterial infection as a primary outcome. Antibiotics show the strongest positive
correlation, with enoxaparin and anticoagulant use also positively associated; initial fever and basophils exhibit moderate positive correlations. In contrast,
mAb tocilizumab and amikacin susceptibility show weak negative correlations, while other susceptibilities (e.g., cefepime, ciprofloxacin) are minimal or near
zero. Abbreviation: HDL: High-density lipoprotein.

Predicting mortality of CAP
In the Feature Correlation Analysis Regarding Mortality step,
the results showed that zinc, vitamin C, enoxaparin and insulin
bolus had high correlation with CAP in hospital survival rate.

Regarding zinc supplement; The clinical studies show same
results as increasing zinc intake will decrease the mortal-
ity or increase the survival rate. One study result was:
Zinc deficiency, common in developing countries, is linked
to increased CAP morbidity and mortality. Zinc levels were
lower in older patients, those with high CURB-65 scores, and
smokers [32].

The feature correlation also showed high correlation for
vitamin C supplement and in hospital survival rate, the clini-
cal findings also agree with. In one systematic review showed
that vitamin C supplementation had potential benefits on CAP
management [33].

These nutrients are often studied for their potential benefits
in supporting the immune system and improving outcomes
in respiratory infections [34]. in our study they were taken
as a chronic treatment emphasizing their role as immunity
supporters.

The feature correlation analysis also showed a high corre-
lation between enoxaparin and in-hospital survival rate, this
result is alongside the clinical findings. One study conducted,
they found that Enoxaparin is associated with lower rates of
mortality. Enoxaparin is often used as a preventative measure
in hospitalized CAP patients to reduce the risk of venous throm-
boembolism, a serious complication that can worsen outcomes
the pateints [35].

About insulin bolus treatment; Severe infections like CAP
trigger a stress response, leading to increased levels of cortisol,
catecholamines, and inflammatory cytokines [36]. These fac-
tors contribute to insulin resistance and hyperglycemia, even in
non-diabetic patients. In diabetic patients, CAP can cause poor

glycemic control, increasing the risk of complications. Persis-
tent hyperglycemia weakens the immune response, impairing
neutrophil function and increasing infection severity [37]. Also
high blood sugar levels are linked to higher mortality rates,
prolonged hospital stays, and increased risk of complications
such as sepsis and respiratory failure [38].

Insulin therapy in adult patients hospitalized for critical
illness, excluding hyperglycemic crises, may reduce mortal-
ity in certain patient groups [39]. This effect also extends to
insulin bolus treatment, which has been shown to decrease
both mortality rates and LOS [40]. The next step in ML
modeling for CAP mortality predictors was Mutual Informa-
tion analysis. The analysis quantified the dependency between
each feature and the target (mortality), providing a ranking
of the most informative predictors. Neutrophil count, ALT,
MCV, HGB, and platelet count emerged as the top contribu-
tors. These findings emphasize the importance of these vari-
ables, as they are often indicative of systemic inflammation.
The High neutrophil/lymphocyte ratio (NLR) and neutrophil
count percentage (NCP) are reliable predictors of mortality [41].
Overactive neutrophils release pro-inflammatory cytokines
that can cause tissue damage and thrombosis [42]. Regard-
ing ALT levels, one study demonstrated that circulating liver
function biomarkers exhibit diverse nonlinear correlations
with mortality [43]. CAP triggers a systemic inflammatory
response, which can elevate ALT levels due to liver stress. In
the case of MCV, one study found that large MCV was asso-
ciated with all-cause mortality, cardiovascular disease mor-
tality, and infection-associated mortality [44]. Elevated MCV
may contribute to venous thromboembolic disease through
increased hematocrit, which promotes platelet margination, or
by increasing blood viscosity, which reduces flow in large ves-
sels and predisposes to clot formation. This imbalance in blood
rheology can lead to thrombosis [45]. Patients with abnormal
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platelet counts—either thrombocytopenia (19%) or thrombocy-
tosis (28%)—had longer hospital stays, a higher need for ICU
admission, increased use of mechanical ventilation (both inva-
sive and noninvasive), and a higher 30-day mortality rate [46].
This is consistent with our model’s results.

An increase in HGB level predicts an increased in mortal-
ity, ICU hospitalization, and extrapulmonary complications in
COVID-19 patients [47]. Elevated HGB increases blood viscosity,
slowing circulation and raising the risk of thrombosis, stroke,
and cardiovascular disease [48]. These clinical findings align the
result regarding the mutual information analysis.

Feature selection through Lasso regression further refined
list of predictors by identifying the magnitude and direction
of their contributions to the mortality target. Features such
as Meropenem, ABGs, PCO2, and platelet count demonstrated
strong positive coefficients, suggesting their importance in pre-
dicting the mortality target. Conversely, features such as loca-
tion and cardiovascular disease were negatively associated with
the mortality outcome.

Regarding meropenem empirical treatment (in our data
records meropenem used as empirical treatment). Empiric
meropenem-based regimen appeared to be associated with
lower mortality [49]. But in recent study they found that
meropenem increases mortality rate; 50 patients (14.12%) expe-
rienced treatment failure, and ICU mortality was 48.02% (120
patients). Predictors of meropenem failure included a higher
APACHE (acute physiology and chronic health evaluation) score
and shorter treatment duration. Predictors of mortality were
high APACHE and SOFA scores, initiation of antibiotics more
than 72 h after sepsis onset, shorter treatment duration, and
renal dose adjustments of meropenem [50]. The last study align
with our model result.

Regarding ABGs, one study related to COVID-19 mortality,
ABGs was found as a predictor of mortality in COVID pneumonia
patients initiated on noninvasive mechanical ventilation [51].

Regarding the positive relationship with PCO2, clinical find-
ings have same result with higher PCO2 being associated with
worse survival [52]. Platelet count results also agree with the
clinical findings. Findings among patients with mild thrombo-
cytosis suggested that high-normal platelet count is associated
with the occurrence of thrombotic events [53].

We had negative or inverse relationships (CVDs, COVID
19 and location) that may need more focusing on features
or model selection as these findings should have positive
impacts. The patient with severe CAP needs monitoring of
an ICU where, if necessary, they can receive specialized sup-
port connected to a mechanical ventilator and/or hemodynamic
support [54]. Also, patients can get pneumonia when infected
with SARS-COV2. The virus that causes COVID-19 can infect
the lungs, causing pneumonia [55]. Finally CAP is a signif-
icant risk factor for all major cardiovascular disease events,
including acute coronary syndrome, stroke, and mortality [56].
These clinical findings (CVDs, COVID-19 and location) have
opposite relationship regarding our modeling results, so far-
ther processing and handling must be needed regarding lasso
regression model. Regarding pH, one study showed metabolic
acidosis (low pH) is associated with higher mortality in

ICU [57]. This inverse relationship agreed with our model
results.

The last step used was Logistic regression. It provided an
additional perspective on variable significance. Variables such
as pH, ICU_LOS, LOS, age, PCO2, O2 saturation, and diastolic
blood pressure were identified as the most impactful predictors
of the mortality target outcome. Regarding pH, inverse relation-
ship emphasized by clinical finding [57].

Regarding LOS as mentioned earlier; the patient with severe
CAP needs monitoring of an ICU where, if necessary, they can
receive specialized support connected to a mechanical ventila-
tor and / or hemodynamic support [54]. PSI, WBC, PCO2, HCO3,
ABGs and diastolic blood pressure have positive relationship
alongside the clinical finding [52, 58–60]. Among outpatients
with pneumonia, oxygen saturations <90% were associated
with increased morbidity and mortality [61]. This agree with
our model result.

Our aims of this study to make rapid evaluation about
patient condition at the admission time; by looking for the
results obtained (zinc, vitamin C supplements, Enoxapirin,
Neutrophils count, platelet count, ALT, MCV, ABGs, PCO2, HGB,
pH, WBC, HCO3 and O2 saturation) are main predictors for mor-
tality and these results can be obtained rapidly at the admission
time [62]. There are some predictors have opposite clinical
findings results such as CVDs and COVID-19 these findings indi-
cate that we must do further investigation and choosing for
models and features selection.

Predicting the etiology of CAP
A heatmap was generated to assess the correlation between clin-
ical variables and the target outcome (infection with bacteria).
Enoxaparin, along with other anti-coagulant treatments, exhib-
ited the strongest positive correlations with bacterial infection.
However, this correlation suggests negative clinical outcomes.
Severe bacterial pneumonia and sepsis trigger coagulation acti-
vation both locally in the lungs and systemically, leading to
tissue injury and reduced survival. This has prompted exten-
sive investigation into therapies that modulate inflammation
caused by coagulation activation. Various anticoagulant strate-
gies have been explored for bacterial pneumonia, sepsis, and
acute respiratory distress [63]. Notably, Vitamin C supplemen-
tation also showed a strong correlation with Zinc in relation to
bacterial CAP. These results suggest opposing clinical outcomes.
A recent study demonstrated that higher doses of vitamin C
and zinc resulted in greater inhibition of Klebsiella pneumo-
niae biofilm formation, indicating their potential as alternative
agents to combat biofilm-associated antibiotic resistance [64].
Logistic regression analysis to evaluate feature importance
revealed that lymphocytes were the most influential predic-
tor. This finding contrasts with some clinical research [65, 66].
Serum bicarbonate levels (HCO3) showed similar results to clin-
ical studies, where elevated serum bicarbonate levels have been
observed in patients with bacterial pneumonia [67]. Severe bac-
terial lung infections, such as pneumonia, can cause respiratory
acidosis due to poor gas exchange and carbon dioxide retention.
Regarding WBCs, typical bacterial CAP was associated with
WBC counts ≥15,000/mL [65]. This aligns with our results.
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In terms of BUN, one study on bacterial urinary tract infec-
tions observed a decrease in BUN levels [68], which matches
our model’s results. The most important clinical predictor for
bacterial infection is neutrophil count, as neutrophils typi-
cally increase during bacterial infections. However, our model
showed an opposite result [65, 66]. SHAP values were employed
to interpret model predictions, Antibiotics, Basophils, and
initial finding fever emerged as key variables influencing the
model’s output.

Bacterial CAP needs antibiotic treatment [69] and obtaining
result opposite for this (antibiotics intake increases bacterial
infection) has no clinical meaning.

About basophils. A study performed on mice found that
basophils can enhance the innate immune response against bac-
terial infection and help prevent sepsis [70].

While fever is a key feature of both bacterial and viral CAP,
its presence and characteristics alone are not sufficient to dif-
ferentiate the two. A combination of clinical, laboratory, and
imaging findings is necessary for accurate diagnosis. The symp-
toms of bacterial pneumonia can develop gradually or suddenly.
Fever may rise as high as a dangerous 105 degrees F, with
profuse sweating and rapidly increased breathing and pulse
rate [71].

Lastly, The correlation coefficients between selected fea-
tures and the target variable. The most clinical predictors
are initial fever and Basophils that are alongside with clinical
finding [70, 71].

In summary, models showed (HCO3, BUN, WBC, and initial
fever) are main predictors for bacterial CAP. Also showed oppo-
site clinical results with lymphocyte count. This indicates we
need further models and features selection.

The small sample size (n = 251) may limit the generalizability
and robustness of our findings. As part of future work, we aim to
scale up the study by collaborating with additional clinical sites
to collect a larger, multi-center dataset with consistent data
quality standards. This expansion will enable more rigorous
model training, external validation, and improved confidence
in the predictive performance of the ML models.

The observational nature of the dataset introduces potential
confounding variables that may not have been fully accounted
for in the models. Certain predictors, such as medication usage
(e.g., enoxaparin or insulin bolus), may reflect treatment deci-
sions based on illness severity rather than causal relation-
ships. Additionally, imbalances in the distribution of bacterial
vs non-bacterial CAP, or survivor vs non-survivor groups, could
introduce class bias into model training, influencing perfor-
mance and feature interpretation.

Different ML models have inherent assumptions and biases
that can affect variable selection and interpretation. For
instance, LASSO regression is effective for feature reduction
but limited in capturing non-linear interactions. Random for-
est models handle non-linearity but may overemphasize vari-
ables with high cardinality or variance. SHAP values, while
providing detailed interpretability, may diverge from classi-
cal regression coefficients and can be misinterpreted with-
out sufficient contextual knowledge. Inconsistencies between
SHAP results and established clinical findings (e.g., regarding

antibiotics or lymphocyte counts) further underscore the need
for domain-aware interpretation.

Although the study focuses on early admission features,
not all patients had complete laboratory or radiological data
available at standardized time points. Missing values may have
necessitated imputation or led to the exclusion of potentially
informative features. Furthermore, variables like medication
use (e.g., antibiotics or vitamins) may have been recorded with-
out precise timing relative to symptom onset or diagnosis, com-
plicating causal inference.

Conclusion
This study explored key predictors of mortality and bacterial
etiology in CAP, using ML models to analyze various clinical fea-
tures. Key findings include the association of zinc and vitamin
C supplements, as well as enoxaparin, with increased survival
rates. Neutrophil count, ALT, MCV, HGB, and platelet count
were linked to increased mortality, while insulin bolus therapy
was shown to reduce mortality, emphasizing the importance
of glycemic control in CAP patients. However, some vari-
ables, such as lymphocyte count, COVID-19, and cardiovascu-
lar disease, yielded conflicting results, suggesting the need for
further investigation. Regarding bacterial etiology, features like
HCO3, BUN, WBC, and initial fever were significant predic-
tors, although discrepancies in lymphocyte count highlight the
need for model refinement. Overall, rapid evaluation of clinical
variables at admission is crucial for predicting mortality and
bacterial infections in CAP, but further validation and model
adjustments are needed for more accurate outcomes.
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