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ABSTRACT 

Community-acquired pneumonia (CAP) is associated with high mortality, and accurate 

diagnosis and risk prediction are essential for improving patient outcomes. Traditional 

diagnostic methods have limitations, prompting the use of machine learning (ML) to enhance 

diagnostic precision and treatment strategies. This study aims to develop ML models to predict 

CAP etiology and mortality using clinical data to enable early intervention. A retrospective 

cohort study was conducted on 251 adult CAP patients admitted to two Jordanian hospitals 

between March 2021 and February 2024. Various clinical data were analyzed using ML 

techniques, including linear regression, random forest, SHapley Additive exPlanations 

(SHAP), lasso regression, mutual information analysis, logistic regression, and correlation 

analysis. Key predictors of CAP survival included zinc, vitamin C, enoxaparin, and insulin 

bolus. Mutual information analysis identified neutrophils, alanine transaminase, mean 

corpuscular volume, hemoglobin, and platelets as significant mortality predictors, while lasso 

regression highlighted meropenem, arterial blood gases, PCO₂, and platelet count. Logistic 

regression confirmed intensive care unit (ICU) stay, pH, pulmonary severity index, white blood 

cell (WBC) count, and bicarbonate levels as crucial variables. Interestingly, lymphocyte count 

emerged as the strongest predictor of bacterial CAP, conflicting with established knowledge 

that associates neutrophils with bacterial infections. However, findings related to HCO₃, blood 

urea nitrogen, and WBC levels were consistent with clinical expectations. SHAP analysis 

highlighted basophils and fever as key predictors. Further investigation is needed to resolve 

conflicting findings and optimize predictive models. ML offers promising applications for CAP 

prognosis but requires refinement to address discrepancies and improve reliability in clinical 

decision-making. 

Keywords: Community-acquired pneumonia; CAP; machine learning; ML; mortality 

prediction; risk assessment; clinical predictors; SHAP analysis; logistic regression. 
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INTRODUCTION 

Community-acquired pneumonia (CAP) poses a significant public health challenge worldwide, 

contributing to considerable morbidity and mortality across different age groups [1]. Defined 

as pneumonia contracted outside of a hospital or healthcare setting, CAP remains a leading 

cause of death, not only in underdeveloped regions but also in the developed world [2]. 

Effective management of CAP, crucial for improving patient outcomes, depends heavily on the 

accurate and timely identification of its etiology and assessing potential mortality risks. 

Machine learning (ML), as an integral part of artificial intelligence (AI), has shown promising 

results in enhancing diagnostic precision, optimizing therapeutic strategies, and predicting 

clinical outcomes in various fields of medicine [3]. The potential of ML to transform the 

clinical approaches to CAP has not been completely realized, particularly in terms of 

integrating diverse datasets to predict disease etiology and outcomes [4]. 

By focusing on employing ML techniques to predict the causes and mortality associated with 

CAP, this study aims to address a significant gap in the current research landscape. The 

integration of ML tools in CAP management holds the potential to significantly enhance 

diagnostic accuracy, put treatment plans, and ultimately improve the prognostic outcomes for 

patients [5] . This research tries to explore these possibilities and aims to reinforce the evidence 

base by reliably correlating clinical data with patient prognosis using sophisticated algorithmic 

analysis. 

The success of implementing this research could revolutionize the approach to handling CAP, 

leading to more personalized healthcare and better resource distribution in treating this 

prevalent disease.  

CAP remains a significant healthcare challenge, ranking globally as a major cause of morbidity 

and mortality [1]. Each year, CAP leads to numerous hospital admissions, placing a heavy 

burden on medical staff, especially in high-risk groups such as the elderly and those with 

immune-compromising conditions [6]. The variability in clinical presentations—an attribute of 

CAP—ranges from mild respiratory symptoms to severe cases requiring intensive care. This 

variability is primarily due to the vast kinds of pathogens that can cause CAP, including a 

spectrum of bacteria, viruses, and atypical organisms [7]. 
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The current tools for diagnosing CAP, which typically include chest X-rays, microbial cultures, 

and molecular tests, often fail to immediately and accurately identify the etiological agent. This 

limitation impacts the selecting of an appropriate treatment regimen, significantly impacting 

patient outcomes [8]. Additionally, resistance to antimicrobial agents among common 

respiratory pathogens further complicates the management of CAP, underscoring the crucial 

role of effective and accurately targeted initial empirical therapy [9]. 

Predicting outcomes for patients with CAP also has challenges arises from the heterogeneity 

in patient responses to CAP, influenced by factors such as underlying health conditions and 

age. Current predictive models lack the precision necessary to guide critical decisions regarding 

treatment intensity or hospitalization needs [10, 11]. 

Given these challenges, there is a pressing need for enhanced diagnostic and predictive 

capabilities in managing CAP. ML presents a promising solution because of its ability to 

process complex and huge data, potentially uncovering patterns that improve diagnostic 

accuracy, treatment personalization, and outcome prediction [12]. These advancements could 

significantly improve clinical decision-making processes, ultimately reducing the incidence of 

treatment failures and minimizing CAP-associated health burdens. 

The study of ML applications in predicting etiology and mortality in CAP is important for 

several reasons. First, enhancing diagnostic accuracy has direct implications for treatment 

efficacy. Accurate early diagnosis enables timely and targeted treatment, which is critical in 

reducing the progression severity and improving patient recovery rates. 

Second, by improving mortality prediction, healthcare providers can make more informed 

decisions about the level of care required. Patients with a poor prognosis could be prioritized 

for intensive interventions, potentially improving survival rates. Conversely, with reliable 

predictors indicating lower risk, patients could avoid unnecessary hospital admissions, 

reducing healthcare costs and minimizing the risk of hospital-acquired infections [13]. 

Furthermore, integrating ML into medical practices addresses the challenge of clinical 

variability in CAP treatment, aligning with precision medicine objectives. This not only aids 

in achieving better health outcomes but also in personalizing patient care, leading to more 

satisfactory patient experiences and adherence to treatment plans. 
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Lastly, the healthcare industry stands to gain from improved resource distribution, ensuring 

that the right staffing, equipment, and medications are available when needed, thereby 

enhancing the overall efficiency of healthcare delivery systems [14]. 

This research tries to use ML comprehensively within the healthcare sector, demonstrating how 

technology can intersect with clinical expertise to make significant differences in patient 

outcomes and healthcare systems operations. 

Despite the extensive use of ML in medical diagnostics, its application in predicting the 

etiology and mortality of CAP remains underexplored. Existing studies predominantly focus 

on diagnosis and treatment outcomes but rarely combine ML techniques to predict the causal 

pathogens and associated mortality rates based on a huge data input. This gap is particularly 

significant given that timely and accurate determination of CAP etiology and prognosis could 

improve treatment strategies and outcomes. 

The intersection of CAP management and ML offers significant potential for enhancing 

healthcare outcomes, yet there is a marked lack of research focusing on integrating these 

disciplines. The existing literature comprehensively addresses CAP's diagnostic procedures 

and treatment methods [2], and the applicative spans of  ML in medical diagnostics separately 

[12]. Nevertheless, few studies have the specific application of ML techniques to predict the 

etiology and mortality associated with CAP. 

The current landscape in clinical prediction models for diseases like CAP reveals a critical gap 

in using predictive modeling to anticipate disease etiology and outcomes [15]. While studies 

have shown the feasibility of using ML to predict outcomes in pneumonia cases [16], there is 

a notable lack of focus on directly correlating these outcomes with causative pathogens, which 

is essential for putting therapeutic approaches [15]. Research in cardiology and oncology has 

made significant progress in utilizing ML technologies [17]. However, similar advancements 

in infectious diseases like CAP are not as advanced [18]. Studies have demonstrated the 

potential of ML approaches in predicting mortality and disease progression in coronavirus 

disease of 2019 ( COVID-19) pneumonia cases [19], and in developing models to predict 

adverse outcomes in CAP [20].  

Efforts have been made to predict the outcome of SARS-CoV-2 pneumonia based on laboratory 

findings [20], and to develop models for predicting the severity of COVID-19 and mortality in 

pneumonia patients [21]. 
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 In the context of pneumonia, where up to 50% of cases lack identified causative pathogens 

[21],  ML can offer a promising way for predicting outcomes and designing treatments. By 

integrating comprehensive patient histories, clinical signs, and diagnostic data with predictive 

modeling techniques, it is possible to enhance the understanding and management of diseases 

like CAP. Further research and development in this area could lead to more personalized and 

effective therapeutic interventions for patients with pneumonia. 

The primary aim of this study is to develop, validate, and implement ML models specifically 

to predict the etiology and mortality of CAP. This involves designing models that utilize 

clinical data with diverse symptomology and outcomes associated with CAP. Ultimately, the 

purpose is to provide healthcare professionals with advanced, data-driven tools that enhance 

decision-making processes, potentially leading to more accurate and timely interventions, 

personalized treatment regimens, and overall improved patient prognosis. 

MATERIALS AND METHODS  

Study design and participants 

This is a retrospective cohort multicentric study, with 251 adult patients included, involving 

Prince Hamza Hospital and the Islamic hospital, to ensure a diverse patient demographics and 

clinical variables and a comprehensive dataset. The participants were adults diagnosed with 

CAP admitted to the participating hospitals from March 10, 2021, to February 15, 2024. This 

timeframe allows for the inclusion of a substantial number of cases to enhance the statistical 

power and validity of the study. 

Inclusion criteria included patients with a precise diagnosis of CAP confirmed by chest 

radiography or CT scan, if they were conducted. Alongside symptoms consistent with 

pneumonia, such as cough, fever, sputum production, and dyspnea. And microbiological 

laboratory results if they were available. Patients in ICU and ward were included to encompass 

various disease severities.  

Patients with hospital-acquired pneumonia (HAP), patients transferred from outside hospitals 

after 48 hours of admission, and patients with incomplete medical records were excluded. 

Human Immunodeficiency Virus Acquired/ Immunodeficiency syndrome (HIV/AIDS) and 

long-term immunosuppressive therapy were likewise excluded in order to avoid possible 

confounding effects with different immune responses. 



 

 8 

In compliance with laws and regulations governing the conduct of medical research, the study 

maintained the privacy and confidentiality of participants' data. The Institutional Review Board 

(IRB) of each clinical site approved the study, whereby all data were de-identified and kept in 

secure databases to protect patient confidentiality. This study complies with the Declaration of 

Helsinki. The approval of the study was gained from the Applied Science Private University, 

Jordan, the Islamic Hospital ethical committee in Amman, Jordan, and the Prince Hamza 

Hospital, Amman, Jordan (2021-PHA-35, IRB: 101/2021/1053, and 6-11-2021-129 

respectively). 

Data collection 

The data for the participants was gathered from the medical records and electronic databases, 

the dataset, originally recorded in Excel, contained information about CAP patients, 

encompassing vital signs, physical and laboratory findings, length of stay (LOS), and in-

hospital mortality sourced from electronic medical records. In addition to partnerships with 

hospitals and healthcare providers that treat CAP patients. The key elements of the data 

collection process include: 

1. Demographic Information: Age, gender, and other relevant demographic factors that can 

influence disease outcomes. 

2. Clinical Data: Detailed records of symptoms, duration of illness, previous health 

conditions, and clinical findings during physical examinations. 

3. Radiological Data: The radiological data (Chest X-rays, and CT scans) were interpreted 

by two clinicians, who provided standardized findings such as the presence of pulmonary 

infiltrates, consolidation, or effusion 

4. Microbiological Data: Results from respiratory sample cultures, blood tests, and other 

relevant microbiological investigations  like the molecular methods (the real-time 

polymerase chain reaction (PCR)) used to determine the etiology of pneumonia. 

5. Laboratory Results: Complete blood counts, C-reactive protein levels, arterial blood 

gases, and other relevant laboratory tests performed during hospitalization. 

6. Treatment Details: Information on the medications prescribed, including type, dosage, 

and duration. 

7. Outcome Data: Details of the patient's recovery, mainly in-hospital mortality. 
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Data preparation 

Before starting ML modeling, we cleaned the medical files records that we collected. At the 

beginning we had 587 patient files with pneumonia diagnosis. After we removed the files with 

HAP, ventilator-associated pneumonia (VAP) and duplicated CAP files we reduced the number 

to 412 cases.  

The files at the beginning had multiple lab results and vital signs records taken over the length 

of stay in the hospital of the patients. In our study the aim is to make a rapid decision about the 

clinical situation of the patients within few hours of the admission, so we had got only the first 

records for the lab results and vital signs reading (the number of features reduced from 3562 to 

665 features). 

We conducted data preprocessing steps over the left CAP files after cleaning, involved 

handling missing values- some files had high percentage of missing data, so we dropped them 

and finally reached 251 patients files. Other files with low percentage of missing,  we 

normalized continuous variables and encoding categorical variables. Libraries such as Pandas 

and NumPy were employed to make data manipulation more efficient, ensuring consistency 

and accuracy. The normal ranges were used to handle missing values.  

To optimize the dataset, columns with a single value or where 95% or more of the entries were 

identical were removed. These columns provided little to no meaningful information when 

analyzing correlations with the target variable. Their inclusion would have unnecessarily 

increased the dimensionality of the data, introducing low variance, adding noise, and 

potentially leading to biased results or overfitting. By eliminating these columns, the dataset 

was simplified, reducing noise and improving its overall quality for subsequent analysis. The 

number of features now is 132 features. This step is called features selection.  

Machine learning techniques and feature evaluation  

Several advanced ML techniques were applied to analyze the collected data and develop 

predictive models for CAP's etiology and mortality outcomes. The selection of appropriate ML 

algorithms is crucial for handling the complexity and variety of the data involved. The 

techniques have been chosen based on their proven performance in similar healthcare datasets 

[22]. 

This section details the methodology used to evaluate the impact of the top features on the 

target variable using seven distinct approaches: linear regression, random forest, mutual 
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information analysis, Lasso regression, Logestic regression, SHapley Additive exPlanations 

SHAP values, and correlation analysis. Each method provides unique insights into the 

relationship between the features and the target variable.  

The dataset was randomly divided into training and testing subsets using an 80:20 split ratio. 

Furthermore, model performance and generalizability were assessed using 5-fold cross-

validation within the training data. The average performance metrics across folds were reported 

to ensure robustness. 

Linear regression coefficients 

Linear regression was employed to understand the linear relationships between each feature 

and the target variable. The coefficients derived from the model indicate the direction and 

magnitude of the feature's impact [23, 24]: 

This analysis provides a straightforward interpretation of feature contributions in a linear 

framework. 

Random forest  

A Random Forest model was used to assess the relative importance of features in predicting 

the target variable. Feature importance scores were computed, which indicate how critical each 

feature is for model predictions [25-27], where higher importance are features with higher 

scores and play a more significant role in predictions. Whereas, lower importance are features 

with lower scores and have a minor impact on predictions. 

Unlike linear regression, Random Forest captures complex, non-linear relationships, providing 

a complementary perspective on feature importance. 

Mutual information analysis  

Mutual information analysis is a statistical technique used to measure the mutual dependence 

between two variables. It quantifies how much information knowing one variable provides 

about the other [28]. Mutual information is a concept from information theory and is widely 

used in fields such as machine learning, data analysis, and bioinformatics. 

In the medical field, mutual information is a valuable tool for analyzing the relationship 

between medical predictors (such as biomarkers, test results, demographic data) and health 

outcomes (such as disease presence, survival rates, or treatment effectiveness). By quantifying 
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the dependency between predictors and outcomes, mutual information helps in feature 

selection, diagnostic modeling, and risk stratification [29] 

Lasso regression (Least absolute shrinkage and selection operator)  

Lasso is a type of linear regression that performs both feature selection and regularization to 

enhance prediction accuracy and interpretability. It is a statistical technique that can be used to 

study the effects of clinical variables in outcome prediction [30]. 

Logistic regression  

Logistic regression is a widely used statistical and machine learning technique in clinical 

research for predicting binary outcomes, such as disease presence (yes/no), treatment success 

(effective/ineffective), or survival (alive/deceased). It estimates the probability that a given 

input belongs to a particular class based on clinical predictors (e.g., age, blood pressure, 

cholesterol levels). 

SHAP (shapley additive explanations) values 

SHAP values were used to explain the contribution of individual features to the model’s 

predictions. SHAP analysis was employed not as a standalone predictive model but as a post 

hoc interpretability tool to explain the output of the trained random forest model. The SHAP 

values allowed to quantify the contribution of individual features to the model’s predictions, 

thereby enhancing the interpretability and transparency of the decision-making process. This 

method provides detailed insights into both the magnitude and direction of feature impact: Blue 

points represent lower feature values contributing less to the target. Whereas, red points 

represent higher feature values contributing more to the target. 

A SHAP summary plot was generated to visualize the overall influence of each feature on the 

target variable. This method is particularly useful for verifying the impact direction indicated 

by linear models and for uncovering interactions and non-linear relationships [31]. 

Correlation with the target 

Correlation analysis was conducted to measure the linear relationship between each feature and 

the target variable [24]. Positive correlation indicates that as the feature increases, the target 

variable also increases. Whereas, negative correlation indicates that as the feature increases, 

the target variable decreases. 
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While correlation provides a simple measure of association, it does not account for non-linear 

relationships or interactions between features [24]. 

Each model was trained and validated on separate data splits to assess their performance 

accurately. Cross-validation techniques ensure that the models generalize well on unseen data. 

The performance of each method was measured using appropriate metrics such as accuracy, 

sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve. 

To have an accurate and unbiased model, we made sure that our dataset is balanced. A balanced 

dataset with an equal number of observations for both recovered and dead patients was created 

to train and test our model. The data samples (patients) in the training dataset have been 

selected randomly and they were completely separated from the testing data (Figure 1).  

Prior to balancing, the dataset exhibited a class imbalance with a higher proportion of survivors 

compared to non-survivors. To solve this issue, a random oversampling of the minority group 

(survivors) was performed to achieve a 1:1 class distribution in the training set. This resampling 

was conducted exclusively on the training data to avoid information leakage and ensure a fair 

evaluation of the model’s performance. 

Tools and software 

Analysis was conducted using Python programming language in a Jupyter Notebook 

environment. Key libraries utilized include: 

Pandas: For data manipulation and cleaning. 

NumPy: For numerical operations. 

Matplotlib/Seaborn: For data visualization. 

These tools ensured the efficient handling of large datasets and the generation of high-quality 

visualizations to identify patterns and outliers. 

Data transformation 

After removing unnecessary columns, the dataset was further refined by encoding categorical 

variables. Columns containing string values were identified, and a LabelEncoder was applied 

to convert them into numeric values. Given the large number of columns—reduced from 665 

to 132—LabelEncoder was chosen for its simplicity and efficiency, particularly for columns 
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with only two categories. This approach avoided further increasing dataset complexity, which 

could have introduced challenges in analysis and modeling. 

Exploratory data analysis (EDA) 

EDA was performed to understand the distribution of variables, detect anomalies, and assess 

correlations between features. Statistical summaries were computed to identify key trends, and 

graphical methods such as bar charts, heatmaps and sHAP Summary Plots were generated. 

Feature selection 

There were 132 features taken - in a step called features selection -from the original dataset. 

All relevant features were extracted. The primary aim of features selection can be regarded as 

searching for the most significantly informative features and removing redundant ones to 

decrease the dimension of the model and its complexity.  

Selected features included demographic data, clinical characteristics and laboratory data that 

were taken at the admission moment. The features included in the predictor variables were age, 

gender, vital signs (ex: blood pressure, heart rate, respiratory rate, temperature), number of 

medical comorbidities (such as hypertension, diabetes mellitus), laboratory data (such as 

Complete Blood Count, Comprehensive Metabolic Panel and arterial blood gas (ABG) 

tests) and clinical scores (PSI, CURB-65). Table (1) 

Statistical analysis 

Statistical analyses were performed, followed by the development of predictive models to 

forecast key variables 

The statistical analysis starts with examining the data collected through descriptive statistics to 

identify the central tendencies, normality distribution (using Shapiro-wilk test, Q-Q, and 

distribution plots), and variability. Continuous variables were summarized using means and 

standard deviations (SD) or medians and interquartile ranges (IQR), depending on normality 

assessment, in addition to frequencies and percentages for categorical variables. The statistical 

analysis was conducted using JASP 18.3.0 (Jeffreys's Amazing Statistics Program) and IBM 

SPSS statistics 25. 
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RESULTS 

Demographic and clinical characteristics 

A sample of 251 participants was included in this study. The median for their age was 60 years 

(IQR=25). Most were male 146 (58.2%) and 105 (41.8%) were female. The majority of patients 

were admitted to ICU 221 (88.0%) versus Ward 30 (12.0%). with median of LOS was 10 days 

(IQR 13), and for pateints were in ICU the ICU length of stay (ICU_LOS) the median was 4.77 

days (IQR=1.77). 

 Regarding COVID-19 status, 18 (7.2%) had a current SARS-CoV2 infection, and 9 (3.6%) 

had a previous history of COVID-19. Table (2). 

Participants had a high prevalence of comorbidities, with Diabetes Mellitus being the most 

prevalent (30.3%), followed by septic shock (25.5%), hypertension (13.1%), and cardiac 

diseases (8.8%). Other reported conditions were Alzheimer’s disease (6.8%), chronic kidney 

disease (4.8%), anemia (2.8%), asthma (2.4%), and COPD (2.0%). Table (2). 

Treatment background characteristics 

The chronic treatments varied, vitamin C and zinc supplements showed the highest percentage 

of drug intake due to COVID-19 recommendations at that time for their prophylactic and 

supportive effects (29.1 % , 27.5 % ) respectively . Insulin therapy also was used, with 24.7% 

on insulin bolus and 15.9% on basal insulin. This alongside DM as the most chronic conditions 

found.  Omeprazole (19.1%), Bisoprolol (17.9%), and B complex (16.3%) were among the 

other most commonly used medications. Table (3). 

The most common short-term treatments were antibiotics (80.1%), anticoagulants (78.1%), and 

Enoxaparin (77.7%). Antiviral agents were utilized by few patients (8.0%), and only 4.8% were 

given supportive drugs, including albumin, favipiravir, and norepinephrine injections (Table 

6). 

Characteristics specific to pneumonia 

Among the included participants, the majority were classified as Class 2 (40.6%) and Class 3 

(23.1%) according to the Pneumonia Severity Index (PSI), indicating moderate severity. Based 

on CURB-65 scores, 41.8% of patients had a score of 1, and 24.7% had a CURB-65 score of 

2, indicating differences in pneumonia risk levels.  
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The majority of patients got bacterial CAP with 215 (85.7%), most of patients were survived 

169 patients (67.3%) Table (4). 

The most common initial clinical symptoms were dyspnea (38.6%) and fever (16.3%). Other 

symptoms were productive cough (6.8%), dry cough (6.4%), pleuritic chest pain (6.4%), 

headache (4.4%), vomiting (4.4%), and abdominal pain (4.0%). Notably, 4.0% of patients 

required intubation or mechanical ventilation. Table (4). 

Machine learning analysis results to predict mortality 

Global feature correlation structure 

A comprehensive correlation heatmap (Supplementary Data) visualized the interdependence 

across all features. This analysis revealed a dense correlation structure, indicative of 

overlapping information among variables. Redundancy necessitates preprocessing steps, 

including features selection to ensure model robustness and reduce overfitting. 

This step is performed after cleaning the columns; data cleaned excludes columns with all null 

values, leading to a more accurate and reliable correlation matrix for data cleaned. 

The diagonal of the heatmap typically contains values of 1, representing the perfect correlation 

of each feature with itself. The color intensity in each cell indicates the strength and direction 

of correlation between the corresponding features on the axes. The heatmap uses a color 

gradient from blue to red, Positive correlations (closer to 1) are often shown in warm colors 

(e.g., red), while negative correlations (closer to -1) appear in cool colors (e.g., blue).  

Certain feature groups exhibit noticeable correlations, suggesting potential multicollinearity or 

shared variance. For instance, tightly clustered red squares suggest high correlations between 

related clinical markers or treatment variables, while patches of blue indicate negative 

associations between certain variables. This matrix highlights the importance of addressing 

multicollinearity in model development and suggests that specific feature groups may have 

overlapped predictive power. Identifying and managing these relationships can enhance model 

performance and interpretability. 

Feature correlation analysis 

A correlation matrix is often calculated before building predictive models in Python (or any 

other programming language) to gain insights into the relationships between features. Highly 

correlated features could cause multicollinearity, requiring dimensionality reduction 
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techniques like principal component analysis (PCA) or the elimination of redundant features 

to enhance model performance and interpretability. 

Sometimes, as in our study, the correlation matrix helps in identifying the relationships between 

different features in the dataset. It shows how strongly each feature is related to the others, 

which is crucial for understanding the underlying structure of the data. 

 The correlation matrix was used to find pairs of features with a correlation score of 0.8 or 

higher (highly correlated features). These pairs were then saved into a CSV file for easier 

inspection. 

To evaluate the internal structure of the dataset and identify potential predictors of mortality, 

Pearson correlation heatmaps were generated. In our results high coefficient means high 

survival rate with the variables, as in encoding process for categorical variables we gave 

number one for survival outcome and number two for non-survival outcome. The correlation 

was between the variables and number one outcome, high correlation value means high 

correlation with the survival rate. This correlation with survival rate only for this step.  Figure 

2 shows the intercorrelation matrix among all features, revealing strong positive correlations 

between inflammatory markers (eg, C-reactive protein [CRP], ferritin), and between white 

blood cell count and neutrophil count (r > 0.7). These findings suggest potential collinearity 

among markers of systemic inflammation, which may influence model stability and necessitate 

variable selection or regularization strategies. 

Top correlated features with the mortality target 

Figure 3 shows the correlation between individual features and the target outcome of mortality. 

Age (r ≈ 0.45), neutrophil count (r ≈ 0.41), CRP (r ≈ 0.39), and ferritin (r ≈ 0.36) were among 

the strongest positive correlates with mortality, indicating their potential as high-risk 

predictors. Conversely, lymphocyte count (r ≈ –0.42), oxygen saturation (r ≈ –0.38), and 

hemoglobin level (r ≈ –0.33) showed the strongest negative correlations, suggesting a 

protective role. These patterns underscore the prognostic relevance of age and markers of 

inflammation and hypoxia in predicting adverse outcomes. The identification of these features 

supports their prioritization in model development and interpretability analysis. 
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A focused heatmap (Figure 3) showed the variables most correlated with the mortality Notably, 

vitamin C, zinc, enoxaparin (CLEXAN) and insulin bolus exhibited the highest correlations.  

Zinc and Vitamin C exhibited the highest positive correlation (r = 0.90), suggesting a strong 

relationship between these two variables with survival rate. Whereas, Insulin Bolus and 

Enoxaparin demonstrated a moderate correlation (r = 0.59), highlighting a potential interaction. 

LOS Showed minimal correlation with most variables, with the highest being a weak negative 

correlation with Vitamin C (r = -0.0066). Diastolic blood pressure shows low correlations with 

other variables, with the maximum being a weak positive correlation with Vitamin C (r = 0.15). 

Mutual information analysis 

The mutual information scores (Figure 4) quantify the dependency between each feature and 

the target variable (mortality), providing a ranking of the most informative predictors. Key 

findings include creatinine concentration, WBC including eosinophils, and neutrophils count. 

Number of previous hospitalizations is also a top contributor. RDW and ALT are other 

significant features reflecting their clinical relevance. This analysis underscores the critical role 

of inflammatory markers (eosinophils, neutrophils, and basophils count) in mortality outcome 

prediction, highlighting their importance in clinical decision-making. 

Feature coefficients from lasso regression  

The Lasso regression analysis (Figure 5) refined the list of predictors by identifying the 

magnitude and direction of their contributions to the mortality target.  Culture demonstrated 

the highest positive coefficient (0.15). not clinically important  as culture variable just gives 

indication if the patient did culture or not. Meropenem Showed a significant positive 

coefficient, suggesting its importance in predicting mortality. 

ABGs BE, PCO2, and platelet count contributed positively to the prediction model. 

This analysis underscores the critical roles for meropenem, ABGs, pH and PCO2 in mortality 

outcome prediction.   
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Feature importance from logistic regression 

The logistic regression-based feature importance analysis (Figure 6) provided an additional 

perspective on variable significance. For instance, pH identified as the most impactful predictor 

with the strongest negative impact (coefficient approximately -1.0). ICU_LOS and LOS: 

Showed a substantial positive impact with a coefficient around 0.6, and 0.4 respectively, 

suggesting that longer stays are associated with higher mortality. This analysis underscores the 

critical roles for pH, LOS, ICU_LOS, PCO2, diastolic blood pressure, WBC, HCO3 and ABGs 

in predicting mortality rate. 

SHAP analysis of medication and laboratory influence on model predictions 

The SHAP summary plot shown in Figure 7 illustrates the impact of individual features—

primarily medications and laboratory findings—on the predictive model for the survival 

outcome outcome. Features are ranked by their average absolute SHAP values, representing 

their overall contribution to the model’s output. 

The most influential feature was antibiotic usage, which had a strong negative SHAP value 

(impact < –0.6), indicating that antibiotic administration strongly decreased the predicted risk 

of the mortality outcome.  

Basophil count and initial fever presentation also showed negative SHAP values, suggesting a 

modest inverse association with the predicted risk. Other features such as enoxaparin, 

ciprofloxacin susceptibility, and piperacillin/tazobactam susceptibility were associated with 

lower predicted risk, possibly reflecting effective treatment or underlying microbial sensitivity. 

In contrast, meropenem susceptibility, imipenem susceptibility, and amikan susceptibility had 

the largest positive impacts, potentially reflecting resistance to critical antibiotics or 

associations with more severe infections requiring these drugs. Among medications, 

tocilizumab, prednisolone, and anticoagulant use were positively associated with the outcome, 

suggesting these therapies may be markers of greater disease severity or higher baseline risk. 

 

Machine learning results for predicting etiology of CAP 

Correlation analysis for predicting bacterial infection 
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A heatmap was generated to assess the correlation between clinical variables and bacterial 

infection (increasing coefficeints reading means higher opportunity for getting bacterial 

infection as the correlation was between the variables and positive bacterial infection result - 

Encoding bacterial infection with number one and no bacterial infection with number two) 

(Figure 8). 

Enoxaparin, and other anti-coagulant treatments exhibited the strongest positive correlations 

with bacterial infection, with correlation coefficients of 0.99.  Vitamin C supplementation 

showed also high correlation with Zinc (r = 0.90).  

Feature importance analysis using logistic regression analysis for predicting bacterial 

infection 

Logistic regression analysis was conducted to evaluate feature importance (Figure 9). 

Lymphocytes were the most influential predictor, with a coefficient value of approximately 

0.11, 

HCO3, WBCs, and MCV, each contributing significantly to the prediction model.  

Features such as BUN, neutrophils count and ABGs had significant negative relationship. 

SHAP analysis 

SHAP values were employed to interpret model predictions (Figure 10). Antibiotics, Basophils, 

and initial finding fever emerged as key variables influencing the model's output.  

The correlation coefficients between selected features and the target variable 

Figure 11 presents the correlation coefficients between selected features and the target variable. 

Antibiotics demonstrated the strongest positive correlation with the bacterial infection target. 

Enoxaparin and Anticoagulant suggesting that these treatments are significantly associated 

with the bacterial infection. The initial fever finding and Basophils also showed moderate 

positive correlations. 

Conversely, features such as mAb of tocilizumab and susceptibility of Amikasin demonstrated 

weak negative correlations with the target. 

Other antibiotic susceptibility variables, including susceptibility of Cefepime and susceptibility 

of Ciprofloxacin, had minimal or near-zero correlations, indicating limited direct association 

with the outcome. 
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The predictive performance of the logistic regression models for both outcomes is summarized 

in the Table 5. The mortality outcome model achieved robust performance, with AUROCs of 

0.90 (95% CI: 0.85–0.95) in the training set and 0.88 (95% CI: 0.83–0.93) in the test set, 

indicating strong discriminative ability. The bacterial infection outcome model demonstrated 

even higher predictive power, with AUROCs exceeding 0.96 in both training and test sets, 

accompanied by perfect sensitivity (1.00) in both cases.  

Table 6 reports a comparative summary of the top predictors identified by four variable-

importance methods—mutual information, LASSO coefficients, logistic regression odds 

ratios, and mean SHAP values—highlighting both overlaps and divergences in feature ranking. 

Variables such as zinc, vitamin C, enoxaparin, and neutrophils consistently emerge as key 

predictors across multiple methods, reinforcing their clinical relevance in predicting mortality 

among patients with CAP. Meanwhile, other variables such as meropenem, pH, and platelet 

count show importance only in selected methods, underscoring the need for careful 

interpretation of variable-importance results depending on the statistical approach.  

Table 7 shows forest plot data for key predictors of both investigated outcomes in this study. 

Variables such as ICU stay, pH, WBC, and platelets exhibit significant associations with 

mortality risk, with odds ratios ranging from 0.6 (pH) to 2.5 (ICU stay). Regarding bacterial 

infection outcome, predictors such as lymphocytes, HCO3, WBC, and neutrophils, with odds 

ratios between 0.8 and 2.5. These forest plots give us important information about how 

important and accurate these predictors are compared to each other. This analysis supports the 

possible utility of these variables in clinical decision-making and model interpretability. 

 

DISCUSSION 

Authors should discuss the results and how they can be interpreted in the perspective of 

previous studies and of the working hypotheses. The findings and their implications should be 

discussed in the broadest context possible. Limitations and future research directions may also 

be highlighted. 

The primary aim of this study was to develop, validate, and implement ML models specifically 

tailored to predict the etiology and mortality of CAP. Among the 251 included patients, 215 

(85.7%) had bacterial CAP and most of them survived (67.3%). Extensive treatment regimens 
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were noted, including high utilization of antibiotics and anticoagulants. Pneumonia was of 

variable severity. 

Predicting mortality of CAP 

In the Feature Correlation Analysis Regarding Mortality step, the results showed that zinc, 

vitamin C, enoxaparin and insulin bolus had high correlation with CAP in hospital survival 

rate.  

Regarding zinc supplement; The clinical studies show same results as increasing zinc intake 

will decrease the mortality or increase the survival rate. One study result was : Zinc deficiency, 

common in developing countries, is linked to increased CAP morbidity and mortality. Zinc 

levels were lower in older patients, those with high CURB-65 scores, and smokers [32].  

The feature correlation also showed high correlation for vitamin C supplement and in hospital 

survival rate, the clinical findings also agree with . In  one systematic review showed that 

vitamin C supplementation had potential benefits on CAP management [33]. 

These nutrients are often studied for their potential benefits in supporting the immune system 

and improving outcomes in respiratory infections [34]. in our study they were taken as a chronic 

treatment emphasizing their role as immunity supporters. 

The Feature Correlation Analysis  also showed a high correlation between enoxaparin and in -

hospital survival rate ,  this result is alongside the clinical findings. One study conducted, they 

found that Enoxaparin is associated with lower rates of mortality. Enoxaparin is often used as 

a preventative measure in hospitalized CAP patients to reduce the risk of venous 

thromboembolism, a serious complication that can worsen outcomes the pateints [35]. 

About insulin bolus treatment ; Severe infections like CAP trigger a stress response, leading to 

increased levels of cortisol, catecholamines, and inflammatory cytokines [36]. These factors 

contribute to insulin resistance and hyperglycemia, even in non-diabetic patients. In diabetic 

patients, CAP can cause poor glycemic control, increasing the risk of complications. Persistent 

hyperglycemia weakens the immune response, impairing neutrophil function and increasing 

infection severity [37]. Also high blood sugar levels are linked to higher mortality rates, 

prolonged hospital stays, and increased risk of complications such as sepsis and respiratory 

failure [38]. 
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 Insulin therapy in adult patients hospitalized for a critical illness, other than hyperglycemic 

crises, may decrease mortality in certain groups of patients [39]. And this result also right for 

insulin bolus treatment that decrease the mortality rate and LOS. [40]. 

The next step in ML modeling regarding CAP mortality predictors was Mutual information 

analysis. It’s scores quantified the dependency between each feature and the target (mortality), 

providing a ranking of the most informative predictors. Neutrophils count, ALT, MCV, HGB 

and platelet count emerged as the top contributors. These findings underscore the importance 

of these variables , as these markers are often indicative of systemic inflammation.  

High Neutrophil/Lymphocyte Ratio (NLR) and Neutrophil Count Percentage (NCP) are 

reliable predictors of mortality [41]. Overactive neutrophils release pro-inflammatory 

cytokines, which can cause tissue damage and thrombosis [42]. 

About ALT result, one study showed that; circulating liver function biomarkers showed diverse 

nonlinear correlations with mortality [43]. CAP triggers a systemic inflammatory response, 

which can elevate ALT levels due to liver stress. 

Regarding MCV one study showed that large MCV was associated with all-cause mortality, 

cardiovascular disease mortality, and infection-associated mortality [44]. Elevated MCV may 

contribute to venous thromboembolic disease through increased hematocrit, which promotes 

platelet margination, or by increasing blood viscosity, reducing flow in large vessels and 

predisposing to clot formation. This imbalance in blood rheology can lead to thrombosis [45]. 

Patients with abnormal platelet count thrombocytopenia (19%) or thrombocytosis (28%) had a 

higher length of hospital stay, more in need for ICU admission, more use of mechanical 

ventilation invasive or noninvasive and more 30 days mortality rate  [46].This agree with our 

model results. 

An increase in hemoglobin level predicts an increased in mortality, ICU hospitalization, and 

extrapulmonary complications in COVID-19 patients [47]. Elevated hemoglobin increases 

blood viscosity, slowing circulation and raising the risk of thrombosis, stroke, and 

cardiovascular disease [48].  These clinical findings align  the result regarding the mutual 

information analysis. 

Feature selection through Lasso regression further refined list of predictors by identifying the 

magnitude and direction of their contributions to the mortality target. Features such as 
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Meropenem, ABGs, PCO2, and platelet count demonstrated strong positive coefficients, 

suggesting their importance in predicting the mortality target. Conversely, features such as 

location and cardiovascular disease were negatively associated with the mortality outcome. 

Regarding meropenem empirical treatment (in our data records meropenem used as empirical 

treatment). Empiric meropenem-based regimen appeared to be associated with lower 

mortality.[49]. But in recent study they found that meropenem increases mortality rate; 50 

patients (14.12%) experienced treatment failure, and ICU mortality was 48.02% (120 patients). 

Predictors of meropenem failure included a higher APACHE (acute physiology and chronic 

health evaluation) score and shorter treatment duration. Predictors of mortality were high 

APACHE and SOFA scores, initiation of antibiotics more than 72 hours after sepsis onset, 

shorter treatment duration, and renal dose adjustments of meropenem [50]. The last study align 

with our model result. 

Regarding ABGs , one study related to COVID-19 mortality, ABGs was found as a predictor 

of mortality in COVID pneumonia patients initiated on noninvasive mechanical ventilation 

[51]. 

Regarding the positive relationship with PCO2, clinical findings have same result with higher 

PCO2 being associated with worse survival [52]. Platelet count results also agree with the 

clinical findings. Findings among patients with mild thrombocytosis suggested that high‐

normal platelet count is associated with the occurrence of thrombotic events [53]. 

We had negative or inverse relationships (CVDs, COVID 19 and location) that may need more 

focusing on features or model selection as these findings should have positive impacts. The 

patient with severe CAP needs monitoring of an ICU where, if necessary, they can receive 

specialized support connected to a mechanical ventilator and/or hemodynamic support [54]. 

Also, patients can get pneumonia when infected with SARS-COV2. The virus that causes 

COVID-19 can infect the lungs, causing pneumonia [55]. Finally CAP is a significant risk 

factor for all major cardiovascular disease events, including acute coronary syndrome, stroke, 

and mortality [56]. These clinical findings (CVDs, COVID-19 and location) have opposite 

relationship regarding our modeling results, so farther processing and handling must be needed 

regarding lasso regression model. Regarding pH, one study showed  metabolic acidosis (low 

pH) is associated with higher mortality in ICU [57]. This inverse relationship agreed with our 

model results. 
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The last step used was Logistic regression. It provided an additional perspective on variable 

significance. Variables such as pH, ICU_LOS, LOS, age, PCO2, O2 saturation, and diastolic 

blood pressure were identified as the most impactful predictors of the mortality target outcome. 

Regarding pH, inverse relationship emphasized by clinical finding [57].  

Regarding length of stay as mentioned earlier ; the patient with severe CAP needs monitoring 

of an ICU where, if necessary, they can receive specialized support connected to a mechanical 

ventilator and / or hemodynamic support [54].  PSI, WBC, PCO2, HCO3 , ABGs and diastolic 

blood pressure have positive relationship alongside the clinical finding [52, 58-60]. Among 

outpatients with pneumonia, oxygen saturations <90% were associated with increased 

morbidity and mortality [61]. This agree with our model result. 

Our aims of this study to make rapid evaluation about patient condition at the admission time; 

by looking for the results obtained (zinc, vitamin C supplements, Enoxapirin, Neutrophils 

count, platelet count, ALT, MCV, ABGs, PCO2, HGB, pH, WBC, HCO3 and O2 saturation) are 

main predictors for mortality and these results can be obtained rapidly at the admission time 

[62]. There are some predictors have opposite clinical findings results such as CVDs and 

COVID-19 these findings indicate that we must do further investigation and choosing for 

models and features selection. 

Predicting the etiology of CAP 

A heatmap was generated to assess the correlation between clinical variables and the target 

outcome (infection with bacteria). Enoxaparin, and other anti-coagulant treatments exhibited 

the strongest positive correlations with bacterial infection, this correlation has negative  clinical 

findings result ; Severe bacterial pneumonia and sepsis trigger coagulation activation both 

locally in the lungs and systemically, leading to tissue injury and reduced survival. This has 

prompted extensive investigation into therapies that modulate inflammation caused by 

coagulation activation. Various anticoagulant strategies have been explored for bacterial 

pneumonia, sepsis, and acute respiratory distress [63]. 

Notably, Vitamin C supplementation showed also high correlation with Zinc with bacterial 

CAP. These results have opposite clinical results. In recent study published showed that higher 

doses of vitamin C and zinc resulted in greater inhibition of Klebsiella pneumoniae biofilm 

formation, demonstrating their potential as alternative agents to combat biofilm-associated 

antibiotic resistance [64]. 
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Using Logistic regression analysis to evaluate feature importance showed that Lymphocytes 

was the most influential predictor, and this result has opposite clinical research [65, 66]. 

HCO3  serum level also the same result for clinical research; elevated serum bicarbonate levels 

have been observed in patients with bacterial pneumonia [67]. Severe bacterial lung infections 

(like pneumonia) can cause respiratory acidosis due to poor gas exchange and carbon dioxide 

retention. Regarding WBCs, typical bacterial CAP was associated WBC ≥15,000/mL [65]. 

This agree with our result. 

Regarding  BUN ,one study conducted for bacterial unirany tract infection showed decrease in 

BUN level  [68]. This agree with our model result. The most clinical predictor for bacterial 

infection is neutrophils count as it increase in bacterial infection , the model showed opposite 

result [65, 66]. 

 SHAP (SHapley Additive exPlanations) values were employed to interpret model predictions, 

Antibiotics, Basophils, and initial finding fever emerged as key variables influencing the 

model's output.  

Bacterial CAP needs antibiotic treatment [69] and obtaining result opposite for this (antibiotics 

intake increases bacterial infection) has no clinical meaning. 

 About basophils. A study performed on mice found that basophils can enhance the innate 

immune response against bacterial infection and help prevent sepsis [70]. 

While fever is a key feature of both bacterial and viral CAP, its presence and characteristics 

alone are not sufficient to differentiate the two. A combination of clinical, laboratory, and 

imaging findings is necessary for accurate diagnosis. The symptoms of bacterial pneumonia 

can develop gradually or suddenly. Fever may rise as high as a dangerous 105 degrees F, with 

profuse sweating and rapidly increased breathing and pulse rate [71]. 

Lastly, The correlation coefficients between selected features and the target variable. The most 

clinical predictors are initial fever and Basophils that are alongside with clinical finding. [70, 

71]  

In summary,  models showed (HCO3, BUN, WBC, and initial fever ) are main predictors for 

bacterial CAP. Also showed opposite clinical results with lymphocyte count. This indicates we 

need further models and features selection.  
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The small sample size (n=251) may limit the generalizability and robustness of our findings. 

As part of future work, we aim to scale up the study by collaborating with additional clinical 

sites to collect a larger, multi-center dataset with consistent data quality standards. This 

expansion will enable more rigorous model training, external validation, and improved 

confidence in the predictive performance of the ML models. 

The observational nature of the dataset introduces potential confounding variables that may not 

have been fully accounted for in the models. Certain predictors, such as medication usage (e.g., 

enoxaparin or insulin bolus), may reflect treatment decisions based on illness severity rather 

than causal relationships. Additionally, imbalances in the distribution of bacterial versus non-

bacterial CAP, or survivor versus non-survivor groups, could introduce class bias into model 

training, influencing performance and feature interpretation. 

Different ML models have inherent assumptions and biases that can affect variable selection 

and interpretation. For instance, LASSO regression is effective for feature reduction but limited 

in capturing non-linear interactions. Random forest models handle non-linearity but may 

overemphasize variables with high cardinality or variance. SHAP values, while providing 

detailed interpretability, may diverge from classical regression coefficients and can be 

misinterpreted without sufficient contextual knowledge. Inconsistencies between SHAP results 

and established clinical findings (e.g., regarding antibiotics or lymphocyte counts) further 

underscore the need for domain-aware interpretation. 

Although the study focuses on early admission features, not all patients had complete 

laboratory or radiological data available at standardized time points. Missing values may have 

necessitated imputation or led to the exclusion of potentially informative features. Furthermore, 

variables like medication use (e.g., antibiotics or vitamins) may have been recorded without 

precise timing relative to symptom onset or diagnosis, complicating causal inference. 

CONCLUSION 

This study explored key predictors for mortality and bacterial etiology in CAP, using machine 

learning models to analyze various clinical features. Key findings include the association of 

zinc and vitamin C supplements and enoxaparin with increased survival rate. Neutrophil count, 

ALT, MCV, HGB and platelet count with increased mortality. Insulin bolus therapy also 

reduced mortality, emphasizing the importance of glycemic control in CAP patients. 
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However, some variables like lymphocyte count, COVID-19, and cardiovascular disease 

presented conflicting results, requiring further investigation. Regarding bacterial etiology, 

features like HCO₃, BUN, WBC, and initial fever were significant predictors, though some 

discrepancies in lymphocyte count suggest model refinement is needed. 

Overall, rapid evaluation of clinical variables at admission is crucial for predicting mortality 

and bacterial infections in CAP, but further validation and model adjustments are necessary for 

more accurate outcomes. 
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TABLES AND FIGURES WITH LEGENDS 

Table 1. The list of features used in the machine learning algorithm 

Demographic Age 

  

Gender 
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Clinical finding Number of 

hospitalizations 

Number of pneumonia  Temperature 
 

Pulse Respiratory rate Systolic Blood 

pressure 

Diastolic Blood 

pressure 

Length of stay PSI class 

Oxygen saturation Oxygen therapy PSI 

CURB-65 Initial finding fever Initial finding 

Shortness of breath 

Location ICU length of stay  

laboratory 

results 

Glucose serum Hemoglobin A1C (HbA1c) Random blood 

glucose 

Partial pressure of 

oxygen ( PaO2) 

Partial pressure of carbon 

dioxide (PCO2) 

 Bicarbonate 

(HCO3) 

Base Excess of 

arterial blood gas ( 

ABGs BE) 

Albumin serum Creatine 

phosphokinase 

(CPK) 

Blood urea nitrogen 

(BUN)  

Alkaline phosphatase Alanine 

aminotransferase 

(ALT) 

Aspartate 

aminotransferase 

(AST) 

Total Bilirubin  Direct Bilirubin  

Amylase serum pH Hemoglobin  

Hematocrit (HCT) Mean corpuscular 

hemoglobin (MCH) 

Mean corpuscular 

volume (MCV) 

Mean corpuscular 

hemoglobin 

concentration 

(MCHC) 

Platelet distribution width 

(PDW) 

Platelet count 

White blood cell 

(WBC) 

Red blood cell distribution 

width (RDW) 

Mean platelet 

volume (MPV) 
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Red blood cell 

(RBC) 

Erythrocyte sedimentation 

rate (ESR) 

Lymphocytes count 

Monocytes count Eosinophils count Basophils count 

Neutrophils count Magnesium serum Potassium serum 

Calcium serum Sodium serum Total protein 

Serum glutamic-

oxaloacetic 

transaminase 

(SGOT) 

Serum glutamic-pyruvic 

transaminase (SGPT) 

Creatinine serum 

Urine PH C reactive protien Procalcitonin 

(PCT) 

Uric acid High-density lipoprotein 

(HDL) cholesterol 

Low -density 

lipoprotein 

(LDL)_cholesterol 

Prothrombin time D dimer The international 

normalized ratio 

(INR) 

Lactate 

dehydrogenase 

(LDH) 

Troponin Activated partial 

thromboplastin 

time (aPTT) 

Culture Sputum culture Urine character 

hazy 

PCR 
  

medical history Diabetes mellitus Hypertension Cardiovascular 

disease 

Alzheimer COVID_19 Hypotension 

Septic shock Cough Dry cough 

Chest pain 
  

medication Imipenem Cefepime Vancomycin 

Meropenem Ceftriaxone Levofloxacin 
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Susceptibility 

Imipenem 

Susceptibility Pipracillin 

tazobactam 

Imipenem cilastatin 

Susceptibility 

Meropenem 

Susceptibility Cefepime Susceptibility 

Levofloxacin 

Susceptibility 

Ceftazidime 

Susceptibility Aztreonam Susceptibility 

Ciprofloxacin 

Susceptibility 

Amikacin 

Amlodipine Aspirin 

Bisoprolol Vitamin C Atorvastatin 

Cilastatin Furosemide Lansoprazole 

Enoxaparin Insulin basal Lactulose 

Enalapril Insulin bolus Omeprazole 

Prednisolone Tocilizumab Anti-platelet 

Zinc Antibiotics Anti-coagulant 

B complex Antiviral Number of PRN 

medications  

mAb tocilizumab Number of medications 
 

Number of regular 

medications 

Guideline concordant 

antibiotics 

 

PRN: Per registered nurse (as needed). 

 

Table 2. Demographic and clinical data for the participants (N= 251) 

Feature Frequency Valid 

percentage % 

Median 

(IQR) 

Gender    

    

    

Age (years)   60 (IQR=25) 

Location    

Ward 30 12.0  
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ICU 221 88.0  

LOS    10 days 

(IQR=13) 

ICU_LOS    4.77 days 

(IQR=1.77) 

Current COVID_19 18 7.2  

Previous COVID_19 9 3.6  

Diseases    

Diabetes Mellitus 76 30.3  

Septic shock 64 25.5  

HTN 33 13.1  

Cardiac disease 22 8.8  

Alzheimer 17 6.8  

Another lung disease 14 5.6  

CKD 12 4.8  

Anemia 7 2.8  

Asthma 6 2.4  

COPD 5 2.0  

Hypotension 5 2.0  

GERD 5 2.0  

Dyslipidemia 4 1.6  

History    

Number of previous 

pneumonias  

  0.77 (IQR=0) 

Number of previous 

hospitalizations  

  2.4 (IQR=3.7) 

Kidney transplantation 4 1.6  
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Table 3. Treatment related descriptive data  

Feature Frequency Valid 

percentage 

Chronic treatment   

Vitamin C 73 29.1 

Zinc 69 27.5 

Insulin bolus  62 24.7 

Omeprazole 48 19.1 

Bisoprolol  45 17.9 

B complex 41 16.3 

Insulin basal  40 15.9 

Antiplatelet 39 15.6 

Aspirin 38 15.1 

Amlodipine 31 12.4 

Furosemide  31 12.4 

Atorvastatin 27 10.8 

Lactulose  24 9.6 

Lansoprazole  21 8.4 

Enalapril  17 6.8 

Prednisolone 16 6.4 

MAb_tocilizumab 16 6.4 

Tocilizumab 16 6.4 

Ipratropium inhaler  13 5.2 

Clopidogrel  12 4.8 

Hydrochlorothiazide  12 4.8 

Azithromycin 11 4.4 

Piperacillin - Tazobactam 11 4.4 
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Budesonide inhaler  10 4.0 

Vitamin D 10 4.0 

Metformin  9 3.6 

Colchicine  9 3.6 

Ca carbonate  7 2.8 

Candesartan  7 2.8 

Metronidazole  7 2.8 

Valsartan 7 2.8 

Bromazepam  6 2.4 

Carvedilol  4 1.6 

Short term treatment   

Antibiotics 201 80.1 

Anticoagulant 196 78.1 

Enoxaparin 195 77.7 

Antiviral agent 20 8.0 

Albumin 12 4.8 

Favipiravir 12 4.8 

Norepinephrine Injection 12 4.8 

Paracetamol 11 4.4 

Guaifenesin 11 4.4 

Dextrose Injection 11 4.4 

Morphine 8 3.2 

Remdesivir Injection 8 3.2 

 

Table 4. Pneumonia specific descriptive data  

Feature Frequency Valid percentage 

PSI class   
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1 48 19.1 

2 102 40.6 

3 58 23.1 

4 33 13.2 

5 10 4.0 

CURB 65   

0 47 18.7 

1 132 41.8 

2 62 24.7 

3 10 4.0 

Bacterial infection   

Yes 215 85.7 

No 36 14.3 

Outcome   

Survivor 169 67.3 

Non survivor  82 32.7 

Initial findings   

SOB 97 38.6 

Fever 41 16.3 

Productive cough 17 6.8 

Dry cough 16 6.4 

Pleuritic chest pain 16 6.4 

Headache 11 4.4 

Vomiting 11 4.4 

Abdominal pain 10 4.0 

Intubation / 

mechanical 

10 4.0 
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ventilation 

Diarrhea 10 4.0 

Fatigue 8 3.2 

Nausea 6 2.4 

Constipation 5 2.0 

Muscular or joint pain 4 1.6 

Loss of taste and 

smell 

4 1.6 

 

Table 5. Performance Metrics of Logistic Regression Models for Predicting Mortality 

and Bacterial Infection 

 

Metric 

Mortality Outcome 

(Training Set) 

Mortality Outcome 

(Test Set) 

Bacterial Infection 

Outcome (Training 

Set) 

Bacterial Infection 

Outcome (Test Set) 

Accuracy 0.88 0.86 0.98 0.95 

AUROC 

0.90 (95% CI: 0.85-

0.95) 

0.88 (95% CI: 0.83-

0.93) 

0.99 (95% CI: 0.97-

1.00) 

0.96 (95% CI: 0.92-

0.98) 

Sensitivity 0.95 0.94 1 1 

Specificity 0.85 0.8 0.95 0.9 

PPV 0.9 0.88 0.97 0.95 

NPV 0.92 0.91 0.98 0.96 

 

Table 6: Comparative Variable Importance 

Feature Mutual 

Information 

LASSO 

Coefficient 

Logistic 

Regression Odds 

Ratio 

Mean SHAP 

Value 

Zinc ✓ – – ✓ 

Vitamin C ✓ – – ✓ 
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Enoxaparin ✓ – ✓ ✓ 

Neutrophils ✓ ✓ – ✓ 

Meropenem – ✓ – ✓ 

ICU Stay – – ✓ ✓ 

pH – ✓ ✓ ✓ 

WBC ✓ ✓ ✓ ✓ 

Platelets ✓ ✓ ✓ ✓ 
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Table 7. Forest Plot Data 

Variable Odds Ratio 95% CI P-value 

Forest Plot Data for Mortality Outcome 

ICU Stay 2.5 1.5-4.1 0.001 

pH 0.6 0.4-0.9 0.025 

WBC 1.8 1.2-2.7 0.005 

Platelets 1.7 1.1-2.6 0.010 

Meropenem 2.0 1.3-3.1 0.003 

Forest Plot Data for Bacterial Infection Outcome 

Lymphocytes 1.4 1.0-2.0 0.045 

WBC 2.1 1.5-3.0 0.002 

MCV 1.3 0.9-1.9 0.060* 

Neutrophils 2.5 1.8-3.4 0.001 

Basophils 1.6 1.1-2.4 0.010 

*Despite being statistically insignificant, it is kept in the table due to its close to the 

significant limit. 
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Figure 1. Overview of the Six-Steps Machine Learning Workflow for Predicting 

Outcome Probabilities 
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Figure 2. Heatmap of Highly Correlated Features 

1. Pearson Correlation Coefficients — Heatmap of higly correlated features. Warm 

colors show higher correlations, whereas cool colors are indicative of negative correlations. 
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Figure 3. Heatmap of Top Correlated Features with Mortality Target 

Pearson Correlation Coefficients — Heatmap of Features and Target Outcome. Warm colors 

show higher correlations, whereas cool colors are indicative of negative correlations 
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Figure 4. Mutual Information of Features Regarding Mortality Outcome 
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Figure 5. Top Feature Coefficients from Lasso Regression 
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Figure 6. Feature Importance from Logistic Regression 
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Figure 7. SHAP Summary Plot Showing the Impact of Medications and Laboratory Findings 

on Model Predictions 

 

 

Figure 2. Heatmap of Correlations Between Clinical Variables and Bacterial Infection. 

Pearson Correlation Coefficients — Heatmap of Features and Target Outcome. Warm colors 

show higher correlations, whereas cool colors are indicative of negative correlations. 
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Figure 3. Feature Importance from Logistic Regression Model 

The horizontal bar plot shows each feature’s coefficient, which mirrors the actual 

contribution of the feature to the predictions of the model. A positive coefficient means 

positively associated with the target, and a negative coefficient means negatively associated 

with the target. 
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Figure 4. SHAP Summary Plot of Feature Impact on Model Output 

This figure illustrates the SHAP values representing the impact of various features on the 

model's predictions. Positive SHAP values indicate a positive contribution to the outcome, 

while negative values signify a negative impact. The color gradient from blue (low feature 

value) to red (high feature value) highlights how feature magnitude influences the model 

output. Key influential features include Antibiotics, Basophils, and initial finding fever, with 

varying effects based on their respective values. 
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Figure 5. Correlation of Clinical and Treatment Features with Bacterial Infection as a 

Target Outcome 
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SUPPLEMENTAL DATA 

 

Appendix 1. Complete Heatmap of All Features. 
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