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ABSTRACT 

The preoperative human epidermal growth factor receptor type 2 (HER2) status of breast 

cancer is typically determined by pathological examination of a core needle biopsy, which 

influences the efficacy of neoadjuvant chemotherapy (NAC). However, the highly 

heterogeneous nature of breast cancer and the limitations of needle aspiration biopsy increase 

the instability of pathological evaluation. The aim of this study was to predict HER2 status in 

preoperative breast cancer using deep learning (DL) models based on ultrasound (US) and 

magnetic resonance imaging (MRI). The study included women with invasive breast cancer 

who underwent US and MRI at our institution between January 2021 and July 2024. US images 

and dynamic contrast-enhanced T1-weighted MRI images were used to construct deep learning 

models (DL-US: the deep learning model based on US; DL-MRI: the model based on MRI; 

and DL-MRI&US: the combined model based on both MRI and US). All classifications were 

based on postoperative pathological evaluation. Receiver operating characteristic analysis and 

the DeLong test were used to compare the diagnostic performance of the deep learning models. 

In the test cohort, DL-US differentiated the HER2 status of breast cancer with an AUC of 0.842 

(95% CI: 0.708–0.931), and sensitivity and specificity of 89.5% and 79.3%, respectively. DL-

MRI achieved an AUC of 0.800 (95% CI: 0.660–0.902), with sensitivity and specificity of 

78.9% and 79.3%, respectively. DL-MRI & US yielded an AUC of 0.898 (95% CI: 0.777–

0.967), with sensitivity and specificity of 63.2% and 100.0%, respectively. 

Keywords: Breast neoplasms; ERBB2 protein, human; ultrasound; US; magnetic resonance 

image; MRI; deep learning; DL  
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INTRODUCTION 

Human epidermal growth factor receptor type 2 (HER2) is one of the most important 

biomarkers in breast cancer [1]. The literature suggests that patients with HER2-positive 

invasive breast cancer are more likely to benefit from treatment with neoadjuvant 

chemotherapy (NAC) than patients with HER2-negative invasive breast cancer [2, 3]. Accurate 

preoperative assessment of HER2 status in invasive breast cancer is important for doctors to 

develop a treatment plan. 

Preoperative assessment of breast cancer HER2 status was based on 

immunohistochemical examination of core needle biopsy of breast cancer. HER2-positive 

breast cancer was defined as an immunohistochemistry (IHC) test of at least one tumor sample 

showing a HER2 score of 3+, or an IHC score of 2+, and a FISH test showing gene 

amplification. HER2-negative was defined as an IHC score of 0 or 1+, or an IHC of 2+, and a 

negative FISH test [2]. However, it is well known that HER2-positive breast cancers are highly 

heterogeneous, and core needle biopsy specimens are limiting and do not provide a complete 

picture of the HER2 status of breast cancer lesions [4]. And breast cancer is progressive, and 

the HER2 status of breast cancer lesions is variable [4, 5]. These factors undoubtedly create 

more uncertainty in the assessment of HER2 status in breast cancer. 

Ultrasonography (US) and Magnetic Resonance Image (MRI) are the most common 

imaging techniques for breast cancer, and some studies have been consistently published on 

MRI-based or US-based parameters (radiomics features and/or clinical features) for predicting 

HER2 status in breast cancer [6-14]. And these studies have demonstrated the potential value of 

both techniques in predicting HER2 status. It is well known that the extraction of both 

conventional and radiomic features of invasive breast cancer is highly operator dependent, and 

deep learning can overcome this drawback by automatically extracting medical image features 

using deep neural network structures. To the best of our knowledge, there is little published 
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literature on predicting HER2 status in invasive breast cancer by deep learning. Thus, the aim 

of this study was to predict HER2 status in invasive breast cancer by deep learning models 

based on US and MRI. 

MATERIALS AND METHODS  

Patients  

This study consecutively included 197 patients with pathologically confirmed invasive breast 

cancer between January 2021 and July 2024. Inclusion criteria were as follows: 1) age >18 

years; 2) breast tumor was pathologically confirmed as invasive breast cancer with a clear 

HER2 grade documented in the postoperative pathological report; and 3) US and MRI were 

performed less than 2 weeks apart. Exclusion criteria were as follows: 1) NAC or core needle 

biopsy was performed before US or MRI; 2) NAC was performed before operative; 3) US or 

MRI image quality was poor; 4) lesion size was <5 mm; and 5) there was no enhancement in 

the last three-dimensional T1-weighted contrast-enhanced sequence (Figure 1). 

Ethical statement 

This single center study was approved by the institutional ethics review boards (Ratification 

NO:2024(242)) and informed consent was waived due to the retrospective nature of the study. 

This study complied with the tenets of the Declaration of Helsinki and the Standards for 

Reporting Diagnostic Accuracy [15].  

US and MRI imaging protocol  

The DC8 US diagnostic system (Mindray Medical International Co., Ltd., Shenzhen, China), 

equipped with a 3-12-MHz linear-array transducer, was employed for the imaging protocol, 

which includes greyscale and color Doppler image acquisition in 2 orthogonal planes. US 

images of all breast masses in long-axis view and short-axis view were stored within the Picture 

Archiving and Communication System (PACS) for subsequent image analysis. In accordance 
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with the 2013 ACR BIRADS lexicon, two radiologists extracted BIRADS features from the 

US images (including shape, margin, orientation, echo pattern, posterior features, calcification, 

vascularity, and lymph nodes axillary) [16]. The two radiologists were blinded to the 

pathological findings of the breast masses and the MRI findings, and any disagreements were 

resolved with consensus-based discussion. Longitudinal section images of breast masses were 

selected for deep learning and data analysis of breast lesions. 

All patients underwent MRI examination using a 1.5T MRI scanner (Magnetom Aera, 

Siemens Healthcare, Erlangen, Germany) with an 8-channel dedicated breast phased-array coil. 

The scanning sequences and parameters were as follows: (a) axial T1-weighted imaging 

(T1WI): repetition time (TR) = 8.6 ms, echo time (TE) = 4.7 ms, field of view (FOV) = 360 

mm × 360 mm, matrix = 384 × 384, slice thickness = 4.0 mm; (b) axial T2-weighted imaging 

with fat suppression (T2WIFS): TR = 5600 ms, TE = 57 ms, FOV = 340 mm × 340 mm, slice 

thickness = 4.0 mm; (c) axial dynamic contrast-enhanced T1WI (DCE-T1WI): TR = 4.62 ms, 

TE = 1.75 ms, FOV = 360 × 360 mm, slice thickness = 1.5 mm. DCE-T1WI was acquired 

using the TWIST-VIBE technique, where a pre-contrast 1-phase T1WI scan was performed 

(scan time: 90s) before the injection of the contrast agent. Subsequently, a gadolinium-based 

contrast agent (Magnevist, Bayer Healthcare, Berlin, Germany) was injected at a dose of 0.1 

mmol/kg and a flow rate of 2.0 ml/s, followed by that 20 ml saline was injected at the same 

flow rate. Six post-contrast phases were continuously acquired without an interval. Each scan 

lasted approximately 60.1s with a slice thickness of 3mm, and the total scan time was 6min 9s. 

All images were assessed according to the American College of Radiology (ACR) Breast 

Imaging Reporting and Data System (BI-RADS) MRI lexicon [16]. MRI features included 

tumor shape (round/oval, irregular), margin (circumscribed, non-circumscribed), largest tumor 

size, number of lesions (single, multiple), intratumoral T2 hypersignal (absent, present), skin 
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involvement (present, absent), nipple involvement (present, absent), internal enhancement 

pattern (homogenous, heterogenous), and non-mass enhancement (present, absent). 

Deep learning model of US: Based on the ConvNeXt V2 Model  

The ConvNeXt V2 model combines the advantages of convolutional neural networks in its 

design, and it can better extract features from US images by optimizing the network structure 

and parameter configuration. ConvNeXt V2 has been widely used for deep learning of US 

images. 

Clear gray scale US images of the longitudinal section of breast cancer are selected as 

deep learning input objects. First, clinicians use ITK-Snape to manually outline the tumor 

region mask to obtain the initial tumor location. Since breast cancer lesions are small, the initial 

mask is extended outward by 50 pixels to form the final tumor mask. Based on this mask, the 

tumor and its surrounding ROI region are extracted from the image to provide effective input 

data for subsequent model training. The images were then normalized (Z-score) and resized 

(256 × 256). A variety of data enhancement methods (including random selection, random 

flipping, random scaling, random panning, adding Gaussian noise, random Gaussian blurring, 

and random brightness contrast adjustment) were used for image preprocessing. Finally, the 

pre-processed US images are fed into the ConvNeXt V2 model for training (Optimizer: 

AdamW, initial learning rate: 2e-5, weight decay: 5e-2, batch size: 16). Four-Fold Cross 

Validation is used for model training and evaluation during the training process. Meanwhile, 

Dynamic Loss Scaling and Mixup data enhancement strategies are combined to further 

improve the generalization ability and classification performance of the model (Figure 2). 

After training the model for 300 epochs, the optimal weights of the model are determined based 

on accuracy, recall, AUC and F1 score. Finally, the optimal weights of the model are used to 

output the predicted probabilities (range: 0-1) for each category in the test cohort. 
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Deep learning model of MRI: Based on the 3D Resnet Model  

The 3D ResNet18 model has a relatively simple structure and a moderate number of parameters 

compared to other 3D models (including EfficientNet, ResNet, and ConvNeXt V2), and it is 

more likely to converge when dealing with low-quality MRI images. And its residual structure 

can effectively solve the gradient vanishing problem, which enables the model to better learn 

the image features during the training process, while reducing the risk of overfitting. Therefore, 

3D ResNet18 is widely used for deep learning of MRI images. 

The latest three-dimensional T1-weighted contrast-enhanced sequences of breast cancer 

were used as input objects for MRI deep learning. First, the physician manually outlines the 

mask of the tumor area layer by layer using ITK-Snape and extends the initial mask outward 

by 50 pixels to form the final tumor mask. And based on this mask, the tumor and its 

surrounding ROI region are extracted from the image to provide effective input data for 

subsequent model training. The images were then normalized (Z-score) and resized (96 × 96 × 

96) to fit the input requirements of the 3D convolutional network. A variety of data 

enhancement methods (including random selection, random flipping, random scaling, random 

panning, adding Gaussian noise, random Gaussian blur, and random brightness contrast 

adjustment) are used for image preprocessing. Finally, the pre-processed breast cancer MRI 

images were fed into the 3D ResNet18 model for training (Optimizer: AdamW, initial learning 

rate: 4e-6, weight decay: 1e-2, batch size: 16). Four-Fold Cross-Validation was used for model 

training and evaluation. The 3D ResNet18 efficiently extracts multi-scale features from images 

through its residual linkage structure, while combining 3D convolution to capture textural and 

structural features of tumors in 3D space to identify the HER2 status of breast cancer (Figure 

2). The model is trained on input images for 300 epochs, after which the best weights are 

selected based on accuracy, recall, AUC, and F1 score. Finally, the predicted probabilities 
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(range: 0-1) for each category of the test cohort are output based on the optimal weights trained 

by this model. 

In this study, four-fold cross-validation was performed on a single dataset. Stratified 

sampling was used to divide the dataset to ensure the accuracy and reliability of the model 

evaluation. In each fold division, the proportion of HER2 categories in the training and test sets 

was strictly controlled to avoid the problem of category imbalance (details of all Python 

libraries used in the study are provided in Supplementary Table 1, and the full code for the 

deep learning models has been uploaded to: https://github.com/sun-

kx/Ultrasound_and_MRI_predict_HER2_status_in_invasive_breast_cancer). 

Deep learning models for US and MRI   

To further explore whether DL-US&MRI has superior performance in distinguishing breast 

cancer HER2 status, we constructed DL-US&MRI using logistic regression based on the 

predictive value of DL-US and DL-MRI in the test cohort (Figure 2). 

Pathological evaluation 

The diagnosis of invasive breast cancer in all patients was confirmed by the postoperative 

pathological evaluation. Breast cancer immunohistochemical types were determined based on 

ER, PR, HER2 receptor status and Ki-67 levels [17]. ER- and PR-positive definition: IHC 

staining ≥ 1% positively stained tumor cells [18]. HER2 positive defined as IHC 3 + or IHC 2 

+ and amplified by fluorescence in situ hybridization (FISH); HER2 negative defined as IHC 

0 or IHC 1 + or IHC 2 + and FISH negative [1, 19]. And the threshold level for Ki67 was set at 

14% [17]. Molecular subtypes were split into Hormone receptor (HR) positive and HR negative. 

HR-positive definition: expression of ER and/or PR in invasive cancer cells greater than 10% 

[20]. 

Statistical analysis  

MedCalc Statistical Software V.20.010 (MedCalc Software bvba, Ostend, Belgium) and 

Python 3.10 (Python Software Foundation, Beaverton, USA) were used for data analyses in 
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this study. The normality of continuous variables was assessed using the Shapiro-Wilk test. 

Data that conformed to a normal distribution were expressed as mean ± standard deviation, 

while data that deviated from a normal distribution were expressed as median (quartiles). The 

independent samples t-test was used to compare the two groups of normally distributed data. 

In contrast, the Mann-Whitney U test was used to compare the two sets of non-normally 

distributed data. Count data were expressed as frequencies and percentages, while differences 

between groups were assessed using the chi-squared test or Fisher's exact probability method. 

The p-values for multiple comparisons were adjusted using Bonferroni’s correction. The area 

under the receiver operating characteristic (ROC) curve (AUC) was used to estimate the 

performance of the models. A p value of < 0.05 was considered significant. All Python 

packages and libraries used in this study are included in the supplementary material 

(supplementary material Table 1). 

RESULTS 

Baseline characteristics  

This single-center study enrolled 197 patients with invasive breast cancer who met the 

inclusion and exclusion criteria. Of these, 118 were HER2-negative and 79 were HER2-

positive. Stratified random sampling of the data resulted in 149 cases in the training cohort and 

48 cases in the test cohort. Table 1 summarizes the baseline characteristics of these patients. 

Table 2 and Table 3 show the US characteristics and MRI characteristics respectively. All 

baseline characteristics, US and MRI characteristics are not significant between train cohort 

and test cohort. 

Performance of DL-US 
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In the test cohort, DL-US was used to differentiate HER2 status in breast cancer, and the AUC 

of DL-US was 0.842 (95% CI: 0.708-0.931), with ACC, sensitivity, specificity, PPV, NPV, 

and F1 score of 0.833, 89.50%, 79.30%, 0.739, 0.920, and 0.810, respectively (Figure 3). 

Performance of DL-MRI 

In the test cohort, DL-MRI was used to differentiate HER2 status in breast cancer with an AUC 

of 0.800 (95% CI: 0.660-0.902) for DL-MRI and ACC, sensitivity, specificity, PPV, NPV and 

F1 score of 0.791, 78.90%, 79.30%, 0.714, 0.852 and 0.750, respectively (Figure 3). 

Performance of DL-US&MRI 

In the test cohort, when DL-US&MRI was used to differentiate HER2 status in breast cancer, 

the model had an AUC of 0.898 (95% CI: 0.777-0.967), with ACC, sensitivity, specificity, 

PPV, NPV and F1 score of 0.854, 63.20%, 100.00%, 1.000, 0.806 and 0.775 respectively. The 

Delong test was used to compare models’ performance. And the model performance of DL-

US&MRI was higher than that of DL-US and DL-MRI but not statistically significant 

(p=0.2746, 0.898 vs. 0.842; p=0.0538, 0.898 vs. 0.800). The model performance of DL-US 

was also higher than that of DL-MRI but was not statistically significant (p=0.6595, 0.842 vs. 

0.800) (Figure 3). 

Interpretability of DL-MRI and DL-US  

To explore the interpretability of DL-MRI and DL-US, we visualize them using gradient-

weighted class activation mapping (Grad CAM) and find the regions of greatest interest for 

DL-MRI and DL-US using a visualization algorithm, as shown in Figure 4. 

DISCUSSION 

Hormone receptor status in breast cancer affects the efficacy of NAC, with HER2-status 

playing an important role [2, 3]. Pathological biopsy is the gold standard for determining HER2 
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status in preoperative breast cancer, but breast cancer is highly heterogeneous and core needle 

biopsy specimens are limited, and it is important to find a method that can comprehensively 

assess the HER2 status of preoperative breast cancer [4, 5]. As two of the most commonly used 

imaging modalities for breast cancer, US and MRI have been shown to be of significant value 

in assessing HER2 status in preoperative breast cancer. However, the published studies are all 

machine learning models based on radiomics , BIRADS lexicon and clinical features (11 of the 

studies were on MRI [10-14, 21-26] and 4 on US [6-9]). In the present study, deep learning has 

good performance in predicting HER2 status in invasive breast cancer with AUCs of 0.845, 

0.800 and 0.898 for DL-US, DL-MRI and DL-MRI&US, respectively. 

MRI has emerged as a key noninvasive tool for assessing HER2 status in breast cancer, 

leveraging its superior soft tissue contrast to capture tumor spatial heterogeneity. MRI-based 

models for predicting HER2 status exhibit performance variability depending on the 

granularity of outcome classification and methodological rigor. For binary classification 

(HER2-positive vs. negative), conventional radiomics models [11, 13, 21, 22, 24, 25] achieved 

external test AUCs of 0.68-0.84, with the study by Xu et al. (AUC 0.945) outperforming others 

by integrating clinical variables (Ki-67, histologic grade) [25]. Our 3D deep learning MRI 

model (DL-MRI), excluding clinical covariates, achieved an external AUC of 0.800, bridging 

the gap between radiomics and clinical hybrids. For HER2 low/zero subtyping [10, 23], the 

nomogram of the study by Yin et al. (external AUC: 0.886) [23] and our DL-US&MRI 

framework (AUC: 0.898) demonstrated parity despite different methodologies (2D radiomics 

vs. 3D DL). Notably, cross-modal fusion (DL-MRI&US) outperformed stand-alone MRI 

models in our study (ΔAUC: +0.098), highlighting the advantages of complementary 

techniques. Multiclass frameworks (the study by Zhang et al: HER2-zero/-low/-positive) 

reported external AUCs of 0.80-0.85 [12], in line with our binary performance, but highlighting 

trade-offs between granularity and generalizability. Persistent limitations-single-center designs, 
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HER2-low/null undersampling, and 2D spatial bias [11, 23, 25] were partially mitigated by our 

3D segmentation, but require multicenter validation. Future integration of clinical genomic 

data with 3D DL architectures may resolve residual molecular imaging discordance and 

advance precision oncology. 

US, as the most commonly used imaging technique for breast imaging, also has an 

important role in the assessment of HER2 status in invasive breast cancer. Our DL-US model, 

designed to discriminate HER2-positive from HER2-negative breast cancer, demonstrated 

robust performance (AUC: 0.842; sensitivity: 89.5%; specificity: 79.3%) in the study cohort. 

This outcome variable definition is consistent with the study by Ferre et al. (HER2+ vs. HER2-, 

AUC: 0.778) [6] and the study by Cui et al. (HER2+ vs. HER2-, AUC: 0.844) [7], but differs 

from by Zhang et al. (HER2-low vs. HER2-zero, AUC: 0.84) [8] and by Zhou et al. (HER2+ 

non-luminal vs. other, AUC: 0.725) [9], where subclass-specific classifications may limit 

clinical generalizability. Methodologically, DL-US outperformed conventional radiomics 

models that rely on hand-crafted features (e.g., wavelet-based GLSZM/GLRLM) and clinical-

ultrasound hybrids [6-9], likely due to its ability to autonomously extract discriminative 

hierarchical patterns from raw image data. While logistic regression dominated previous work 

(AUCs: 0.778-0.844) [6, 7], its reliance on manual feature engineering limited its adaptability 

to HER2 heterogeneity, in contrast to the end-to-end learning of DL-US. Despite superior 

metrics, the "black box" nature of our model contrasts with the interpretability of radiomics, 

highlighting a trade-off between performance and biological insight. These findings position 

DL-US as a promising noninvasive tool for predicting HER2 status, although multicenter 

prospective studies are essential to confirm its clinical utility. 

In the current study, we developed a joint deep learning model (DL-MRI&US) integrating 

US and MRI parameters to predict HER2 status in invasive breast cancer, achieving an AUC 

of 0.898. To our knowledge, this represents the first published approach combining these 
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imaging modalities for HER2 status prediction, with DL-MRI&US demonstrating superior 

performance compared to existing models. While our findings highlight the potential of 

imaging biomarkers, it is noteworthy that preoperative prognostic evaluation in breast cancer 

should also encompass clinical parameters. Emerging evidence has identified associations 

between preoperative biological markers - including neutrophil-to-eosinophil ratio (NER), 

inflammation and metabolic syndrome indicators, and Cachexia Index (CXI) - and breast 

cancer outcomes [27-29]. Future research integrating both imaging biomarkers and clinical 

parameters through multimodal fusion models may yield enhanced predictive capabilities for 

assessing neoadjuvant chemotherapy (NAC) efficacy in breast cancer management. 

Our results indicate that the multimodal DL-US&MRI model demonstrated a clinically 

meaningful 9.8% absolute AUC improvement over DL-MRI alone (p=0.0538), an effect size 

consistent with thresholds for clinically actionable diagnostic advances. While this difference 

approached but did not reach statistical significance - likely due to cohort size limitations - the 

magnitude of the AUC improvement suggests potential clinical utility, particularly through its 

100% specificity for reducing false-positive referrals compared to DL-US (75.6% specificity). 

The model's lower sensitivity (63.2%) positions it as a robust confirmatory tool in staged 

workflows rather than a stand-alone solution. Conversely, the higher sensitivity of the US-only 

model may optimize the efficiency of initial screening in resource-constrained settings. Both 

applications require larger validation cohorts to resolve statistical uncertainties, particularly 

regarding the borderline significance of the multimodal model and its projected benefits in 

reducing diagnostic errors, patient anxiety, and healthcare costs through improved specificity. 

The complementary performance profiles suggest potential for coordinated implementation 

across diagnostic settings. 

This study has several limitations. First, the small sample size resulting from strict 

inclusion/exclusion criteria precluded subgroup analyses distinguishing HER2-zero, HER2-
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low, and HER2-high categories. Second, the potential additive value of radiomic features for 

predicting HER2 status remains unexplored within our deep learning framework. Third, the 

lack of external validation limits the assessment of model generalizability. Future large-sample, 

multicenter studies with diverse cohorts should address these limitations while addressing 

emerging clinical needs. In particular, emerging evidence suggests that HER2-low breast 

cancers (defined as IHC 1+ or FISH-negative IHC 2+) may derive therapeutic benefit from 

trastuzumab-deruxtecan [30], highlighting the clinical imperative for accurate HER2-low 

identification. Therefore, such multicenter studies should simultaneously validate imaging-

based models and refine HER2-low detection capabilities to optimize prognostic stratification. 

CONCLUSION 

In conclusion, Deep learning models based on US and MRI have excellent performance in 

predicting HER2 status in invasive breast cancer, and the combination of the two can improve 

the predictive efficacy of the models. 
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Variables train (n = 149) test (n = 48) p 

Age, Median (Q1, Q3) 51 (46, 58) 50 (46, 57) 0.704 

Location, n (%)   0.761 

Left 78 (52) 27 (56)  

Right 71 (48) 21 (44)  

Ki 67, n (%)   0.823 

Low 42 (28) 15 (31)  

High 107 (72) 33 (69)  

ER, n (%)   0.566 

Negative 49 (33) 13 (27)  

Positive 100 (67) 35 (73)  

PR, n (%)   0.554 

Negative 62 (42) 17 (35)  

Positive 87 (58) 31 (65)  

HER2 status, n (%)   0.933 

Negative 89 (60) 29 (60)  

Positive 60 (40) 19 (40)  

HR Status, n (%)   0.811 

Negative 51 (34) 18 (38)  
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Positive 98 (66) 30 (62)  

Luminal, n (%)   0.966 

Negative 46 (31) 14 (29)  

Positive 103 (69) 34 (71)  

HER2 positive (non luminal), n (%)   0.993 

Negative 117 (79) 37 (77)  

Positive 32 (21) 11 (23)  

Triple negative (ductal), n (%)   0.768 

Negative 135 (91) 45 (94)  

Positive 14 (9) 3 (6)  

  

Table 2. US findings of the study sample. 

Variables train (n = 149) test (n = 48) p 

shape, n (%)   0.684 

Round/oval 40 (27) 15 (31)  

Irregular 109 (73) 33 (69)  

Orientation, n (%)   0.991 

Parallel 86 (58) 27 (56)  

Not parallel 63 (42) 21 (44)  
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Margin, n (%)   0.502 

Circumscribed 20 (13) 9 (19)  

Not circumscribed 129 (87) 39 (81)  

Echo pattern, n (%)   0.177 

Hypoechoic 134 (90) 38 (79)  

Heterogeneous 7 (5) 5 (10)  

Complex cystic and solid 5 (3) 3 (6)  

Isoechoic 3 (2) 2 (4)  

Posterior features, n (%)   0.478 

Enhancement 24 (16) 9 (19)  

No posterior features 73 (49) 24 (50)  

Shadowing 44 (30) 15 (31)  

Combined pattern 8 (5) 0 (0)  

Calcifications, n (%)   0.658 

Absent 57 (38) 16 (33)  

Present 92 (62) 32 (67)  

Vascularity, n (%)   0.633 

Internal vascularity 99 (66) 31 (65)  

Vessels in rim 7 (5) 4 (8)  
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Absent 43 (29) 13 (27)  

Lymph nodes axillary, n (%)   0.534 

Absent 93 (62) 33 (69)  

Present 56 (38) 15 (31)  

 

Table 3. MRI findings of the study sample. 

Variables train (n = 149) test (n = 48) p 

Shape, n (%)   0.835 

Round/oval 30 (20) 11 (23)  

Irregular 119 (80) 37 (77)  

Tumor Margins, n (%)   0.836 

Circumscribed 73 (49) 25 (52)  

Not circumscribed 76 (51) 23 (48)  

Largest Tumor Size, Median (Q1, Q3) 23 (17, 29) 21 (16.75, 26) 0.243 

No of lesions, n (%)   0.791 

Single 138 (93) 45 (94)  

Multiple 11 (7) 3 (6)  

MRI Intratumoral T2 Hypersignal, n (%)   0.146 

Absent 70 (47) 29 (60)  
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Present 79 (53) 19 (40)  

Skin Involvement, n (%)   0.132 

Absent 129 (87) 46 (96)  

Present 20 (13) 2 (4)  

Nipple Involvement, N (%)   0.568 

Absent 130 (87) 44 (92)  

Present 19 (13) 4 (8)  

Enhancement Pattern, n (%)   0.536 

Homogenous 78 (52) 22 (46)  

Heterogenous 71 (48) 26 (54)  

Nonmass Enhancement, n (%)   0.392 

Absent 125 (84) 37 (77)  

Present 24 (16) 11 (23)  
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Figure 1. Flow chart for the selection of participants. 

 

Figure 2. The structure of deep learning model system. 
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Figure 3. The performance of deep learning models. (A) The area under the receiver 

operating characteristic curve. (B) Parameters of three deep learning models. 

 

Figure 4. Grad-CAM visualization: visualization of DL-MRI and DL-US. 

SUPPLEMENTAL DATA 

Table S1: Python packages and libraries used in this study. 

Library Name Version Developer/Company (Location) 

PyTorch 2.0 Meta AI (Menlo Park, USA) 

Torchvision 0.15 Meta AI (Menlo Park, USA) 

OpenMMLab 1.0.0 Shanghai AI Laboratory (Shanghai, 

China) 

MMCV 2.0.0 Shanghai AI Laboratory (Shanghai, 

China) 

MONAI 1.2.0 Project MONAI (USA) 

scikit-learn 1.3 Inria (Paris, France) 
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XGBoost 1.7 DMLC (USA) 

OpenCV 4.7 OpenCV.org (Palo Alto, USA) 

Matplotlib 3.7 Matplotlib Development Team (USA) 

Seaborn 0.12 Michael Waskom (USA) 

SimpleITK 2.3.0 Kitware Inc. (Clifton Park, USA) 

NumPy 1.24 NumPy Developers (USA) 

Pandas 1.5 pandas Development Team (USA) 

h5py 3.8 HDF Group (Champaign, USA) 

Tqdm 4.65 Noam Yorav-Raphael (USA) 

Ubuntu OS 22.04 Canonical Ltd. (London, UK) 

 

For full reproducibility, the code and environment configuration are publicly available in our 

GitHub repository: 

https://github.com/sunkx/Ultrasound_and_MRI_predict_HER2_status_in_invasive_breast_ca

ncer 

https://github.com/sunkx/Ultrasound_and_MRI_predict_HER2_status_in_invasive_breast_cancer
https://github.com/sunkx/Ultrasound_and_MRI_predict_HER2_status_in_invasive_breast_cancer

