
1Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China; 2Department of Critical Care Medicine, First Affiliated Hospital of Heilongjiang University of Chinese
Medicine, Harbin, China.
∗Correspondence to Qun Liang: liangqun202410@163.com

DOI: 10.17305/bb.2025.12931

© 2025 Liu and Liang. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).

Biomolecules and Biomedicine, 2025 1 www.biomolbiomed.com

R E V I E W

Sepsis toxicity network reconstruction—Dynamic
signaling and multi-organ injury: A review
Shuai Liu 1 and Qun Liang 2∗

Sepsis is a complex systemic disease in which systemic toxicity—arising from inflammation–immune dysregulation, oxidative stress,
programmed cell death (apoptosis, pyroptosis, ferroptosis), and metabolic reprogramming—drives multi-organ injury. The aim of this
review was to synthesize how signaling pathways evolve within and between key organs (lungs, liver, kidneys, heart) and to evaluate
whether multi-omics integration and network modeling can identify critical toxic nodes and predict disease progression. We conducted
a narrative review of English-language mechanistic studies published between 2015 and 2025 in PubMed, Web of Science, and Scopus,
supplemented by bibliography screening, while excluding case reports, conference abstracts, and non-mechanistic work. The evidence
depicts a high-dimensional systemic network that remodels over time, with early pro-inflammatory modules transitioning toward
immunosuppression and organ-specific injury patterns, while inter-organ propagation is mediated by damage-associated molecular
patterns (DAMPs), exosomes, and metabolites. Oxidative stress and mitochondrial dysfunction, via reactive oxygen species (ROS),
couple to pyroptosis and ferroptosis to reinforce toxicity loops, and computational approaches such as dynamic Bayesian networks
(DBNs) and graph neural networks (GNNs) delineate regulatory hubs and support forecasting. Therapeutic progress has concentrated
on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), the NOD-, leucine-rich repeat and pyrin domain-containing
protein 3 (NLRP3) inflammasome, and glutathione peroxidase 4 (GPX4), alongside artificial intelligence (AI)-assisted personalized
toxicity maps and dynamic early-warning systems, though challenges remain in specificity, safety, and resistance. In conclusion, sepsis
can be conceived as a temporally staged systemic toxicity network, and when combined with multi-omics, DBN/GNN modeling, and
AI-enabled decision support, this framework offers a path toward individualized, mechanism-based care, while requiring rigorous
validation to ensure clinical durability.
Keywords: Sepsis, systemic toxicity, network biology, multiple organ dysfunction, dynamic evolution of signaling pathways.

Introduction
Sepsis is a systemic condition triggered by infection, charac-
terized by a dysregulated host response that leads to progres-
sive organ dysfunction and, in many cases, death [1, 2]. It is
recognized as one of the most significant challenges in critical
care medicine globally. According to a Global Burden of Disease
study, approximately 49 million cases of sepsis occur annually
worldwide, resulting in around 11 million deaths—accounting
for nearly 20% of all global mortality [3]. Despite advance-
ments in early recognition, prompt antimicrobial therapy, fluid
resuscitation, and organ support in recent years, clinical out-
comes for sepsis remain poor, particularly among patients who
develop multiple organ dysfunction syndrome (MODS) in the
intermediate or late stages, with mortality rates reaching 40%–
60% [4]. Traditionally, sepsis has been viewed as an immune
hyperactivation syndrome driven by a cytokine storm [5, 6].
However, emerging evidence from both clinical and basic
research suggests that immune activation and suppression do

not operate in isolation. Rather, they coexist and dynamically
interact, influencing disease progression. For example, some
patients exhibit a pronounced pro-inflammatory response in
the early stages, indicated by elevated levels of IL-6 and
tumor necrosis factor alpha (TNF-α) [7, 8], while others rapidly
transition into an immunosuppressive state characterized by
T cell exhaustion, impaired antigen presentation, and per-
sistent infection [9, 10]. This clinical heterogeneity highlights
that sepsis is not driven by a single pathological pathway,
but rather by a complex systemic network involving immune
dysregulation, metabolic reprogramming, cell death, oxidative
stress, and microcirculatory disturbances [11, 12]. This evolving
understanding has prompted researchers to move away from
the traditional linear inflammation model, adopting perspec-
tives focused on systemic toxicity and network regulation to
redefine the pathophysiology of sepsis [13]. In this context,
“dynamic evaluation” denotes the continuous, time-resolved
assessment of the evolution of signaling pathways, transitions
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in immune status, and organ-specific responses throughout the
course of sepsis. This concept underscores that pathological
changes are not static but occur in a temporally staged man-
ner, providing opportunities to identify critical intervention
points.

Within this framework, sepsis is conceptualized as a
high-dimensional biological network comprised of multiple
signaling pathways that become destabilized and undergo
reconstruction due to infection, metabolic dysregulation, and
stress, ultimately resulting in organ dysfunction and structural
damage. In this review, “network reconstruction” is defined
in two senses: (i) the biological remodeling of signaling and
metabolic circuits during disease progression and (ii) the
computational and systems biology strategies (e.g., dynamic
Bayesian networks [DBN] and graph neural networks [GNNs])
that model and interpret these alterations. This expanded
definition emphasizes that the concept encompasses both
the biological rewiring processes in sepsis and the analytical
methods employed to study them. For example, classical
pro-inflammatory pathways such as nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB), MAPK,
and JAK-STAT are rapidly activated during the early stages
of sepsis to initiate host defense responses [12, 14]. How-
ever, inadequate negative feedback regulation can lead to
sustained inflammatory injury. As the disease progresses,
immunosuppressive pathways—including PD-1/PD-L1, IL-10,
and Suppressor of Cytokine Signaling (SOCS)—are activated,
inhibiting immune cell function and resulting in a state of
immune paralysis [15, 16]. Additionally, programmed cell death
processes—including pyroptosis, ferroptosis, and necropto-
sis—along with mitochondrial dysfunction and disturbances in
energy metabolism, occur concurrently across multiple organs,
collectively accelerating the systemic spread of toxicity [17–19].
The complex interplay of multiple signaling pathways and
biological processes complicates traditional single-factor
approaches in elucidating the underlying mechanisms of
sepsis. Network biology and systems toxicology offer new
frameworks for investigating this condition by constructing
interaction maps that illuminate key pathways, central hubs,
and coordinated changes during disease progression [20, 21]. In
sepsis research, particular emphasis is placed on the dynamic
remodeling of signaling pathways across various time points,
organs, and immune states [12, 22]. This includes the migration
and distribution of distinct immune cell types within the lungs,
kidneys, and liver, which contribute to both local and systemic
inflammation, as well as the critical role of NF-κB–NOD-,
leucine-rich repeat and pyrin domain-containing protein 3
(NLRP3) inflammasome amplification in acute respiratory
distress syndrome (ARDS) and sepsis-associated encephalopa-
thy (SAE) [23, 24]. Concurrently, the rapid advancement of
multi-omics technologies—such as single-cell transcriptomics,
spatial omics, and time-series proteomic and metabolomic
profiling—has facilitated the dynamic tracking of key pathway
alterations throughout the course of sepsis [25]. By integrating
these data, researchers can construct more accurate dynamic
regulatory models using methodologies like DBNs, GNNs,
and multi-scale network fusion (MSF), which facilitate the

identification of network control hubs and bolster the devel-
opment of system-level intervention strategies.

In contrast to many previous reviews that adopt a static
perspective or concentrate on isolated signaling pathways,
the present review prioritizes the dynamic evaluation of sys-
temic toxicity in sepsis. By illustrating how signaling path-
ways evolve across different time points, immune states, and
organs, this review proposes an innovative framework that
connects network remodeling with multi-organ injury and
cross-organ interactions. This narrative review focuses on
the network reconstruction of systemic toxicity in sepsis,
summarizing advancements in dynamic signaling pathways,
organ-specific injury, inter-organ coupling, and multi-omics
modeling. By integrating these dimensions, our work aims
to provide readers with a novel systems-level perspective
that enhances the understanding of disease heterogeneity and
inspires precision-targeted strategies for sepsis management.

Methods
This article presents a narrative review. We conducted a
comprehensive search of PubMed, Web of Science, and Scopus
for English-language publications from 2015 to 2025, utilizing
combinations of the keywords “sepsis,” “systemic toxic-
ity,” “multi-organ injury,” “network biology,” and “dynamic
signaling pathways.” Additional references were identified
by reviewing the bibliographies of relevant articles. We
included studies that provided mechanistic insights into
sepsis-associated systemic toxicity and multi-organ injury,
while excluding case reports, conference abstracts, and
non-mechanistic studies. A formal risk-of-bias assessment was
not performed, as the objective of this review was to offer a
narrative synthesis rather than a systematic appraisal of the
evidence.

Systemic toxicity mechanisms associated with sepsis
The inflammation–immune dysregulation network

One of the hallmark features of sepsis is an imbalanced immune
response to infection, characterized by excessive inflamma-
tory activation and progressive immunosuppression. These
processes may occur at different stages of the disease or
simultaneously across various tissues, creating a complex net-
work of inflammation and immune dysregulation [26, 27].
In the early stages of sepsis, pathogen-associated molecu-
lar patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs) activate pattern recognition receptors, such
as Toll-like receptors (TLRs) and NOD-like receptors (NLRs).
This activation rapidly initiates signaling cascades, including
NF-κB, MAPK, and JAK-STAT pathways, resulting in a sig-
nificant release of inflammatory cytokines (e.g., IL-1β, TNF-
α, and IL-6) and leading to a cytokine storm driven by
pro-inflammatory networks. Concurrently, the activation of
the NLRP3 inflammasome exacerbates both local and sys-
temic inflammation by inducing pyroptosis and other forms
of programmed cell death [28, 29]. At this stage, the sig-
naling network demonstrates high centrality, redundancy,
and significant pathway cross-talk, creating a tightly coupled
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Table 1. Comparative table of sepsis-associated cell death mechanisms

Type of cell death Activation mechanism Key pathways molecular signals Functional implications

Apoptosis [38] (programmed cell
death)

Fas/FasL activation, cytochrome c
release, caspase-3/9 activation

Bcl-2↓, caspase-3/9↑ Immune cell loss and
immunoparalysis

Necrosis [39] (unregulated cell
death)

Hypoxia, energy depletion,
membrane rupture

HMGB1↑, extracellular ATP↑ →
TLR/NLRP3

Release of DAMPs, inflammation
amplification

Pyroptosis [28, 29, 41] NLRP3 inflammasome → caspase-1
→ GSDMD cleavage

NLRP3↑, caspase-1↑, IL-1β ↑ Inflammatory amplification,
ARDS/liver injury

Ferroptosis [43] Iron overload, lipid peroxidation Fe2+↑, GPX4↓, MDA↑, 4-HNE↑ Lipid peroxidation–mediated injury in
heart/kidney

Necroptosis [42] RIPK1/3 → MLKL RIPK1↑, RIPK3↑, MLKL↑ Amplifies necrosis and immune
activation

Note: ↑ indicates upregulation/increase; ↓ indicates downregulation/decrease. Abbreviations: Bcl-2: B-cell lymphoma 2; HMGB1: High mobility group box 1;
ATP: Adenosine triphosphate; TLR: Toll-like receptor; NLRP3: NOD-like receptor family pyrin domain-containing 3; GSDMD: Gasdermin D; IL-1β: Interleukin-
1 beta; ARDS: Acute respiratory distress syndrome; Fe2+: Ferrous iron; GPX4: Glutathione peroxidase 4; MDA: Malondialdehyde; 4-HNE: 4-hydroxynonenal;
RIPK1: Receptor-interacting serine/threonine-protein kinase 1; RIPK3: Receptor-interacting serine/threonine-protein kinase 3; MLKL: Mixed lineage kinase
domain-like protein; DAMPs: Damage-associated molecular patterns.

inflammatory module marked by multi-pathway synergy and
positive feedback amplification. Although pro-inflammatory
mechanisms are essential for antimicrobial defense, their dys-
regulation can result in severe tissue damage and the exacerba-
tion of systemic toxicity [30, 31].

During the progression of sepsis, the host activates
anti-inflammatory responses to mitigate excessive immune
activation [1]. However, this feedback mechanism is fre-
quently overactivated, resulting in immunoparalysis. This
condition is characterized by features such as T cell exhaustion,
reduced expression of HLA-DR on monocytes, impaired antigen
presentation, and the upregulation of immune checkpoint
molecules, including PD-1 and cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) [32, 33]. The sustained release
of anti-inflammatory cytokines, including IL-10 and TGF-β,
alongside elevated levels of regulatory T cells (Tregs),
indicates a shift in the immune system from an activated
to a dysfunctional state [34]. Research demonstrates that
this immunosuppression does not simply occur as a con-
sequence of inflammation; rather, it arises concurrently,
establishing a state of “inflammation–immunosuppression
coexistence” [9, 26]. In sepsis, inflammation and immune
dysregulation involve dynamic shifts in signaling networks.
Initially, pro-inflammatory pathways, such as NF-κB and
MAPK, predominate; however, as the disease progresses,
these pathways transition into immunosuppressive modules,
including signal transducer and activator of transcription 3
(STAT3), IL-10, and PD-1, indicating a temporal evolution in
the immune response. This shift can be quantified through
network parameters, such as changes in centrality and reduced
pathway efficiency. Spatial heterogeneity is observed across
different tissues: lung inflammation is primarily driven
by neutrophil infiltration and NLRP3 activation, whereas
antigen presentation and T cell apoptosis are compromised
earlier in the liver, spleen, and lymph nodes. Consequently,
inflammation and immune dysregulation represent a tem-
porally evolving and spatially heterogeneous network that

contributes to systemic toxicity and organ dysfunction
in sepsis [35].

Signaling pathways of apoptosis, necrosis, and regulated necrosis

Cell death plays a pivotal role in systemic toxicity during sep-
sis, serving not only as a result of tissue injury but also as
a significant driver of inflammation, immune dysregulation,
and multi-organ dysfunction [36, 37]. Initial research concen-
trated on classical apoptosis, characterized by Fas/FasL and
TNF receptor signaling, as well as mitochondrial cytochrome
c release, which activate caspase-3 and caspase-9. This cas-
cade leads to extensive apoptosis of immune cells, including
T cells, B cells, and dendritic cells, ultimately impairing host
immune responses and contributing to immunoparalysis [38].
At the network level, this process is characterized by synchro-
nized apoptosis among immune cell populations, downregula-
tion of anti-apoptotic factors such as Bcl-2, and upregulation of
pro-apoptotic receptors, collectively establishing a stable and
efficient immune exhaustion module. Concurrently, conditions
such as hypoxia, energy metabolism disorders, and membrane
disruption associated with sepsis can induce non-programmed
necrosis, leading to the release of intracellular contents like
HMGB1 and ATP. This release subsequently activates inflam-
masomes and TLRs, triggering a toxic response mediated by
overflow [39]. In recent years, the concept of regulated necrosis
has significantly enhanced our understanding of the cell death
network, incorporating novel pathways such as pyroptosis,
necroptosis, and ferroptosis, which act as crucial links between
inflammation and metabolic dysregulation (Table 1) [40].

Pyroptosis is defined by NLRP3 inflammasome-mediated
caspase-1 activation and gasdermin D (GSDMD) cleavage, pri-
marily occurring in neutrophils and macrophages, and is
significantly implicated in ARDS and liver injury [41]. Necrop-
tosis, driven by the RIPK1/RIPK3/MLKL signaling axis, typically
occurs following caspase-8 inactivation and is closely associ-
ated with tissue necrosis across various organs [42]. Ferrop-
tosis, induced by iron accumulation and lipid peroxidation,
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constitutes a critical mechanism of injury in metabolically
active cells, such as cardiomyocytes and renal tubular epithe-
lial cells [43]. These cell death pathways can be activated
independently or synergistically, forming an interconnected
network; for example, pyroptosis and necroptosis are often
sequentially activated within the same cell, thereby amplify-
ing inflammatory responses. Moreover, cell death pathways
are regulated not only by inflammatory mediators but also
by reciprocal activation of inflammatory signaling cascades,
including NF-κB and STAT3, which establishes a feedback
loop of “cell death–inflammation amplification–systemic toxic-
ity propagation” [44].

From a dynamic network perspective, cell death signal-
ing pathways in sepsis exhibit both temporal staging and
organ-specific spatial characteristics [45]. For instance, apop-
tosis predominates in immune cells during the early phases,
while pyroptosis and ferroptosis become more prevalent in
parenchymal cells at later stages, indicating a progressive shift
in dominant signaling nodes throughout disease evolution [46].
By integrating these mechanisms, a network model of cell
death-related pathways can be developed to identify key
cross-regulatory nodes (e.g., RIPK3, GSDMD, and GPX4) as
potential targets for systemic toxicity intervention, thereby
providing a theoretical framework for multi-organ protection
strategies.

Oxidative stress and mitochondrial dysfunction

Oxidative stress is a crucial pathological component of sys-
temic toxicity in sepsis, encompassing multiple phases, includ-
ing inflammatory activation, immune regulation, cell death,
and multi-organ dysfunction [47]. It functions as a central and
dynamically active module within the sepsis signaling network.
Characterized by an excessive accumulation of reactive oxy-
gen species (ROS) and reactive nitrogen species (RNS) that
exceed the capacity of antioxidant systems (e.g., superoxide
dismutase [SOD], glutathione [GSH], and glutathione peroxi-
dase [GPx]), oxidative stress leads to molecular damage and
signaling dysregulation [48]. Mitochondrial dysfunction signif-
icantly contributes to this process by impairing ATP produc-
tion, disrupting calcium homeostasis, and further enhancing
ROS generation, thereby accelerating toxicity across multiple
organs. Rather than viewing oxidative stress, inflammation,
and cell death as distinct events, it is more accurate to consider
them as an integrated pathogenic circuit. ROS activate NF-κB,
MAPK, and NLRP3 inflammasome signaling while simultane-
ously inducing ferroptosis through lipid peroxidation and GPX4
inhibition, thus creating a self-reinforcing loop of “oxidative
stress-inflammation-cell death.”

Organ-specific characteristics are evident: pulmonary
injury is marked by NADPH oxidase-driven ROS bursts,
whereas cardiac and renal tissues exhibit particular vulnerabil-
ity to mitochondrial collapse. Modern omics technologies and
network modeling offer significant opportunities to elucidate
the mechanisms underlying mitochondrial function. The quan-
titative tracking of mitochondrial activity is now achievable
through single-cell metabolomics and spatial transcriptomics.
Additionally, graph-based algorithms, such as PageRank and

network path analysis, facilitate the identification of regulatory
bottlenecks in ROS signaling. Targeting antioxidant pathways,
including Nrf2, GPX4, and SIRT3, has demonstrated potential
in alleviating oxidative stress-induced organ damage; however,
further validation of these approaches is necessary.

Network-based dynamic evolution mechanisms of multi-organ
injury
In addition to organ-specific injuries, recent studies emphasize
that systemic toxicity in sepsis is mediated by molecular car-
riers that transmit signals across distant organs. DAMPs, such
as HMGB1 and extracellular ATP, along with exosome-derived
microRNAs and metabolic by-products (e.g., bile acids and lac-
tate), play crucial roles as messengers in this process [39, 43].
For instance, exosomes released from inflamed pulmonary tis-
sue can transfer miRNAs that upregulate TLR4 in renal tubu-
lar epithelial cells, thereby exacerbating acute kidney injury
(AKI) [18]. Similarly, hepatic HMGB1 and bile acid metabo-
lites are implicated in myocardial dysfunction and pulmonary
inflammation, establishing a liver–heart axis of injury [36, 37].
These inter-organ messengers facilitate local injuries to trigger
systemic amplification loops, converting organ-specific damage
into multi-organ dysfunction [31].

Pulmonary injury: ARDS and disruption of the alveolar-capillary
barrier

In sepsis, ARDS represents one of the earliest and most common
forms of organ dysfunction, primarily resulting from signifi-
cant disruption of the alveolar–capillary barrier [24]. This bar-
rier, comprised of alveolar epithelial cells, capillary endothelial
cells, and the basement membrane, is crucial for effective pul-
monary gas exchange. In ARDS, its integrity is compromised
due to complex immune and inflammatory responses, resulting
in increased permeability, alveolar edema, and the formation of
hyaline membranes [51].

Neutrophil recruitment and hyperactivation are critical in
the early stages of lung injury, primarily through the release
of elastase, myeloperoxidase (MPO), ROS, and the formation
of neutrophil extracellular traps (NETs), which compromise
alveolar cell integrity. Alveolar macrophages identify PAMPs
and DAMPs via the TLR4–MyD88–NF-κB signaling pathway,
leading to the secretion of pro-inflammatory cytokines such as
IL-1β, IL-6, and TNF-α. This process amplifies the inflammatory
response and facilitates the recruitment of additional immune
cells.

Key signaling pathways, including NF-κB, MAPK, JAK/S-
TAT, PI3K-AKT, and the NLRP3 inflammasome, orchestrate
cytokine expression, pyroptosis, and disruption of the pul-
monary barrier. The NF-κB–CXCL8–neutrophil axis and the
NLRP3–GSDMD–IL-1β pathway are pivotal in mediating the
cytokine storm associated with lung injury. Furthermore,
the downregulation of tight junction proteins, such as ZO-1
and VE-cadherin, along with cytoskeletal remodeling through
RhoA/ROCK and Src kinases, contributes to barrier breakdown.

Mitochondrial dysfunction and ROS accumulation fur-
ther activate the NLRP3 inflammasome, establishing a feed-
back loop characterized by oxidative stress, pyroptosis,
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cytokine release, and barrier disruption. ARDS evolves from a
predominantly pro-inflammatory response to a mixed pro- and
anti-inflammatory network, ultimately progressing towards
fibrosis. As a sentinel organ, the lung influences distant organs,
including the kidneys, liver, and heart, underscoring the
necessity for integrated multi-organ protection strategies.
Distinct from renal injury, pulmonary damage is primarily
driven by barrier disruption mediated by the NF-κB–NLRP3–
NETs axis, emphasizing the lung’s unique role as the “first
responder” in systemic toxicity.

Renal injury: AKI

In sepsis, AKI is the most prevalent organ dysfunction following
ARDS, with an incidence exceeding 50%. It is strongly corre-
lated with increased mortality and the progression to chronic
kidney disease. Sepsis-associated AKI (SA-AKI) is now under-
stood not only as a consequence of hypoperfusion but also
as a manifestation of systemic toxicity driven by inflamma-
tion, metabolic dysregulation, and programmed cell death [52].
The pathogenesis of SA-AKI begins with the activation of
pro-inflammatory pathways, such as NF-κB and JAK/STAT,
via pattern recognition receptors, including TLR4 and NOD1/2.
This activation leads to the release of inflammatory mediators
such as IL-6, IL-1β, and MCP-1 from tubular epithelial cells,
promoting the infiltration of neutrophils and macrophages and
amplifying local inflammation. Renal immune dysregulation,
characterized by a predominance of M1 macrophages and sus-
tained activation of inflammatory cytokines, contributes to a
tightly coupled feedback network [20]. The mechanisms of cell
death in SA-AKI are complex, involving apoptosis (caspase-3/9
activation), pyroptosis (NLRP3-caspase-1-GSDMD axis), and
ferroptosis (GPX4 inhibition and lipid peroxidation). These
pathways lead to renal tubular damage and the release of
DAMPs, which further amplify inflammation, creating a toxic
feedback loop of cell death, inflammation, and microenviron-
mental collapse.

Oxidative stress and mitochondrial dysfunction also play
critical roles in SA-AKI, characterized by increased mitochon-
drial ROS production, suppressed Nrf2 antioxidant signaling,
and dysregulated Keap1 activation that drive ferroptosis and
metabolic disturbances. Additionally, a shift from oxidative
phosphorylation to glycolysis in tubular cells disrupts ATP pro-
duction and Na+/Ca2+ transport.

SA-AKI progresses from inflammation-driven signaling to
metabolic imbalance and cell death, with shifts in central net-
work nodes and reconfigured modules. Cross-organ inflamma-
tion, particularly between the lung–kidney and liver–kidney
axes, exacerbates renal injury, as evidenced by IL-6 and exo-
somal miRNAs upregulating TLR4 in renal tubules. Overall,
SA-AKI represents a systemic network pathology, as illustrated
in Figure 1. This renal pathology contrasts with pulmonary
injury by emphasizing multi-modal cell death and metabolic
imbalance as central drivers.

This figure depicts the interconnected toxicity feedback
loop among the kidney, lung, liver, and heart. Key pathways
include the NF-κB/JAK-STAT–IL-6/IL-1β signaling cascade [52],
the NLRP3–caspase-1–GSDMD pyroptosis axis [29], and

ferroptosis mediated by GPX4 inhibition [43]. (Arrow colors:
red = inflammatory amplification, blue = metabolic dysreg-
ulation, green = therapeutic modulation.) Drug annotations
include: BAY 11-7082 (NF-κB inhibitor, 5–20 μM) [11], MCC950
(NLRP3 inhibitor, 10 μM) [29], disulfiram (GSDMD inhibitor,
1–10 μM) [29], and GPX4 agonists (ferroptosis protection) [43].

These pathways and pharmacological agents represent
potential targets for intervention within the systemic toxicity
network.

Hepatic injury and metabolic dysregulation

Throughout the progression of sepsis, the liver, recognized as a
central immunometabolic organ, is frequently impacted by sys-
temic toxicity at an early stage [36, 37, 53]. Hepatic dysfunction
is characterized not only by elevated transaminases and biliru-
bin abnormalities but also by a more intricate network-level
interaction among inflammatory, metabolic, and cell death
pathways.

During the inflammatory activation phase, Kupffer cells
identify PAMPs and DAMPs through receptors such as
TLR4 and RAGE. This recognition activates NF-κB and
JAK/STAT signaling pathways, resulting in the release of
pro-inflammatory cytokines TNF-α and IL-6. Consequently,
the NLRP3 inflammasome-mediated pyroptosis occurs, leading
to damage in hepatocytes and sinusoidal endothelial cells,
which contributes to microcirculatory dysfunction and regional
hypoxia. Concurrently, hepatocellular energy metabolism
undergoes reprogramming characterized by mitochondrial
dysfunction, disruption of the tricarboxylic acid (TCA) cycle,
and impaired ATP production, all of which contribute to
metabolic stress. The suppression of nuclear receptors such
as PPARα and FXR disrupts bile acid homeostasis, further
exacerbating cellular injury [54]. Additionally, the accumu-
lation of lipid peroxidation products, such as malondialdehyde
(MDA) and 4-hydroxynonenal (4-HNE), activates ferroptosis
pathways, creating a synergistic toxic circuit that links inflam-
mation, metabolic disturbances, and cell death.

Septic liver injury is characterized by dynamic modular
reconfiguration and alterations in signaling pathways. Ini-
tially, the NF-κB-driven pro-inflammatory module predom-
inates, followed by the activation of NLRP3-pyroptosis and
PPARα-metabolic modules during the intermediate stage. Sub-
sequently, the process transitions to immunoregulatory path-
ways involving IL-10 and TGF-β. Key regulatory nodes, such as
SIRT1, Nrf2, and GPX4 orchestrate these transitions. Moreover,
the liver serves as a source of inflammatory mediators, exo-
somes, and metabolic products that influence distant organs,
including the lungs, heart, and kidneys, thereby establishing
a cross-organ signaling network. Thus, septic liver injury rep-
resents a systemic network process shaped by inflammation,
metabolic disruption, and cell death, highlighting its potential
for multi-organ protection and precision therapy.

Myocardial injury and microcirculatory dysfunction

Septic cardiomyopathy (SCM) is a functional cardiac dis-
order influenced by various factors, including inflamma-
tion, microcirculatory impairment, mitochondrial dysfunction,
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Figure 1. Schematic representation of the systemic toxicity network in sepsis-associated acute kidney injury (SA-AKI). The figure shows the
interconnected feedback loops among kidney, lung, liver, and heart. Pathways illustrated include inflammatory signaling (NF-κB, cytokines), mitochondrial
dysfunction (mtDNA mutations, ROS, ATP depletion), and programmed cell death mechanisms (apoptosis, pyroptosis, ferroptosis). Therapeutic interven-
tions (BAY 11-7082, Liproxstatin-1) are indicated. Arrow colors: red = inflammatory amplification, blue = metabolic dysregulation, green = therapeutic
modulation. Abbreviations: PAMPs: Pathogen-associated molecular patterns; DAMPs: Damage-associated molecular patterns; TLR4: Toll-like receptor 4;
TNF-α: Tumor necrosis factor alpha; IL: Interleukin; PD-1: Programmed cell death protein 1; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B
cells; mtDNA: Mitochondrial DNA; ROS: Reactive oxygen species; ATP: Adenosine triphosphate; GPX4: Glutathione peroxidase 4; Fas/FasL: Fas receptor/Fas
ligand; NLRP3: NOD-, LRR- and pyrin domain-containing protein 3; GSDMD: Gasdermin D.

and disruptions in calcium homeostasis [55]. During sepsis,
inflammatory cytokines such as TNF-α, IL-1β, and IL-6 activate
signaling pathways like NF-κB, JAK/STAT, and MAPK through
cardiomyocyte membrane receptors. This activation leads to
the release of myocardial depressant factors, dysregulation of
calcium channels, and programmed cell death. Additionally,
local immune cell infiltration and complement activation exac-
erbate myocardial inflammation, promoting apoptosis and con-
tractile dysfunction.

At the microvascular level, endothelial injury and an
imbalance of vasoactive substances (e.g., nitric oxide and
endothelin) result in heterogeneous myocardial perfusion,
further contributing to metabolic derangement and oxida-
tive stress. Mitochondrial dysfunction in cardiomyocytes is
characterized by a loss of membrane potential, opening of
the mitochondrial permeability transition pore (mPTP), and
excessive release of ROS. These factors collectively inhibit
ATP production and activate the caspase cascade, leading to
cell death [56]. Concurrently, calcium dysregulation wors-
ens the injury, with Ca2+ overload impairing myofilament
contraction and triggering calpain-mediated cytoskeletal
degradation.

The signaling evolution of SCM reflects dynamic remodel-
ing, shifting from inflammation-dominated pathways to those
focused on metabolism and cell death. Early dominant sig-
nals such as NF-κB and STAT3 are progressively supplanted
by pathways involving ROS, mPTP, and Nrf2, culminating in

the late-stage activation of reparative modules like TGF-β and
vascular endothelial growth factor (VEGF). Multiple pathways
converge on shared regulatory nodes (e.g., NF-κB, iNOS, and
GPX4), creating a high-density toxic module characterized by
dynamically shifting signal intensity and centrality throughout
disease progression.

Furthermore, cardiac dysfunction exacerbates damage to
other organs through hypoperfusion and circulatory insta-
bility, leading to complications such as AKI and intestinal
barrier breakdown. Simultaneously, pulmonary inflammatory
mediators can disseminate through the bloodstream to the
myocardium, triggering localized inflammatory responses and
establishing a typical inter-organ toxic loop. Therefore, SCM
represents a complex systemic toxicity network shaped by
inflammation, microcirculatory disruption, and metabolic col-
lapse. A comprehensive understanding of its evolutionary tra-
jectory and network remodeling mechanisms may reveal novel
therapeutic targets for multi-organ protection.

Methods and tools for reconstructing systemic toxicity
networks
Integrated analysis strategies for multi-omics data

The systemic toxicity of sepsis encompasses the coordinated
evolution of multiple biological systems and pathways, includ-
ing inflammation, immunity, metabolism, and regulated
cell death. This phenomenon is characterized by consider-
able complexity, temporal dynamics, and inter-individual
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Figure 2. Computational frameworks for multi-omics integration and dynamic network reconstruction in systemic toxicity of sepsis. The figure
shows input omics layers, integration strategies, modeling and visualization tools, as well as key applications and resulting outputs. Abbreviations: DBN:
Dynamic Bayesian network; GNN: Graph neural network; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3: NOD-, LRR- and
pyrin domain-containing protein 3; GPX4: Glutathione peroxidase 4.

heterogeneity. Traditional single-omics approaches prove
inadequate in capturing this complexity; consequently,
multi-omics integration has emerged as a pivotal strategy
for elucidating the underlying mechanisms of network
remodeling [57, 58]. Common omics layers, including tran-
scriptomics, proteomics, metabolomics, epigenomics, and
single-cell/spatial omics, capture distinct biological dimensions
such as gene expression, protein translation, metabolism, and
cellular heterogeneity. Integration strategies can be categorized
into three types: early integration, which merges data for joint
dimensionality reduction; intermediate integration, which
models each omic layer independently before aligning them
biologically through pathways or co-expression networks; and
late integration, which analyzes heterogeneous datasets after
individual modeling. Analytical tools like iCluster, MOFA,
and SNF facilitate the reduction of multi-omics features,
while Cytoscape and OmicsNet support network visualization.
Additionally, GNNs and Bayesian modeling are effective for
inferring dynamic biological processes [59]. In the context
of sepsis, multi-omics studies elucidate the divergent signal-
ing pathways of NF-κB and NLRP3 across various organs,
underscoring the heterogeneity of inflammatory networks.
Integrative analyses of metabolomics and proteomics demon-
strate the role of GPX4-mediated ferroptosis in both renal and
myocardial tissues. Although multi-omics integration facili-
tates the construction of regulatory networks and the identifi-
cation of critical signaling pathways, it encounters challenges
related to data heterogeneity and computational complexity.
Innovative methodologies, including causal inference and
spatial transcriptomics, hold promise for enhancing biological
resolution [60]. Multi-omics and dynamic evaluation have
been extensively applied in various diseases. In oncology, for

instance, longitudinal single-cell and spatial transcriptomics
have been employed to elucidate tumor evolution and thera-
peutic resistance [61]. In neurodegenerative disorders, such as
Alzheimer’s disease, time-series metabolomics and proteomics
have uncovered progressive mitochondrial dysfunction and
synaptic loss [62]. In cardiovascular research, integrative omics
combined with network modeling has identified the dynamic
lipid metabolism and immune-inflammatory interactions that
drive the progression of atherosclerosis [63]. In contrast to
these studies, our review provides a distinct perspective on
sepsis by focusing on multi-organ, cross-system coupling
and the network reconstruction of systemic toxicity, rather
than relying on static or organ-restricted models. Section 5.2
details computational modeling frameworks for multi-omics
integration. Overall, multi-omics offers critical insights into
the dynamic signaling evolution and network remodeling
associated with sepsis toxicity (Figure 2).

This figure illustrates the computational methods employed
to integrate heterogeneous omics data for network reconstruc-
tion. The methodologies include weighted gene co-expression
network analysis (WGCNA) [64], DBNs [25], and GNNs [57].
The arrow colors denote the following: black indicates the data
integration flow, while orange signifies iterative refinement
using artificial intelligence (AI) models.

Node colors are categorized as follows: yellow represents
key signaling pathways (e.g., NF-κB, NLRP3, and GPX4), blue
denotes metabolic regulators, and purple indicates immune
checkpoints.

AI-driven models demonstrate the application of machine
learning and deep learning techniques, such as GNNs and recur-
rent neural networks, to capture dynamic and cross-organ reg-
ulatory relationships.

Liu and Liang
Sepsis toxicity network reconstruction 7 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


Table 2. Comparative analysis of modeling approaches

Model types
Representative
methods Modeling features Applicable scenarios Advantages Challenges

Static
networks [57, 64]

PPI,
WGCNA,
TF–miRNA

Interaction-based
network construction;
regulatory relationship
inference

Pathway co-expression;
transcriptional
regulation inference

Clear structure, suitable
for early screening

Inability to simulate time
variation; weak dynamic
prediction

Dynamic
Bayesian
networks [45]

DBN Node states vary over
time; sequence-based
modeling

Pathway activation
order, signal propagation
dynamics

Capable of handling
incomplete data;
supports temporal
inference

High computational
complexity;
time-dependent data
labeling required

ODE-based
systems [45]

ODE
frameworks

Continuous modeling of
dynamic transitions

Biochemical kinetics,
pathway activity
prediction

High quantitative
resolution; mechanistic
interpretability

Requires large prior
parameter sets; sensitive
to data quality

Boolean
networks [45]

Boolean
network

Binary-state modeling of
on/off mechanisms

Logical state transition
analysis

Simple structure,
suitable for low-data or
multi-state systems

Difficult to model
continuous transitions;
lacks quantitative
expressiveness

Graph neural
networks [25, 57]

GCN, GAT,
Hetero-GNN

High-dimensional graph
learning;
inter-organ/multi-omic
integration

Multi-organ signaling
network integration

Strong nonlinear
modeling capacity;
adaptable to complex
systems

Requires large datasets;
interpretability may be
limited

Multilayer/cross-
organ
networks [25, 57]

CellChat,
tissue-GNN

Integrates cell–cell,
tissue–organ, and spatial
layers

Signal cross-talk,
spatially resolved organ
interaction networks

Captures cross-scale and
spatial interactions;
supports spatial
modeling

High data demands;
model complexity and
parameter tuning
required

Abbreviations: PPI: Protein–protein interaction; WGCNA: Weighted gene co-expression network analysis; TF: Transcription factor; miRNA: MicroRNA; DBN:
Dynamic Bayesian network; ODE: Ordinary differential equation; GCN: Graph convolutional network; GAT: Graph attention network; GNN: Graph neural
network.

Network modeling and dynamic simulation methods

Building upon the multi-omics integration strategies discussed
in Section 5.1, network modeling serves as an analytical
framework to reconstruct the dynamic interactions under-
lying sepsis. Early static models, including protein–protein
interaction (PPI) networks, co-expression networks (such
as WGCNA), and transcription factor–miRNA–target gene
networks, have enhanced our understanding of structural
interactions in sepsis [64]. However, these models do not ade-
quately capture the dynamic changes that occur during disease
progression.

To address these limitations, advanced modeling
approaches—such as DBNs, ordinary differential equation
(ODE) frameworks, Boolean networks, and GNNs—have
been developed to infer temporal signaling dynamics and
cross-organ interactions. Strategies for modeling multi-organ
injury, including multilayer networks, cell–cell communication
tools (for instance, CellChat), and tissue-specific networks,
have facilitated the investigation of signal coupling and toxicity
across organs. Notable findings from these models include the
identification of the STAT3–iNOS module within myocardial
toxicity networks.

Despite challenges such as data heterogeneity and temporal
resolution, the integration of omics, spatiotemporal data, and
AI-driven models holds promise for enhancing predictive and
intervention strategies in sepsis (see Table 2).

A direct comparison of these modeling strategies
underscores their unique applicability in capturing the
temporal-spatial complexity of sepsis. DBNs are especially
beneficial for inferring causal activation orders of signaling
pathways in the presence of incomplete data. However,
their high computational demands and the need for finely
resolved time-series data restrict their use in large-scale
applications [65].

ODE-based frameworks provide robust mechanistic inter-
pretability and high-resolution simulations of biochemical
kinetics; however, they necessitate extensive prior knowledge
of parameters and are highly sensitive to data quality. In con-
trast, Boolean networks are computationally efficient and suit-
able for exploratory analyses in low-data contexts, but they only
facilitate binary state transitions, limiting their ability to model
graded or continuous molecular dynamics [66]. GNNs excel
at integrating heterogeneous multi-omics and multi-organ
data, allowing for the reconstruction of high-dimensional
toxicity networks characterized by nonlinear interactions.
Nonetheless, GNNs require large datasets and complex train-
ing processes, which may compromise their interpretabil-
ity compared to mechanistic models [67]. Collectively, these
considerations indicate that no single method is universally
optimal; therefore, hybrid or multi-model strategies may
be the most effective approach for modeling sepsis toxicity
networks.
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Therapeutic target identification and prospects for precision
intervention
Research progress in systemic toxicity intervention strategies

Sepsis-induced systemic toxicity arises from the dysregulation
of multiple signaling pathways, cell death, metabolic imbalance,
and immune dysfunction. Consequently, therapeutic strategies
are transitioning from traditional anti-inflammatory and organ
support approaches to systemic regulation that targets key
network nodes. At the signaling level, NF-κB, JAK/STAT,
and the NLRP3 inflammasome are critical targets [68].
Small-molecule inhibitors such as BAY 11-7082, ruxolitinib, and
VX-765 block pro-inflammatory pathways, thereby reducing
the risk of multi-organ injury. Recent advances in targeting
programmed cell death, particularly pyroptosis and ferroptosis,
have led to the development of agents like MCC950, disulfiram,
and GPX4 agonists that disrupt the inflammation–cell death
cycle [69]. Additionally, metabolic reprogramming through
Nrf2 activation or AMP-activated protein kinase (AMPK) ago-
nists enhances antioxidant capacity, mitochondrial function,
and energy metabolism, mitigating organ dysfunction [70].
Immune reconstitution strategies, including IL-7 supplemen-
tation and PD-1/PD-L1 blockade, aim to restore T cell function
and improve antigen presentation [71]. In summary, these
therapeutic advancements underscore the significance of
pathway-specific and multi-target interventions for systemic
detoxification and organ protection.

Personalized medicine and dynamic early warning systems

Beyond pathway-targeted therapies, personalized medicine
plays a crucial role in addressing the heterogeneity of sepsis
patients. By integrating multi-omics data—including transcrip-
tomics, proteomics, metabolomics, single-cell RNA sequencing,
and spatial transcriptomics—a comprehensive “systemic tox-
icity atlas” can be developed for each individual patient [72].
This atlas facilitates the mapping of critical signaling path-
ways, including NF-κB, NLRP3, JAK/STAT, and GPX4 across
various organs, thereby identifying individualized toxicity net-
work hubs. In contrast to conventional static systems such
as SOFA, time-series models—specifically DBNs, GNNs, and
RNNs—provide enhanced accuracy in predicting complications
such as ARDS, AKI, and MODS [73]. AI platforms can inte-
grate electronic medical records, real-time monitoring data,
and omics profiles to dynamically guide interventions [74]. The
development of digital twins facilitates the creation of in silico
patient-specific models that simulate therapeutic outcomes and
enable closed-loop treatment adjustments [75, 76]. Collectively,
these strategies advance sepsis care toward precision-driven,
mechanism-based management, complementing the therapeu-
tic advances discussed in Section 6.1.

Limitations
This narrative review presents several limitations that must
be acknowledged. First, as a non-systematic review, there is
an inherent risk of selection bias in the studies cited, despite
our efforts to encompass the most pertinent literature. Sec-
ond, the synthesis predominantly relies on secondary data from
published reports, which may be subject to methodological

heterogeneity and varying quality. Third, the primary studies
included exhibit significant heterogeneity in experimental
models, patient populations, and analytical approaches, limit-
ing the direct comparability of findings. Finally, the discussion
surrounding AI-driven “toxicity atlases” and predictive mod-
eling remains speculative at this stage, necessitating further
empirical validation prior to clinical application. These limita-
tions underscore the necessity for cautious interpretation of our
conclusions and indicate that the concepts presented should be
viewed as hypothesis-generating rather than definitive.

In addition to these methodological considerations, criti-
cal translational challenges warrant attention. Organ-specific
drug delivery obstacles continue to hinder the efficacy of path-
way modulators, while potential off-target effects and adaptive
resistance mechanisms may compromise long-term outcomes.
At the clinical level, variability among patient populations, reg-
ulatory requirements, and the absence of standardized imple-
mentation protocols present additional barriers that complicate
bedside application. Furthermore, although AI-driven warning
systems are conceptually promising, they require high-quality,
large-scale, and interoperable datasets; issues related to inter-
pretability, real-time data integration, and rigorous clinical
validation remain unresolved. Collectively, these translational
barriers highlight that while systemic toxicity network-based
interventions possess significant potential, substantial work
remains necessary before they can be safely and effectively
integrated into sepsis care.

Conclusion
Sepsis, as a systemic disease, is not driven solely by inflam-
mation or perfusion deficits but rather by a system-wide tox-
icity network reconstruction process involving inflammation,
immune dysregulation, metabolic disturbances, programmed
cell death, and multi-organ dysfunction. With advancements
in multi-omics technologies, network biology, and dynamic
modeling, researchers have progressively elucidated the spa-
tiotemporal evolution of key signaling pathways—including
NF-κB, JAK/STAT, NLRP3, and GPX4—across different organs,
resulting in the construction of a comprehensive toxicity map
characterized by multi-pathway, multi-node, and multi-organ
coupling. This review takes systemic toxicity as a central
framework to comprehensively summarize the mechanisms of
signaling pathway remodeling, organ injury evolution, and net-
work modeling strategies. It further outlines recent advances in
therapeutic interventions including pathway modulation, reg-
ulation of cell death, metabolic reprogramming, and immune
remodeling. In addition, we highlight the potential of multi-
omics-driven personalized toxicity mapping, AI-assisted risk
prediction models, and closed-loop feedback control systems in
achieving individualized precision medicine. Future research
should focus on multidimensional data integration, causal
graph modeling, cross-organ network prediction, and digital
twin technologies to advance systemic toxicity from mecha-
nistic understanding to controllable modulation. In conclusion,
this narrative review provides a systemic toxicity–centered
perspective that offers a more comprehensive understanding

Liu and Liang
Sepsis toxicity network reconstruction 9 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


of the pathophysiology of sepsis, laying a solid foundation for
multi-organ protection and precision therapy. However, fur-
ther research is needed to address the challenges of integrating
multi-omics data and refining intervention strategies. Marking
a critical transition in critical care medicine toward systemati-
zation, personalization, and intelligent management.
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