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lvermectin attenuates nicotine-induced reward-like

behaviors in mice

Mustafa Enes Demirel®1*, Abdurrahman Ekici®2, and Orug Yunusoglu ®3

Nicotine addiction poses a significant public health threat, particularly within the realm of emergency medicine, where it is associated
with serious complications, including cardiovascular events and respiratory distress. The limited effectiveness of current
pharmacological treatments for nicotine dependence underscores the urgent need for innovative and effective therapeutic approaches.
Recent studies have shown that ivermectin, an antiparasitic agent, modulates the GABAergic, glutamatergic, and purinergic systems,
which are implicated in the pathophysiology of addiction. This study aimed to examine the effects of ivermectin on the acquisition,
extinction, and reinstatement of nicotine dependence in mice, utilizing the conditioned place preference (CPP) test, a widely
recognized methodology in drug addiction research. lvermectin (1and 5 mg/kg, i.p.) was co-administered with nicotine (0.5 mg/kg, i.p.)
over three consecutive days during the acquisition phase of nicotine dependence. In a separate experiment, the influence of ivermectin
on the reinstatement of nicotine-induced CPP was assessed following an extinction period, using a single nicotine priming injection
(0.1 mg/kg). Results indicated that ivermectin (1 and 5 mg/kg) significantly reduced the development of nicotine dependence

(P < 0.05). Furthermore, ivermectin (5 mg/kg) facilitated the extinction of nicotine-induced CPP (P < 0.01) and attenuated the
reinstatement of nicotine-induced CPP triggered by a priming dose of nicotine (P < 0.01). In contrast, administration of the lower dose
of ivermectin (1 mg/kg) did not yield statistically significant effects on either the extinction or reinstatement phases (P > 0.05).
Additionally, nicotine administration, alone or in combination with ivermectin at the tested doses, did not produce significant changes
in motor coordination or locomotor activity. These findings suggest that ivermectin may attenuate both the acquisition and
reinstatement of nicotine-induced CPP while facilitating the extinction of nicotine dependence. Collectively, the results indicate that
ivermectin holds potential as a therapeutic agent in the treatment of nicotine addiction.
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Introduction
Nicotine addiction is one of the most prevalent and preventable
causes of morbidity and mortality in emergency departments
worldwide. Both acute and chronic smoking-related compli-
cations place a significant burden on public health systems
and emergency care services. Research indicates that approx-
imately 5% of adult emergency visits, 6.8% of hospital admis-
sions from emergency departments, and 10% of total hospital
costs are attributable to smoking-related conditions [1,2].
These statistics underscore the prevalence of tobacco-related
health issues, particularly within emergency departments [2].
As the primary psychoactive component of tobacco, nico-
tine rapidly induces dependence by modulating central nervous
system (CNS) pathways [3-5]. It achieves this by binding to
nicotinic acetylcholine receptors, which stimulates the release
of various neurotransmitters. This neurochemical activity is
fundamental to the diverse physiological and behavioral effects
experienced by tobacco users. Notably, neurotransmitters such
as dopamine, glutamate, and GABA play critical roles in the
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neuroadaptations associated with nicotine dependence and in
the withdrawal symptoms that arise upon cessation [4, 5].
Withdrawal symptoms such as agitation, anxiety, and tachy-
cardia frequently occur in emergency departments follow-
ing nicotine cessation, presenting additional challenges for
patient management. Furthermore, acute exacerbations related
to smoking—such as chronic obstructive pulmonary disease
(COPD), asthma, myocardial infarction, stroke, and acute cere-
bral ischemia—significantly impact the workload of emergency
departments [6-11]. Therefore, research into innovative phar-
macological interventions for nicotine addiction is a critical
priority in emergency medicine, addressing both preventive
healthcare and the management of acute complications.
Current pharmacotherapies for nicotine addiction include
nicotine replacement therapy (NRT), varenicline, and bupro-
pion, which alleviate withdrawal symptoms and nicotine
cravings by modulating dopaminergic, noradrenergic, and
nicotinic pathways [12,13]. Although these agents enhance
short-term cessation rates, achieving long-term abstinence

2Department of Parasitology, Yuzuncu Yil University, Faculty of Medicine,

© 2025 Demirel et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).

Biomolecules and Biomedicine, 2026, Vol. 26, No. 3, 490-498

490

www.biomolbiomed.com


mailto:mustafaenesdemirel@ibu.edu.tr
https://doi.org/10.17305/bb.2025.13026
https://creativecommons.org/licenses/by/4.0/
https://www.biomolbiomed.com
https://www.biomolbiomed.com
https://orcid.org/0000-0001-5187-5737
https://orcid.org/0000-0001-6034-513X
https://orcid.org/0000-0003-1075-9574

remains challenging; over 60% of individuals relapse within one
year [14].

Ivermectin, an FDA-approved antiparasitic agent, func-
tions as a positive allosteric modulator of GABA-A and P2X4
receptors [15-17]. Experimental studies indicate that iver-
mectin can reduce alcohol consumption and may serve as a
potential treatment for alcohol use disorder [18-21]. By enhanc-
ing GABAergic inhibition and regulating P2X4-mediated sig-
naling, ivermectin may help restore the excitatory-inhibitory
imbalance associated with nicotine dependence [15-17, 21, 22].
Furthermore, it has been reported that ivermectin influences
the cholinergic system in reward centers, while nicotine mod-
ifies purinergic signaling within these regions [16, 23]. During
nicotine withdrawal, the activation of P2X and P2Y1 receptors
increases the firing activity of cholinergic neurons, whereas the
administration of nicotine with P2X agonists enhances synaptic
responses [23-28]. These findings suggest that the purinergic
system could be a viable therapeutic target in the develop-
ment of interventions for addiction, withdrawal, and relapse
phases.

The conditioned place preference (CPP) paradigm is utilized
to evaluate the associative rewarding properties of various
stimuli, including pharmacological agents, social engagement,
palatable food, and sexual behavior [29-31]. This model
has successfully investigated the addictive potential of sub-
stances such as morphine, fentanyl, benzodiazepines, alcohol,
amphetamines, and nicotine [30-32]. Notably, numerous
studies have demonstrated that nicotine induces a contextual
preference within CPP paradigms. Additionally, recent adap-
tations of the CPP model have been applied to human popu-
lations to explore approach-avoidance responses to addictive
stimuli and how these responses vary based on contextual
factors [30, 33, 34].

The limited effectiveness of existing treatments underscores
the need for alternative pharmacological strategies that target
broader neurobiological mechanisms, including glutamatergic,
GABAergic, and purinergic pathways. The literature suggests
thativermectin may modulate these systems implicated in nico-
tine addiction, prompting further investigation into its poten-
tial therapeutic effects.

Materials and methods

All experimental procedures adhered to the ethical guidelines
established by the local animal ethics committee. The care and
handling of animals, along with all interventions, were con-
ducted in accordance with the principles set forth in the Uni-
versal Declaration of Animal Rights. Male Swiss albino mice
(8 weeks old, weighing 22-25 g) were maintained under stan-
dardized laboratory conditions, which included controlled
humidity (50%-70%), ambient temperature (19 + 2 °C), and a
12-h light/dark cycle. Throughout the study, the animals had
unrestricted access to standard rodent chow and water.

Drugs
Nicotine hydrogen tartrate was dissolved in sterile physiologi-
cal saline (0.9% NaCl) immediately prior to administration. The
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Figure 1. Timeline and dosing scheme for the CPP paradigm. The CPP
procedure consisted of habituation (Day 1), preconditioning test (Day 2),
conditioning (Days 3-5), post-conditioning test (Day 6), extinction (Days 7-
10), and reinstatement (Day 11). During habituation and test sessions, mice
freely explored both chambers of the apparatus, while during conditioning,
they were confined to one chamber following drug or vehicle administration
(twice daily, 5 h apart). Extinction and reinstatement were assessed under
the same conditions, with appropriate pretreatments (vehicle, nicotine,
or ivermectin) administered as indicated. Abbreviations: CPP: Conditioned
place preference.

pH of the nicotine solutions was adjusted to 7.4 using dilute
0.1 M NaOH. The nicotine doses are expressed as the free base.
All drugs were sourced from Sigma Chemicals (St. Louis, MO,
USA) and administered intraperitoneally (i.p.) at a volume of
10 mL/kg. Ivermectin was dissolved in 1% DMSO, while normal
saline (0.9% NaCl) served as the control. All injections were
performed at room temperature.

CPP apparatus

The CPP apparatus comprised two conditioning chambers of
identical dimensions (20 x 20 x 20 cm): one featured white
vertical lines on the walls with a grid floor, while the other
showcased black horizontal lines on the walls with a per-
forated floor. These main chambers were interconnected by
sliding doors, facilitating access between them. The CPP pro-
tocol was adapted from McKendrick and Graziane [35] with
minor modifications and included the following phases: habit-
uation, preconditioning test, conditioning, post-conditioning
test, extinction, and nicotine re-exposure test. During the test
sessions, a webcam recorded the duration of time spent in each
chamber. Drug-induced CPP acquisition was assessed by com-
paring the time spent in the nicotine-paired chamber to that in
the vehicle (VEC)-paired chamber. Subsequently, the recorded
videos were analyzed by a blinded observer to ensure an unbi-
ased evaluation. Each phase was conducted as detailed below
(see Figure 1):

Habituation phase (Day 1): Mice were placed in the center
of the CPP apparatus with the doors open, allowing unrestricted
access to both chambers for 5 min. No injections were adminis-
tered during this phase.

Pre-conditioning test (Day 2): To establish baseline cham-
ber preference, mice were again positioned in the center of
the apparatus with the doors open, permitting free access to
both compartments for 15 min. No injections were given on
this day.

Effect of conditioning and ivermectin on the acqui-
sition of nicotine dependence (Days 3-5): A neutral
design was employed, as mice exhibited no preference for
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either chamber during the pre-conditioning test. Therefore,
conditioning was conducted in a counterbalanced manner. Over
three consecutive days, with the doors closed, animals were
confined to one of the conditioning chambers. In the VEC group,
animals received VEC and, 30 min later, received VEC again,
followed by a 20-min conditioning session; this procedure was
repeated in the afternoon (5 h later). In the nicotine group, nico-
tine (0.5 mg/kg) was administered 30 min after VEC, followed
immediately by a 20-min conditioning session; this procedure
was repeated 5 h later. In the nicotine + ivermectin groups,
nicotine (0.5 mg/kg) was injected 30 min after ivermectin
administration (1 mg/kg or 5 mg/kg), followed immediately
by 20 min of conditioning; the same dosing and timing were
repeated in the afternoon session.

Post-conditioning test (Day 6): Mice were placed in the
center of the apparatus with the doors open, allowing free
access to both chambers for 15 min. No injections were
administered.

Investigation of the effect of ivermectin on extinction
(Days 7-10): VEC was administered to both the nicotine and
VEC groups. The ivermectin groups received ivermectin (1 or
5 mg/kg) as appropriate. On days 1 and 4 (test days 7 and 10) of
this period, animals were tested in the CPP apparatus for 15 min
immediately following VEC and ivermectin injections, and the
time spent in each chamber was recorded.

Investigation of the effect of ivermectin on reinstate-
ment (Day 11): The nicotine group received VEC 30 min prior to
nicotine administration. Immediately following nicotine injec-
tion, the animals were placed in the CPP apparatus for a 15-min
test. The VEC group received VEC for both injections. The
ivermectin groups received nicotine 30 min after ivermectin
administration and were immediately tested in the apparatus
for 15 min.

Locomotor activity

After completing pre- and post-conditioning behavioral assess-
ments, neurological deficits were evaluated sequentially using
the Locomotor Activity Device and the rotarod apparatus. Mice
were observed for 10 min in the Locomotor Activity Device,
during which grooming, sniffing, head bobbing, and distance
traveled were quantified.

Rotarod test

The rotarod paradigm is a widely recognized experimental
method for assessing motor coordination and postural con-
trol. It is commonly utilized to detect locomotor dysfunctions
and balance disturbances resulting from exposure to addictive
substances and various neurological disorders. The procedure
involves placing an animal on a rotating rod, and the duration
for which the animal maintains its balance while moving on
the apparatus is recorded. In this study, assessments were con-
ducted for 5 min following both acquisition and reinstatement
sessions. Each subject participated in five trials: the first two
served as adaptation and training, while the final three were
designated for data analysis. A cut-off time of 300 s was estab-
lished for each trial.
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Ethical statement

All experiments were conducted in compliance with NTH guide-
lines for the care and use of male Swiss albino mice (8 weeks
old, 22-25 g). Ethical approval for the study was granted by the
local animal experiments ethics committee (Decision number:
2020/08-09).

Statistical analysis

The normality of the data distribution was assessed using
the Kolmogorov-Smirnov test. Intergroup comparisons of nor-
mally distributed observations (P > 0.05) were conducted
using one-way analysis of variance (ANOVA), while those
of non-normally distributed observations (P < 0.05) utilized
the nonparametric Kruskal-Wallis H test. For pairwise com-
parisons, parametric data were analyzed with the indepen-
dent t-test, and nonparametric data were examined using the
Mann-Whitney U test. The homogeneity of variances was
assessed with Levene’s test. For groups with homogeneous
variances, standard one-way ANOVA followed by Tukey’s post
hoc test was applied for multiple comparisons. In instances
where the assumption of homogeneity was not met, Welch'’s
ANOVA was used, followed by the Games-Howell post hoc test.
The Benjamini-Hochberg false discovery rate (FDR) method
was employed to adjust P values for multiple comparisons,
applied separately within each predefined family of tests (e.g.,
acquisition/post-test; extinction day 1; extinction day 4; rein-
statement). Adjusted P values in the tables reflect BH-FDR
correction within the respective families. Although all ani-
mals were measured across experimental phases, individual
micelles were not tracked, and samples were randomly selected
for each measurement; consequently, repeated measures were
not performed, and comparisons across time points were ana-
lyzed as independent observations. For each planned pairwise
comparison, we report group means + standard deviations
(Mean + SD), mean differences (I-]) with 95% confidence
intervals, P values, BH-FDR adjusted P values, and ANOVA
effect sizes (?). Planned contrasts were conducted to com-
pare specific group differences, with contrast estimates calcu-
lated for each relevant comparison. A priori sensitivity anal-
ysis using G*Power indicated that with four groups of six
to eight animals each, the study was adequately powered
(1-p ~ 0.80) to detect large effect sizes (Cohen’s f ~ 1.0,
n? ~ 0.50) for the primary acquisition and reinstatement com-
parisons at a adjusted by the Benjamini-Hochberg procedure.
These analyses were performed using SPSS, as detailed in
the Supplemental data. All statistical analyses were carried
out using SPSS software (version 21.0, IBM Corp., Armonk,
NY, USA).

Results

Effects of treatment with ivermectin on the acquisition
(development) of nicotine-induced CPP

The effects of the experimental groups on post-conditioning test
duration were assessed using one-way ANOVA, with data con-
firmed as normally distributed via the Kolmogorov-Smirnov
test and homogeneity of variances validated by Levene’s test
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Figure 2. Effects of ivermectin on nicotine-induced CPP acquisition.

During the post-conditioning test, NIC-treated mice spent significantly more
time in the nicotine-paired chamber compared to VEC controls, confirming
successful CPP induction. Both IVM 1 mg/kg and IVM 5 mg/kg groups
showed a significant reduction in time spent in the conditioned chamber
relative to the NIC group, indicating attenuation of nicotine-induced reward-
like behavior. Data are presented as mean £ SD. a,b: Different letters
indicate statistically significant differences among the means. Abbreviation:
CPP: Conditioned place preference; VEC: Vehicle; NIC: Nicotine; IVM: Iver-
mectin; SEM: Standard error of the mean.

(P > 0.05). The analysis indicated a statistically significant
difference among the groups during the post-conditioning test
(n? = 0.532, P < 0.001). Post hoc comparisons using Tukey’s
multiple comparison test (Tukey’s HSD, a = 0.01) revealed that
the NIC group (613.13 + 56.83) spent significantly more time
in the conditioned chamber than both the VEC group (482.5
+ 37.86; mean difference = 130.62 s, 95% CI [48.91, 212.34],
adj. P = 0.007), the IVM 1 mg/kg group (518.33 & 57.96; mean
difference = 94.79 s, 95% CI [13.08, 176.50], adj. P = 0.038),
and the IVM 5 mg/kg group (498.33 + 61.21; mean difference
= 114.79 s, 95% CI [33.08, 196.50], adj. P = 0.012) (Figure 2).
A comparison between the NIC group and the control group
showed a significantly longer test duration in the NIC group,
confirming the successful establishment of the CPP model
(P < 0.001). In contrast, both the IVM 1 mg/kg and 5 mg/kg
groups exhibited a significant reduction in test duration com-
pared to the NIC group, indicating a marked decrease in
reward-like behavior. These findings suggest that both doses of
IVM positively influenced nicotine dependence.

Effects of ivermectin administration on the extinction of
nicotine-induced CPP

The normality of the data distribution was assessed using the
Kolmogorov-Smirnov test, which confirmed a normal distribu-
tion. Additionally, the homogeneity of variances was evaluated
with Levene’s test, affirming that the assumption of homogene-
ity was met. The impact of the groups on the time spent in
the drug-paired side (measured in seconds) was analyzed dur-
ing the post-conditioning test, Extinction Test 1 (Ext Test 1),
and Extinction Test 2 (Ext Test 2) using one-way ANOVA. The
analysis revealed statistically significant differences between
groups during the post-conditioning test and Ext Test 1 phases
(n? = 0.524, P < 0.01), while no significant differences were
observed in Ext Test 2 (P = 0.22).
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For the post-conditioning test, the normality of the data dis-
tribution was again evaluated using the Kolmogorov-Smirnov
test, indicating a normal distribution. However, Levene’s test
showed a violation of the homogeneity of variances assump-
tion (P = 0.03). Consequently, group comparisons were con-
ducted using Welch’s ANOVA, and multiple comparisons were
performed with the Games-Howell post hoc test. Differences
among groups in Extinction Test 1 were assessed using Tukey’s
multiple comparison test. During Ext Test 1, the NIC group
(540.63 + 45.43 s) spent significantly more time in the
drug-paired side compared to both the VEC group (444.33
+ 40.87 s; mean difference = 96.29 s, 95% CI [31.50, 161.08],
adjusted P = 0.007) and the IVM 5 mg/kg group (443.33
+ 33.28 s; mean difference = 97.29 s, 95% CI [32.50, 162.08],
adjusted P=0.007). In contrast, the IVM 5 mg/kg group demon-
strated a significantly reduced time (P < 0.01) spent in the
drug-paired side compared to the NIC group, suggesting that
high-dose ivermectin facilitated extinction (Figure 3). No sig-
nificant difference (P > 0.05) was observed in the duration of
Ext Test1for the IVM 1 mg/kg group. In Ext Test 2, no significant
differences were detected among the groups, indicating that
nicotine dependence had been effectively extinguished at this
stage (P > 0.05).

Effects of ivermectin administration on the reinstatement of
nicotine-induced CPP

Reinstatement test durations (measured in seconds) were
analyzed using one-way ANOVA, which revealed statisti-
cally significant differences among the groups (n? = 0.492,
P < 0.01). Levene’s test confirmed the homogeneity of vari-
ances (P = 0.856). Following this, Tukey’s multiple compari-
son test identified significant pairwise differences between the
groups (see Figure 4). Independent samples t-tests were con-
ducted to further evaluate group differences between reinstate-
ment and pre-conditioning test values. This analysis indicated
that, with the exception of the NIC group (560.00 + 45.57),
no statistically significant differences were found between the
pre-conditioning and reinstatement values in the other groups.
Notably, the NIC group spent significantly more time in the
drug-paired compartment compared to the control (VEC) group
(457.17 + 52.95; mean difference = 102.83 s, 95% CI [29.24,
176.42], adjusted P = 0.012), indicating a reinstatement of
nicotine-seeking behavior (P < 0.05). In contrast, the IVM
5 mg/kg group (456.33 + 48.82; mean difference = 103.66 s,
95% CI [30.08, 177.26], adjusted P = 0.012) exhibited a signif-
icantly reduced time spent in the drug-paired compartment
compared to the NIC group (P < 0.05). These findings suggest
that IVM at a dosage of 5 mg/kg attenuates the reinstatement of
nicotine dependence (see Figure 5).

Impact of ivermectin on locomotor activity in

nicotine-induced CPP

To assess the effects of the experimental groups on groom-
ing, sniffing, head bobbing, and distance moved, data obtained
from the post-conditioning and reinstatement tests were ana-
lyzed using Kolmogorov-Smirnov normality tests and Levene’s
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Figure 3. Effects of ivermectin on the extinction of nicotine-induced conditioned place preference in mice. The duration (in seconds) that mice spent

in the nicotine-associated compartment was measured during the post-conditioning test across different groups: Nicotine only, vehicle (saline), and nicotine
combined with ivermectin. During the extinction phase, animals in the ivermectin treatment groups (1and 5 mg/kg, i.p.) received daily ivermectin injections,

while saline was administered to both the control and nicotine-only groups. Extinction tests were carried out at one-day intervals (on days 7 and 10

and

=

continued until the time spent in the nicotine-paired chamber became comparable to that of the control group. The results are expressed as mean % SD,

n = 6-8 mice per group. Abbreviations: NIC: Nicotine; VEC: Vehicle.
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Figure 4. Effects of ivermectin administration on the reinstatement of

nicotine-induced conditioned place preference. One day after extinction,
and 30 min before nicotine (0.1 mg/kg, i.p.) was administered, saline was
given to the nicotine group, and ivermectin was administered to the iver-
mectin (1and 5 mg/kg, i.p.) groups. Physiological saline was administered to
the control group. The results are expressed as mean %+ SD, n = 6-8 mice
per group. Abbreviations: NIC: Nicotine; VEC: Vehicle.

homogeneity tests. The normality analysis indicated that sniff-
ing behavior during the post-conditioning test did not follow
a normal distribution (P < 0.05), while all other measures
adhered to normal distribution (P > 0.05). Consequently, the
Kruskal-Wallis H test was employed for multiple comparisons
of sniffing behavior, whereas one-way ANOVA was utilized
for group comparisons of the other variables. Levene’s homo-
geneity test confirmed that all measures were homogeneously
distributed (P > 0.05). As shown in Table1, no statistically
significant differences were identified among the groups forany
of the assessed variables (P > 0.05).

The analysis of behavioral parameters (grooming, sniff-
ing, head bobbing, distance moved) in the post-conditioning
test yielded no significant results. Additionally, head bobbing
behavior was not observed in all groups, precluding any further
analysis of this parameter.
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Figure5. Influence of ivermectin administration on performance in the
rotarod assay. The data were analyzed with one-way ANOVA. All measures
shown as group means + SD. n = 6-8 mice per group. Abbreviations: NIC:
Nicotine; IVM: lvermectin; VEC: Vehicle.

Effect of ivermectin on motor coordination in nicotine-induced
CPP

One-way ANOVA analysis indicated that neither nicotine alone
nor its combination with ivermectin significantly impacted
motor coordination (P > 0.05) (Figure 5).

Discussion
This study investigates the effects of ivermectin on the reward-
ing properties of nicotine, as measured by various stages of
CPP. Our findings suggest that ivermectin, an FDA-approved
antiparasitic agent with positive allosteric modulator activity
at GABA-A and P2X4 receptors, shows promising potential in
addressing addiction. Among the pharmacological treatments
available to alleviate addiction symptoms, few have the capa-
bility to reduce drug acquisition, and even fewer are effective
in preventing reinstatement [36, 37].

While CPP does not directly assess the stages of nicotine
addiction, it mimics the behavior of human smokers condi-
tioned to smoke in environments previously associated with
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Table 1. Effects of nicotine on the locomotor activity of mice receiving it alone or in combination with ivermectin (Mean + SD)

Parameter VEC NIC IVM 1 IVM 5 P

n 6 8 6 6

Post-conditioning phase

Grooming (s) 2.00£1.41 3.38 £1.69 2.50 +£1.05 2.00+£141 0.250
Sniffing (s) 217+£172 2.38 4+ 1.60 2834133 2834117 0.813
Distance moved (cm) 3261+734 4127 £ 1166 3500 + 1124 3688 + 994 0.462
Reinstatement test

Grooming (s) 217 +1.47 3.00£2.20 2.83+£2.48 2.66 +£1.97 0.898
Sniffing (s) 233+£2.07 3384185 250 +1.38 2.33+£2.07 0.666
Distance moved (cm) 3199 £ 510 3855 + 1447 3912 + 328 3550 £ 634 0.505

Abbreviations: VEC: Vehicle (control); NIC: Nicotine; IVM: Ivermectin; IVM 1: lvermectin (1 mg/kg); IVM 5: lvermectin (5 mg/kg); SD: Standard deviation.

reward [38]. Consistent with existing literature, mice adminis-
tered nicotine (0.5 mg/kg, i.p.) exhibited CPP by spending sig-
nificantly more time in the nicotine-paired chamber compared
to the saline-paired chamber [29, 37, 39]. In line with previous
findings, no statistically significant differences were observed
in locomotor activity or rotarod tests [37, 40]. The doses of iver-
mectin and nicotine used in this study were selected based on
effective doses identified in prior research [18, 20, 41].

Our study, consistent with other CPP-related research,
found that ivermectin effectively facilitated extinction
[29, 42, 43]. This study is the first to present data indicating
that ivermectin reduces psychological dependence on nicotine
and its reinstatement. Extinction and reinstatement, integral
components of drug and substance dependence, pose significant
challenges in addiction treatment [35, 44]. These issues can
exacerbate the burden on healthcare services, leading to
increased utilization, including emergency care [44].

While only one study has specifically examined avermectin
in tobacco-related models, Chen et al. [45] demonstrated
that the deletion of sphingosine kinase 2 mitigated cigarette
smoke-induced COPD-like symptoms in mice, indicating a
potential link between avermectin-related mechanisms and
tobacco-induced pathology. Although this research focused
on cigarette smoke exposure and lung outcomes rather
than behavioral nicotine addiction, it provides essential
context regarding the role of avermectin-related pathways
in tobacco-related diseases. Our findings build on this work
by extending the investigation from pulmonary outcomes
to behavioral addiction processes, thereby enhancing the
understanding of ivermectin’s potential in nicotine-related
health contexts.

Nicotine demonstrates rewarding effects by inducing
dopamine release, primarily through nicotinic acetylcholine
receptors. Ivermectin has been identified as a positive allosteric
modulator of a7 nicotinic acetylcholine receptors (a7nAChR)
and is known to induce receptor desensitization, suggest-
ing its potential to modulate nicotine’s rewarding effects
directly [20, 46, 47]. Additionally, ivermectin may dimin-
ish nicotine-induced CPP through various pharmacological
mechanisms. Given that P2X4 receptors (P2X4Rs) positively
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modulate GABA_A receptors, glycine receptors, and nicotinic
acetylcholine receptors—key targets in addiction—an inter-
action between P2X4Rs and these ionotropic receptors may
underlie the in vivo pharmacological effects of ivermectin [20].
As a positive allosteric modulator of P2X4Rs, which are
crucial in purinergic signaling in brain regions linked to
reward and addiction, ivermectin may weaken the reward
signal by altering nicotine’s effects on its receptors via this
pathway [23, 24].

Alterations in P2X4R function have been associated with
dopamine depletion [48]. Dopamine, a neurotransmitter tra-
ditionally linked to the reinforcing effects of addictive sub-
stances, plays a significant role in triggering neurobiological
changes associated with addiction [48]. Recent studies indicate
that P2X4Rs may influence the reward circuit by modulating
dopamine or glutamate release within the ventral tegmental
area and the nucleus accumbens. Furthermore, ivermectin has
been shown to increase the firing rate of striatal cholinergic
interneurons, suggesting that it elevates dopamine levels not
primarily through changes in vesicular content but through
increased terminal excitability [16]. Thus, it is hypothesized
that ivermectin may impact addiction by enhancing cholinergic
activity at dopamine terminals, facilitating dopamine release in
the striatum.

GABA, synthesized from glutamate in brain cells, pri-
marily functions as an inhibitory neurotransmitter. Nico-
tine modifies GABA activity in the brain through various
mechanisms [41]. GABA agonists have been shown to reduce
both nicotine addiction and reinstatement while accelerating
the extinction of nicotine-CPP [41, 49]. Recent studies have also
reported that ivermectin stimulates GABA activity [18, 50, 51].
This finding aligns with previous research indicating that
GABA receptor agonists typically produce inhibitory effects
on CPP.

Contemporary pharmacological strategies for address-
ing substance and drug dependence focus on modulating
or inhibiting the effects of drugs at their sites of action,
targeting the critical phases of extinction, acquisition, and
reinstatement [35]. However, few pharmacological treatments
effectively reduce drug acquisition, and even fewer succeed in
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preventing reinstatement [35]. Numerous experimental and
clinical studies have confirmed that re-exposure to a drug
(priming) is a critical event correlated with drug-seeking
behavior in both humans and animals [52].

Notably, ivermectin not only mitigates extinction syndrome
but also prevents the development of reinstatement, a partic-
ularly resistant stage of addiction. In our study, even a low
priming dose of nicotine (0.1 mg/kg) administered to previ-
ously exposed individuals did not result in the reappearance of
nicotine-induced CPP when ivermectin was present. Relapse is
a hallmark of chronic addiction and a primary factor limiting
the long-term efficacy of existing pharmacotherapies [14]. For
instance, while treatments such as varenicline and bupropion
initially enhance quitrates, relapse rates exceed 60% within one
year [13].

These findings suggest that ivermectin may not only pre-
vent the onset of addiction but also play a crucial role
in relapse prevention, particularly against stress-induced or
drug-reexposure triggers, addressing a significant gap in addic-
tion treatment [53]. The multifaceted effects of ivermectin
underscore the urgent need for more comprehensive and
innovative pharmacological strategies for managing nicotine
addiction.

Several limitations must be acknowledged in this study.
First, the antiparasitic agent ivermectin typically exhibits lim-
ited brain penetration in vertebrates due to effective efflux at
the blood-brain barrier mediated by P-glycoprotein, which is
encoded by the multidrug resistance gene. Second, this study
focused exclusively on male mice, despite evidence that gen-
der differences significantly influence all stages of nicotine
addiction, from initiation to withdrawal and relapse. Previous
research suggests that females may be more sensitive to the
rewarding effects of nicotine and develop dependence at lower
doses, with a more rapid progression than males [54]. Thus, the
exclusion of females limits the generalizability of our findings.
Third, as rodents are predominantly active during the dark
phase, the timing of our behavioral testing, conducted during
daylight hours, may have influenced the outcomes. Future CPP
studies with ivermectin could benefit from including both sexes
and conducting experiments during the animals’ active (dark
or twilight) phase to better account for natural circadian and
sex-dependent variability.

Another limitation is the absence of a DMSO vehicle
control group. However, previous behavioral studies with
experimental designs similar to ours have shown that DMSO
administration alone does not significantly alter locomotor
activity or performance on the rotarod test [55-62]. Likewise, in
CPP paradigms comparable to the current investigation, DMSO
has not been shown to exert a statistically significant effect
on CPP outcomes [58-62]. Nonetheless, the lack of a dedi-
cated DMSO control group may complicate the interpretation of
our findings. Therefore, future studies should include a DMSO
vehicle group to strengthen the validity and interpretability of
behavioral outcomes.

Additionally, further investigation is needed into the
dose-response relationship, safety profile, and potential
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interactions with other psychoactive substances. While this
study’s findings are based on existing biological evidence
regarding the effects of ivermectin on nicotine dependence,
direct clinical studies involving human subjects have yet to be
conducted. Although the synaptic effects and pharmacokinetic
profile of ivermectin are well characterized, its long-term
effects on addictive behaviors remain inadequately understood.

Future directions

Future research should incorporate controlled experimental
designs in both animal models and human populations to assess
the therapeutic effects of ivermectin on nicotine addiction.
Specifically, more comprehensive analyses are needed using
models that simulate various stages of addictive behavior,
including CPP, self-administration, withdrawal, and relapse.
Clinically, the applicability, efficacy, and tolerability of iver-
mectin in emergency department settings should be rigorously
evaluated and substantiated through comparative studies with
existing pharmacotherapies.

Conclusion

In this study, we demonstrated that ivermectin significantly
modulates nicotine-induced CPP in mice. High doses of
ivermectin attenuated nicotine-related reward behavior,
accelerated extinction processes, and effectively blocked rein-
statement. These findings indicate that ivermectin influences
reward circuitry through multiple receptor pathways, high-
lighting its translational relevance for nicotine dependence.
Notably, ivermectin’s ability to suppress reinstatement—a
critical factor in relapse—underscores its potential clinical
utility. However, further mechanistic studies, dose-response
analyses, and translational investigations are necessary to
delineate its therapeutic profile. Collectively, our results
advocate for ivermectin as a promising candidate for drug
repurposing in addiction medicine, particularly in relapse
prevention strategies.
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