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R E V I E W

Secreted frizzled-related protein 4 (sFRP4) in
cancer—Dual roles in tumorigenesis and
therapeutic potential: A review
Yu Jiang 1,2#, Luyao Wang 1#, Yerong Li 1#, Juan Liu 1∗, Juan Lv 1∗, and Pengfei Xu 2∗

Secreted frizzled-related protein 4 (sFRP4), the largest member of the secreted frizzled-related protein (sFRP) family, contains two
functional domains: a cysteine-rich domain (CRD) homologous to the Wnt-binding region of frizzled (FZD) receptors and a netrin-like
(NTR) domain structurally similar to axonal guidance proteins. By modulating the Wingless/Integrated (Wnt) signaling pathway, sFRP4
regulates essential cellular processes including proliferation, differentiation, apoptosis, and tissue homeostasis. This review aims to
provide a comprehensive overview of the dualistic roles of sFRP4 in cancer, highlighting its tumor-suppressive and tumor-promoting
functions, underlying molecular mechanisms, and therapeutic potential. A systematic literature search was conducted in PubMed and
Web of Science databases (1996–2025) using predefined keywords, and from 277 identified publications, 47 studies were included that
comprised clinical data, in vitro cell models, and in vivo experimental systems. Findings demonstrate that sFRP4 frequently acts as a
tumor suppressor by sequestering Wnt ligands, suppressing cancer stem cell-like properties, reprogramming tumor metabolism,
inhibiting angiogenesis, and enhancing chemosensitivity. Its downregulation is often driven by promoter hypermethylation or
repression mediated by microRNAs (miRNAs). Conversely, in gastrointestinal and prostate cancers, sFRP4 is frequently upregulated,
where it promotes Wnt pathway activation, invasion, stemness, chemoresistance, and reshaping of the tumor immune
microenvironment. Mechanistic insights indicate that post-translational modifications and nuclear localization of sFRP4 further
contribute to its paradoxical context-dependent functions. In conclusion, sFRP4 exerts dual roles in tumorigenesis, acting either as a
tumor suppressor or promoter depending on tissue type, tumor microenvironment, and regulatory mechanisms. This complexity
underscores both the challenges and opportunities of targeting sFRP4 in oncology, and future therapeutic strategies incorporating
recombinant proteins, synthetic peptides, and nanoparticle-based delivery systems hold promise for harnessing its anti-tumor
potential while overcoming resistance mechanisms.
Keywords: sFRP4, tumorigenesis, dual role, oncotherapy.

Introduction
The Secreted Frizzled-Related Protein (sFRP) family repre-
sents the largest group of Wnt inhibitors. The prototypical
member of this family, known as Frizzled-related zinc-binding
protein (Frzb), was initially characterized through evolu-
tionary analysis, which demonstrated significant amino acid
sequence homology with the ligand-binding domains of frizzled
(FZD) transmembrane receptors [1]. FZDs are a class of trans-
membrane proteins within the G protein-coupled receptor
(GPCR) superfamily and play a crucial role in the Wnt sig-
naling pathway [2]. In 1997, Leyns et al. [3] established that
sFRP1 functions as a Wnt antagonist. This finding was subse-
quently expanded upon by Melkonyan, who identified addi-
tional members of this family [4]. The sFRP family consists
of five evolutionarily conserved paralogs that can be catego-
rized into distinct phylogenetic clusters based on their genomic

architecture. Phylogenetic analysis indicates that subgroup I
(SFRP1/2/5) is encoded by tri-exonic genes located at chromoso-
mal loci 8p12-p11.1, 4q31.3, and 10q24.1. In contrast, subgroup II
(SFRP3/4) exhibits a multi-exonic organization, characterized
by six coding exons and localized at 2q31-q33 and 7p14-p13,
which correlates with alternative splicing patterns in the
modulation of Wnt signaling [5].

sFRP4 is the largest member of the sFRP family and plays
a crucial role in the extracellular environment by regulat-
ing biological processes, including cell signaling and prolifera-
tion. Structurally, sFRP4 features an N-terminal cysteine-rich
domain (CRD) characterized by a Frizzled-like motif, alongside
a C-terminal heparin-binding netrin-like (NTR) domain. The
cysteine-rich CRD is closely associated with the antagonism
of the Wnt signaling pathway [3]. This domain is homologous
to the CRD of Frizzled, which is known to interact with Wnt
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proteins. The CRD of sFRP4 exhibits high sequence similar-
ity, containing 10 conserved cysteine residues and display-
ing highly conserved disulfide bonds [6]. The NTR domain
comprises approximately 120 amino acids and 6 cysteine
residues. Beyond sFRPs, there are up to seven distinct pro-
tein families or subfamilies, such as axonal guidance factors
(netrins), complement proteins C3, C4, C5, and procollagen
C-endopeptidase enhancer proteins (PCOLCEs), that share
homology with the NTR domain of sFRPs [7]. Notably, the
NTR domain of sFRP4 possesses a lower positive charge com-
pared to other family members, suggesting enhanced trans-
port from the secretion site to distant target cells. As a
result, sFRP4 demonstrates a weaker affinity for heparin but
exhibits stronger binding to Wnt proteins via its CRD [8].
Both the CRD and NTR domains are essential for optimal Wnt
inhibition [9].

sFRP4 is widely recognized as an inhibitor of the Wnt/β-
catenin signaling pathway [10]. The Wnt/β-catenin cascade is
an ancient and highly conserved signaling pathway present in
various species, including Drosophila and mammals. The Wnt
family consists of 19 identified secreted proteins in humans,
which operate in autocrine or paracrine manners. The initiation
of Wnt/β-catenin signaling primarily relies on Wnt1, Wnt2,
Wnt3, Wnt3a, Wnt8b, Wnt10a, and Wnt10b [11]. Upon secre-
tion, these Wnt proteins bind to FZD receptors and LRP5/6
co-receptors, thereby triggering a signaling cascade. The key
downstream effector, β-catenin, evades ubiquitin-mediated
degradation by avoiding phosphorylation from the cytoplasmic
APC/Axin/GSK3β destruction complex. This evasion results
in the accumulation of β-catenin and its subsequent translo-
cation to the nucleus. In the nucleus, β-catenin utilizes its
armadillo repeat domain to form a tripartite transcriptional
activation complex with TCF/LEF transcription factors and
chromatin-modifying coactivators, driving the expression of
Wnt target genes [12]. Notably, sFRP4 demonstrates a gen-
eral affinity for Wnt proteins [13]. Throughout this process,
β-catenin acts as a central signaling mediator.

sFRP4 regulates Wnt signaling through several distinct
mechanisms:

(1) sFRP4 competitively inhibits Wnt signaling via CRD- or
NTR-mediated ligand sequestration, effectively blocking the
formation of the Wnt-FZD receptor complex and subsequent
engagement of the LRP5/6 co-receptors [14].

(2) sFRP4 may antagonize other members of the sFRP family,
thereby modulating their activity [15].

(3) sFRP4 prevents Wnt from binding to FZD receptors,
inhibiting downstream signal transmission [16].

(4) In certain contexts, sFRP4 can promote Wnt-FZD inter-
actions by simultaneously binding to both molecules, thereby
enhancing signal activation [17, 18].

(5) sFRP4 is involved in the extracellular transport of Wnt
ligands [19, 20].

Conversely, the production and intracellular trans-
port of sFRP4 are regulated by Wnt-mediated signaling
mechanisms [21]. Given the critical role of Wnt signaling in
oncogenesis, sFRP4 is generally regarded as a tumor suppressor.
However, due to the complex interplay between Wnt and other

signaling pathways, potential context-dependent oncogenic
properties of sFRP4 have also been suggested [22].

While previous studies have primarily focused on the
extracellular functions of sFRP4 as a secreted Wnt modulator,
recent evidence indicates that it also exhibits concentration-
dependent bidirectional roles within the nucleus. In cells
with high levels of β-catenin and low levels of nuclear
sFRP4, β-catenin and sFRP4 interact exclusively through their
C-terminal regions, suggesting a higher binding affinity of
the sFRP4 C-terminus for β-catenin. This selective interaction
enhances the transcriptional activity of β-catenin. Conversely,
in conditions characterized by low β-catenin and high levels of
nuclear sFRP4, sFRP4 binds to β-catenin at both its N- and C-
termini. Importantly, the inhibitory effect of sFRP4 binding to
the N-terminus of β-catenin outweighs the promoting effect
of C-terminal binding [23]. This stoichiometry-dependent
switch elucidates the molecular mechanism underlying sFRP4’s
context-dependent roles in tumorigenesis. Additionally,
sFRP4 has demonstrated DNA-binding capacity in the nucleus.
Luciferase assays and ChIP-qPCR confirmed the recruitment
of sFRP4 to the promoter of Dickkopf-1 (DKK1), another Wnt
antagonist, thereby functioning as a transcription factor that
regulates DKK1 expression [24].

The Wnt signaling cascade exhibits significant evolutionary
conservation, functioning across a wide range of phylogeneti-
cally diverse organisms, from invertebrate models to mammals.
It orchestrates various cellular activities, including mitotic reg-
ulation, lineage specification, programmed cell death, tissue
homeostasis, and progenitor cell regeneration [25]. In cancer,
aberrant activation of the Wnt pathway is closely linked to sev-
eral malignancies, including liver and breast cancers [26]. The
Wnt/β-catenin cascade plays a crucial role in regulating cancer
stem cells (CSCs) [27], the metabolic reprogramming of tumor
cells [28], and chemoresistance [29]. A schematic overview of
these interaction is presented in Figure 1.

In addition to its functions within the Wnt signaling path-
way, sFRP4 plays a crucial role in various other signaling mech-
anisms. It appears that sFRP4 sequesters intermediates of the
PI3K/Akt pathway, which may facilitate the induction of apop-
tosis through mechanisms that are independent of canonical
Wnt signaling [30, 31]. Furthermore, sFRP4 promotes apoptosis
by activating the reactive oxygen species (ROS) pathway, which
subsequently initiates the Fas-p53 pathway [32].

Methods
To conduct a comprehensive literature review, we performed
an extensive search of the Web of Science and PubMed
databases using specifically tailored keywords to identify
the most relevant publications. The search terms included
“Secreted Frizzled-Related Protein 4” OR “sFRP4” AND “cancer”
OR “neoplasm” OR “carcinoma,” covering publications from
approximately 1996–2025. The initial search yielded 277 rel-
evant articles. We then applied additional screening criteria
to refine the selection, focusing specifically on studies inves-
tigating sFRP4 across various tumor types. Priority was given
to research that included clinical data from human patients,
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Figure 1. Mechanism of sFRP4 in regulating the Wnt signaling pathway in tumors. This diagram illustrates the main inhibitory mechanisms by which
sFRP4 acts as an inhibitor of the Wnt signaling pathway. By binding to Wnt proteins through its CRD or NTR, sFRP4 sequesters Wnt ligands, preventing their
interaction with downstream FZD and LRP5/6 receptors. During Wnt/PCP signaling, Wnt binds to the Fzd receptor, activating Dvl/Dsh. This in turn activates
the small GTPases Rho/Rac and JNK, leading to the expression of genes related to cell polarity. In the Wnt/Ca2+ pathway, Wnt protein activates PLC, releasing
intracellular Ca2+ and inhibiting the canonical Wnt signaling pathway. Under certain conditions, sFRP4 promotes the interaction between Wnt and Fzd. PKA
can phosphorylate sFRP4, and the phosphorylated sFRP4 binds to β-catenin and translocates into the nucleus, where it enhances LEF/TCF transcriptional
activity, leading to increased transcription of stemness-related genes. Abbreviations: APC: Adenomatous polyposis coli; ATP: Adenosine triphosphate;
cAMP: Cyclic adenosine monophosphate; CaMKII: Calcium/calmodulin-dependent protein kinase II; CaN: Calcineurin; cJUN: Jun proto-oncogene; CRD:
Cysteine-rich domain; CSC: Cancer stem cell; DAG: Diacylglycerol; DVL/Dsh: Dishevelled protein; ECM: Extracellular matrix; FZD/Fzd: Frizzled recep-
tor; GSK3β: Glycogen synthase kinase 3 beta; JNK: C-Jun N-terminal kinase; LEF: Lymphoid enhancer-binding factor; LRP5/6: Low-density lipoprotein
receptor-related protein 5/6; NFAT: Nuclear factor of activated T-cells; NTR: Netrin-like domain; PCP: Planar cell polarity; PIP2: Phosphatidylinositol 4,5-
bisphosphate; PKA: Protein kinase A; PKC: Protein kinase C; PLC: Phospholipase C; Rac: Ras-related C3 botulinum toxin substrate; RhoA: Ras homolog
family member A; ROCK2: Rho-associated coiled-coil containing protein kinase 2; sFRP4: Secreted frizzled-related protein 4; TCF: T-cell factor; Wnt:
Wingless/Integrated signaling pathway.
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Figure 2. sFRP4 plays diverse roles in different tumors. In ovarian cancer, liver cancer, lung cancer, and cervical cancer, sFRP4 inhibits the Wnt signaling
pathway, thereby suppressing the expression of Cyclin D1, c-Myc, Survivin, and MMP-2, which collectively restrain tumor progression. In head and neck
squamous cell carcinoma, sFRP4 inhibits the Wnt pathway, leading to downregulation of stemness markers (SOX2, Nanog, OCT4) in cancer stem cells,
resulting in impaired spheroid formation, increased apoptosis, and enhanced chemosensitivity. In breast cancer, sFRP4 recruits B cells to suppress tumor
progression, and sFRP4-positive CAFs secrete sFRP4 to inhibit the Wnt pathway in tumor cells, further blocking EMT and tumor growth. In glioma, sFRP4
promotes tumor cell apoptosis by inhibiting the Wnt-Ca2+ and Fas-p53 pathways and acts as a transcription factor to regulate DKK1 expression. In pleural
mesothelioma, sFRP4 binds to Wnt3a to prevent Wnt pathway activation and induces metabolic reprogramming in cancer stem cells by modulating GSK-
3β, pAkt, and COXIV, thereby suppressing tumor progression. Additionally, sFRP4 triggers apoptosis in vascular endothelial cells via the Wnt-Ca2+ and
NO-cGMP pathways. sFRP4 exerts anti-proliferative effects, disrupts tumor spheroids, and reduces glucose uptake, glutamine uptake, glutamate secretion,
and redox activity. However, in prostate cancer, sFRP4 expression is positively correlated with FOXP3+ Treg cell infiltration. sFRP4 promoted the secretion
of T cell specific cytokines and increased the recruitment of CD4+ T cells, which may promote the Treg differentiation process. Collectively, these findings
highlight sFRP4 as a novel prognostic biomarker and potential therapeutic target in pancreatic cancer. Abbreviations: CAF: Cancer-associated fibroblast;
COXIV: Cytochrome c oxidase subunit IV; CSC: Cancer stem cell; Dkk1: Dickkopf-related protein 1; EMT: Epithelial-mesenchymal transition; FOXP3: Forkhead
box protein P3; GSK-3β: Glycogen synthase kinase 3 beta; MMP-2: Matrix metalloproteinase-2; NO: Nitric oxide; OCT4: Octamer-binding transcription factor
4; pAkt: Phosphorylated protein kinase B; SOX2: Sex-determining region Y-box 2; Treg: Regulatory T cell; Wnt: Wingless/Integrated signaling pathway.

in vitro cell line experiments, and in vivo animal studies to facili-
tate a comprehensive assessment of the role of sFRP4 in cancer.
After rigorous screening, a total of 47 articles were included in
the final analysis.

Anti-tumor effects of sFRP4
sFRP4 functions as a tumor suppressor by sequestering Wnt lig-
ands and inhibiting β-catenin activation. It exhibits significant
anti-oncogenic effects across various malignancies, including
hepatocellular carcinoma [33], ovarian cancer [34], glioma [35],
uterine leiomyosarcoma [36], cervical cancer [37], and lung
cancer [37, 38]. Clinically, sFRP4 serves as a valuable diag-
nostic biomarker for conditions such as hepatitis-associated
hepatocellular carcinoma, ovarian cancer, and endometrial
cancer [39, 40] (Figure 2, Table 1). Notably, the deletion or
epigenetic silencing of sFRP4 is associated with poor prognosis

in breast cancer, highlighting its therapeutic potential [41].
Additionally, sFRP4 demonstrates a progressive loss during the
malignant transformation from mucinous cystadenoma to bor-
derline mucinous tumor, ultimately culminating in mucinous
cystic carcinoma [42].

The decrease expression of sFRP4 in tumor
Downregulation of sFRP4 in tumors due to methylation

Promoter hypermethylation of sFRP genes (sFRP1-5) is observed
in various malignancies, including breast cancer, ovarian
cancer, and cutaneous squamous cell carcinoma, resulting
in transcriptional silencing [43, 44]. A systematic pooled
analysis has established an epigenetic correlation between
hypermethylation of the sFRP4 promoter region and increased
neoplastic risk, particularly in ovarian, colorectal, cervical
squamous, and renal cell carcinomas [45]. DNA methylation,
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Table 1. The functions of sFRP4 on different types of cancers

Function Tumor type Key findings Ref.

Anti-tumor Breast cancer (1) sFRP4+ cancer-associated fibroblasts (CAFs) secrete sFRP4 to inhibit breast cancer cell migration and
epithelial-mesenchymal transition (EMT).

(2) Exhibits anti-proliferative effects and induces spheroid disruption, reduces glucose uptake, glutamine
uptake, glutamate secretion, and redox signatures in breast cancer-derived stem cells, while also
promoting apoptosis within CSCs.

(3) Enhancing chemosensitivity of breast cancer-derived stem cells.

[57, 61]

Malignant
mesothelioma

(1) Alter cancer cell metabolism.
(2) Inhibits mesothelioma cell proliferation, migration, and antagonizes Wnt3a via its netrin-like domain.

[59, 80]

Ovarian cancer (1) sFRP4 target ovarian cancer stem cells by neutralizing the Wnt/β-catenin pathway, disrupting the
interaction between β-catenin and CD24 and suppressing autophagy.

(2) Enhancing chemosensitivity of ovarian cancer-derived stem cells.

[57, 84]

Head and neck
cancer

(1) Reverse EMT and restore the epithelial marker E-cadherin.
(2) Disrupt spheroid formation of head and neck-derived stem cells.

[83]

Lung cancer (1) In vitro cell lines, sFRP4 inhibit the Wnt signaling pathway and downregulate the expression of
proliferation-related genes.

(2) sFRP4 expression is down-regulated in lung cancer cell.

[37, 38]

Cervical cancer In vitro cell lines, sFRP4 inhibit the Wnt signaling pathway and downregulate the expression of
proliferation-related genes.

[37]

Pro-tumor Pancreatic cancer (1) High sFRP4 expression is positively correlated with FOXP3+ Treg cell infiltration, suggesting its role in
shaping an immunosuppressive tumor microenvironment.

(2) Mechanistically, sFRP4 promoted the secretion of T cell specific cytokines and increased the
recruitment of CD4+ T cells, which may promote the Treg differentiation process.

[79]

Gastric cancer (1) In gastric cancer, sFRP4 is highly expressed and associated with poor prognosis.
(2) sFRP4 promotes chemotherapy resistance in gastric cancer through activation of the Wnt signaling

pathway.

[68–71, 75]

Prostate cancer (1) sFRP4 expression is increased in prostate cancer and further elevated in high-grade tumors.
(2) sFRP4-positive stroma promotes bone metastasis of prostate cancer cells.
(3) High sFRP4 expression is associated with genomic instability in prostate cancer.

[77, 78]

Abbreviations: CAF: Cancer-associated fibroblast; CSC: Cancer stem cell; EMT: Epithelial-mesenchymal transition; FOXP3: Forkhead box protein P3;
NTR: Netrin-like domain; sFRP4: Secreted frizzled-related protein 4; Treg: Regulatory T cell; Wnt: Wingless/Integrated signaling pathway.

an epigenetic modification linked to gene silencing, can be
reversed with the DNA methyltransferase (DNMT) inhibitor
5-Azacytidine (5-Aza). Treatment with 5-Aza has been shown
to restore the expression of epigenetically silenced genes,
including sFRP4. In CSCs, demethylation results in increased
levels of sFRP4, GSK3β, and phosphorylated β-catenin, thereby
confirming the methylation-dependent silencing of sFRP4 [43].
Methyl-CpG-binding domain protein 2 (MBD2) and enhancer
of zeste homolog 2 (EZH2), which are key components of the
methylated MBD (DNA-binding domain) and PcG (Polycomb
group) protein families, respectively, play crucial roles in
epigenetic regulation. Co-silencing of MBD2 and EZH2 syn-
ergistically restored sFRP4 expression and more effectively
inhibited the proliferation of colorectal carcinoma cells [46].
Importantly, sFRP4 promoter hypermethylation shows promise
as a diagnostic biomarker in cervical squamous carcinoma [47].

Repression of sFRP4 expression by microRNA (miRNA) in tumors

miRNAs are small non-coding RNAs, approximately 18–25
nucleotides in length, that regulate gene expression
post-transcriptionally. They achieve this by binding to the
3’ untranslated regions (UTRs) of target mRNAs, resulting in
either translational repression or mRNA degradation. miRNAs

play a crucial role in cellular differentiation, development,
metabolism, and the pathogenesis of diseases [48].

Elevated expression of miR-96-5p in cervical squamous
cell carcinoma specimens demonstrates a stage-dependent
increase and association with lymphovascular involvement.
Mechanistic validation revealed sFRP4 as a functional tar-
get of miR-96-5p, with genetic ablation of sFRP4 reversing
miR-96-5p-mediated oncogenic transformation in cervical
epithelial cells [49]. Additionally, miR-181a targets sFRP4,
thereby modulating Wnt signaling to promote stemness and
platinum resistance in ovarian cancer [50]. MiR-103b directly
targets sFRP4 and has potential as a biomarker for the early
diagnosis of lung adenocarcinoma [51, 52]. Additionally, MiR-
31 enhances cancer cell proliferation by downregulating sFRP4
expression in lung cancer cells. Moreover, MiR-942 promotes
the stemness phenotype in esophageal squamous cell carcinoma
(ESCC) by inhibiting sFRP4 expression [53].

sFRP4 exerts its tumor-suppressive role via the Wnt signaling
pathway
Suppressing CSC-like properties

The Wnt signaling pathway is crucial in tumorigenesis and
cancer progression. Activation of the Wnt pathway is linked
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to resistance against chemotherapy and radiotherapy, thereby
reducing treatment efficacy [12]. The concept of “stemness”
in tumor cells refers to their ability to adopt stem cell-like
characteristics, including self-renewal, proliferation, differ-
entiation, and tumorigenic potential. CSCs play a vital role
in tumor development, recurrence, and drug resistance [54].
In addition to their self-renewal and migratory capabilities,
CSCs utilize mechanisms to eliminate toxic substances and
chemotherapeutic agents. This includes the overexpression of
ATP-dependent efflux pumps, such as ABCG2, and the activa-
tion of enhanced DNA repair systems, both of which contribute
to chemoresistance [55, 56].

Enhancing tumor chemosensitivity

In various cancers, including breast cancer, glioma, and
ovarian cancer cell lines, combination therapy utilizing
sFRP4 with chemotherapeutic agents effectively reduces CSC
viability, diminishes sphere-forming ability, downregulates
stemness-related genes, upregulates pro-apoptotic mark-
ers, and enhances chemosensitivity [57]. Notably, sFRP4
upregulation was observed in the chemotherapy-responsive
A2780 cell line, while enforced expression of sFRP4 in the
cisplatin-resistant A2780-Cis cell line resensitized these cells
to platinum-based therapies [42]. Additionally, the activation
of sFRP4 through the inhibition of miR-181a significantly
decreases cisplatin resistance and stemness in high-grade
serous ovarian cancer (HGSOC) [50].

Triggering metabolic reprogramming

The metabolic profile of tumor cells significantly differs from
that of normal cells. These metabolic alterations not only
facilitate rapid proliferation and survival but also provide
adaptive advantages in hostile microenvironments, a charac-
teristic feature of tumor cell metabolism known as metabolic
reprogramming [58]. Compared to most tumor cells, CSCs may
demonstrate elevated glycolytic activity. Research has shown
that sFRP4 exerts anti-proliferative effects, induces spheroid
disruption, and decreases glucose and glutamine uptake, glu-
tamate secretion, redox signatures, and signaling cascades
essential for cell survival, while concurrently promoting apop-
tosis within CSCs. These findings suggest that sFRP4 serves
as a regulator of CSC metabolic reprogramming, potentially
through the modulation of Wnt/β-catenin-dependent bioen-
ergetic pathways [59]. In malignant mesothelioma (MM)
cells treated with sFRP4 and Wnt3a, significant decreases in
cytochrome c oxidase levels were observed, indicating that
sFRP4 may function by suppressing cancer cell metabolism and
ultimately inducing cell death [31].

Though cancer-associated fibroblasts (CAF) secretion to inhibit
tumor progression

CAFs are a critical cell type within the tumor microenvironment
(TME), playing essential roles in tumor progression. Typically,
CAFs originate from normal fibroblasts that undergo pheno-
typic and functional transformations due to the influence of
tumor cells or other signaling factors during tumor develop-
ment. Among all stromal cells in the TME, CAFs are the most

abundant and are closely linked to tumor progression. They
secrete a variety of growth factors, cytokines, and proteins,
including fibroblast growth factor (FGF) and transforming
growth factor-β (TGF-β), which promote tumor cell prolif-
eration and invasion. Additionally, CAFs release proteases,
such as matrix metalloproteinases (MMPs), facilitating stro-
mal remodeling to support tumor cell invasion and metasta-
sis. Furthermore, CAFs regulate immune responses within the
TME by suppressing immune cell activity, thereby aiding tumor
immune evasion. They also participate in tumor-associated
angiogenesis, promoting vascularization and nutrient supply to
tumors [60].

sFRP4-expressing CAFs inhibit Wnt pathway activa-
tion in mammary carcinoma through the paracrine secre-
tion of the sFRP4 protein, subsequently limiting tumor
cell motility and obstructing molecular transitions related
to epithelial-mesenchymal plasticity [61]. Furthermore,
sFRP4 hinders the differentiation of adipose-derived stem cells
(ADSCs) into CAFs in breast cancer, thereby slowing tumor
progression [62].

Suppressing the proliferation and migration of vascular
endothelial cells
Angiogenesis is essential for tumor growth and metastasis. The
neovascular network of tumors acts as a metabolic lifeline,
supplying glucose and glutamine to support aerobic glycolysis
while optimizing the hypoxic niche for malignant expansion.
Furthermore, this network facilitates the removal of metabolic
waste, contributing to the maintenance of homeostasis within
the TME. These blood vessels also serve as pathways for
tumor cells to enter the bloodstream, thereby promoting
metastasis. Additionally, the abnormal structure of tumor vas-
culature can hinder immune cell infiltration, facilitating tumor
immune evasion [63]. sFRP4 suppresses tumor angiogenesis
by disrupting nitric oxide-cyclic guanosine monophosphate
(NO-cGMP) signaling and increasing ROS levels, which
leads to endothelial dysfunction [64]. Both the CRD and
the NTR domain exhibit anti-angiogenic effects by ele-
vating intracellular calcium through the Wnt-Ca2+ path-
way via distinct mechanisms: the CRD impairs vascular
network formation, while the NTR facilitates apoptosis in
endothelial cells [65].

Pro-tumorigenic effects of sFRP4
Research has shown that sFRP4 expression is upregulated
in tumors derived from the gastrointestinal tract and in
prostate cancer. Specifically, gastric cancer specimens display
significant overexpression of sFRP4, which correlates with
adverse prognostic indicators and serves as a crucial immune-
related factor with important implications for immunotherapy
guidance [66]. In prostate cancer, sFRP4 expression is elevated
compared to normal prostate tissue, with even higher levels
observed in high-grade tumors [67] (Figure 2, Table 1).

Promoting tumor progression via the Wnt signaling pathway
Recent oncological research has revealed complex dynamics in
the expression of sFRP4 and its functional implications across
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various cancers, highlighting inter-tumoral heterogeneity as a
significant confounding variable. Notably, sFRP4 expression is
markedly elevated in advanced gastric cancer [68], and shows a
positive correlation with tumor invasiveness [69].

sFRP4 and Caudal Type Homeobox 1 (CDX1) have been iden-
tified as predictive biomarkers for extra-gastric recurrence fol-
lowing radical gastrectomy [70]. Furthermore, sFRP4 plays a
significant role in gastric cancer chemoresistance; cells resis-
tant to cisplatin or oxaliplatin display increased expression
of sFRP4 and β-catenin, along with nuclear translocation of
β-catenin, compared to their chemosensitive counterparts [71].
In colorectal cancer specimens, a significant downregulation of
sFRP1 and sFRP5 mRNA was observed in 85% and 80% of cases,
respectively, while sFRP4 was overexpressed in 80% of the
analyzed tumor samples. This distinctive expression pattern
indicates that sFRP4 may have unique biological functions in
gastrointestinal tumors, differing from those of other members
of the sFRP family [72].

What factors lead to the upregulation of sFRP4 expres-
sion in gastrointestinal tumors? Research indicates that sFRP4
in colorectal tumors exhibits the lowest inhibitory activity
against Wnt signaling among the sFRPs, with a methyla-
tion frequency of only 17% [73]. In gastric carcinoma, the
prevalence of sFRP4 methylation is similar in both neoplas-
tic and paraneoplastic tissues. In contrast, hypermethylation
of the sFRP2 promoter shows a progressive detection gradi-
ent: 73.3% in carcinomas, 37.5% in premalignant intestinal
metaplasia lesions, and 20% in mucosal controls [74]. These
findings suggest that differential promoter methylation pat-
terns and varying Wnt inhibitory capacities likely drive the
distinct expression profiles of sFRP4 across gastrointestinal
malignancies.

In addition to this mechanism, the oncogenic role of
sFRP4 is further supported by its post-translational modifica-
tion. Phosphorylation of sFRP4 by protein kinase A (PKA) at
threonine residues T186 and T189 increases its affinity for the
β-catenin/TCF4 complex, thereby enhancing Wnt signaling
transcriptional activity. This PKA-dependent phosphoryla-
tion of sFRP4 transforms it from a Wnt antagonist into
a potent agonist, promoting stemness and contributing to
chemoresistance [75] (Figure 1).

Increasing the invasive tumor phenotype
Studies have consistently reported elevated expression of sFRP4
in prostate cancer cell lines (lymph node carcinoma of the
prostate [LNCaP], prostate cancer-3 [PC-3/PC3], DU145, and
22Rv1) compared to control lines (PWR-1 and RWPE-1) [76].
The cytoplasmic localization of sFRP4 serves as a biomarker
for poor prognostic outcomes [77]. Importantly, sFRP4 may
enhance osteoblast activity and facilitate metastatic progres-
sion in prostate cancer, a mechanism similar to that of the
Wnt inhibitor DKK1. Research indicates that Wnt inhibition
by DKK1 decreases osteoblast differentiation and promotes an
osteolytic phenotype in lesions, contributing to the aggressive-
ness of prostate cancer. Additionally, high expression levels of
sFRP4 in prostate cancer are strongly associated with genomic
instability [78].

Enhancing pro-tumor immunity
sFRP4 plays a significant role in modulating tumor immunity
in pancreatic cancer. Research indicates that sFRP4 expression
is positively correlated with the infiltration of FOXP3+ regula-
tory T cells (Treg). Additionally, sFRP4 enhances the secretion
of T cell-specific cytokines and increases the recruitment of
CD4+ T cells, which may facilitate the differentiation of Tregs.
Collectively, these findings position sFRP4 as a novel prognos-
tic biomarker and a potential therapeutic target in pancreatic
cancer [79].

Clinical targeting of sFRP4 in cancer therapy
Recombinant sFRP4 (r-sFRP4) in preclinical models
Although the functional roles of sFRP4 in tumors are context-
dependent, therapeutic strategies targeting sFRP4 have shown
promising anti-tumor efficacy. Treatment of HeLa (cervical
cancer) and A549 (lung cancer) cells with purified r-sFRP4
resulted in a dose-dependent inhibition of cell growth by
up to 40%. Increased levels of phosphorylated β-catenin and
downregulation of pro-proliferative genes (cyclin D1, c-myc,
and survivin) indicated suppression of the Wnt signaling
pathway [37]. Similarly, r-sFRP4 treatment significantly
decreased cell viability and migration while enhancing adhe-
sion in uterine leiomyosarcoma cells [36]. In MM cells, r-
sFRP4 inhibits proliferation and migration, primarily through
its netrin-related motif (NTR), with limited involvement
from the CRD. Additionally, sFRP4 suppresses Wnt3a signal-
ing in MM cells [80]. Treatment of serous ovarian cancer
cell lines with r-sFRP4 inhibited β-catenin-dependent Wnt
signaling and reduced transcription of Wnt target genes
(Axin2, Cyclin D1, and Myc). This treatment also enhanced
cell adhesion, decreased migration, and promoted a shift
toward an epithelial phenotype, characterized by upregulation
of E-cadherin and downregulation of mesenchymal mark-
ers (Vimentin and Twist) [81]. Furthermore, sFRP4 exhibits
anti-proliferative activity against CSCs derived from breast,
prostate, ovarian, glioblastoma, and head and neck tumors,
while simultaneously enhancing chemosensitivity [57, 82, 83].
These findings suggest that combining chemotherapy with
sFRP4 may improve outcomes in conventional cancer
treatments.

CRD and NTR-derived micropeptides
Synthetic micropeptides targeting the CRD and the NTR of
sFRP4 significantly reduced CSC marker expression, inhibited
angiogenesis, upregulated pro-apoptotic genes, and enhanced
the sensitivity of ovarian CSCs to cisplatin. These synthetic
polypeptides functioned through a dual mechanism of action,
attenuating the canonical Wnt/β-catenin signaling pathway
while simultaneously disrupting the β-catenin-CD24 molec-
ular interactions. Additionally, they effectively inhibited
autophagy, a critical survival mechanism for CSCs [84].
Moreover, the overexpression of isolated CRD and NTR domains
in glioma cells led to a downregulation of characteristic CSC
traits. Notably, the NTR domain exhibited stronger inhibitory
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effects than the CRD domain on MMP-2-mediated invasion and
disrupted fibronectin assembly, thereby reducing cell adhesion
in the LN229 glioma cell line [85].

Other therapies
To investigate targeted delivery, CS-DS nanoparticles encapsu-
lating the sFRP4-GFP protein were administered to multiple
myeloma (MM) cells. Both sFRP4 and NTR nanoparticles
significantly decreased MM cell viability, with the NTR
domain exhibiting the most pronounced anti-tumor effects
compared to CRD nanoparticles [86]. In a separate study,
alginate-encapsulated Wharton’s jelly-derived mesenchymal
stem cells (WJMSCs) were co-cultured with breast CSCs
within a three-dimensional (3D) microenvironment. This 3D
co-culture system, in contrast to two-dimensional (2D) models,
upregulated sFRP4 expression, inhibited the Wnt pathway,
and downregulated the expression of drug transporters,
epithelial-mesenchymal transition (EMT)-related markers, and
angiogenesis-associated genes [87].

Conclusions and future perspectives
sFRP4 is widely recognized as an inhibitor of the canonical Wnt
signaling pathway. However, recent evidence has revealed its
paradoxical dual roles in cancer: it can act as a tumor suppres-
sor, inhibiting tumor progression, while also promoting cancer
in gastrointestinal tumors. sFRP4 exerts its effects through the
Wnt and PI3K/Akt signaling pathways. As an emerging thera-
peutic target in oncology, treatments that focus on genes with
oncogenic alterations and associated signaling pathways are
expected to remain a crucial cancer treatment modality, given
that cancer is fundamentally a genetic disease driven by such
alterations [88]. sFRP4 plays a pivotal role in regulating tumor
growth, invasion, and the immune microenvironment. Despite
significant advancements in research, challenges such as drug
resistance and targeting specificity persist. Future sFRP4-
targeted therapies, supported by multi-target combination
strategies, precision medicine, and innovative technologies,
hold promise for delivering more effective treatment regimens
to cancer patients, ultimately enhancing survival outcomes and
quality of life.
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