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Mitochondrial dysfunction, reactive oxygen species, and
diabetes mellitus—A triangular relationship: A review
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Diabetes mellitus (DM) disrupts cellular homeostasis and is characterized by mitochondrial structural and functional impairments
similar to those found in other metabolic disorders. Mitochondrial dysfunction (MD) leads to the excessive production of reactive
oxygen species (ROS), which are central to the progression of cardiovascular (CV) disease—the leading cause of mortality associated
with DM. ROS-driven oxidative stress (0S) is implicated in cardiac injury in both clinical and experimental contexts. This review
synthesizes recent literature on the role of MD in the development and progression of DM and its associated CV complications,
highlighting disrupted pathways that regulate the balance between ROS production and antioxidant defenses. We summarize
alterations in mitochondrial dynamics —including fusion, fission, and mitophagy—mtDNA damage, and impaired oxidative
phosphorylation characterized by dysregulated mitochondrial membrane potential (A Wm), electron transport chain (ETC) defects,
uncoupling, and substrate overload. Additionally, we discuss hyperglycemia-activated pathways such as polyol flux, AGE-RAGE
interactions, protein kinase C/nicotinamide adenine dinucleotide phosphate (PKC/NADPH) oxidase activation, and poly (ADP-ribose)
polymerase 1 (PARP-1)-mediated glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inhibition, which contribute to inflammation,
endothelial dysfunction, B-cell failure, insulin resistance, and micro/macrovascular injury. Diagnostic and biomarker strategies
encompass mtDNA analysis, bioenergetic assays, metabolomics, proteomics, and imaging techniques including PET, MRI, and NIRS.
Therapeutic approaches aimed at restoring mitochondrial function and mitigating OS include mitochondria-targeted antioxidants
(such as MitoQ, CoQ10, SkQ1, SS-31, and Mito-TEMPO), metabolic drugs (including metformin and SGLT2 inhibitors), lifestyle
modifications, and emerging gene-editing technologies. The interplay between mitochondria, ROS, and DM reflects a tightly regulated
aspect of cellular physiology; while targeted and personalized strategies hold promise, they necessitate rigorous evaluation.

Keywords: Oxidative stress, reactive oxygen species, mitochondrial dysfunction, diabetes mellitus, cardiovascular complications.

Introduction
Diabetes mellitus (DM) is a chronic metabolic disorder char-
acterized by persistent hyperglycemia due to impaired insulin
secretion, action, or both [1]. As a highly prevalent condition,
DM poses a significant public health challenge. The Interna-
tional Diabetes Federation (IDF) projects that by 2045, approx-
imately 783 million adults, or one in every eight, will be living
with diabetes [2]. Diabetes encompasses several forms, includ-
ing type 1 and type 2 diabetes, gestational diabetes, monogenic
diabetes, and prediabetes. Monogenic diabetes results from
mutations in a single gene that affect insulin action or p-cell
function. This category includes neonatal DM (NDM), mito-
chondrial diabetes, and maturity-onset diabetes of the young
(MoDY) [1].

Diabetes mellitus impacts cellular health and is character-
ized by mitochondrial structural and functional disruptions,
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which are also observed in other metabolic disorders. Mito-
chondrial dysfunction (MD) leads to the overproduction of reac-
tive oxygen species (ROS), highly reactive molecules crucial
for cell signaling and defense mechanisms. However, exces-
sive ROS production results in oxidative stress (OS), adversely
affecting cellular components [3]. MD, along with elevated
ROS production, is regarded as a significant factor in the pro-
gression of cardiovascular (CV) pathology [4-7]. CV compli-
cations remain the leading cause of death among individuals
with DM. Cardiac tissue exhibits a high density of mitochon-
dria, as demonstrated in studies on conditions such as car-
diac ischemia-reperfusion injury (IRI), diabetic cardiomyopa-
thy, heart failure, and cardiac hypertrophy [8]. OS driven by
ROS is considered a key factor in cardiac injury in both clinical
and experimental models of diabetes. It is essential to recognize
ROS as a notable instance of antagonistic pleiotropy. Under
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physiological conditions, ROS play a critical role in managing
calcium signaling, triggering muscle contraction, facilitating
cardiomyocyte development and maturation, and maintaining
vascular tone. In contrast, dysregulation of ROS signaling under
pathological conditions results in OS development [1, 4, 9].

Search strategy

A comprehensive literature search was conducted in the
PubMed and MEDLINE databases from October 1999 to Septem-
ber 2025. A combination of keywords and MeSH terms was
utilized: “Mitochondrial Fusion and Fission,” “Mitochondrial
Dynamics,” “Oxidative Stress,” “Reactive Oxygen Species,”
“Mitochondrial Dysfunction and ROS,” “Diabetes Mellitus and
Mitochondrial Dysfunction,” and “Mitochondrial Dysfunction
and Cardiovascular Complications.” The search included
review articles and original research articles, both in English
and non-English articles containing English abstracts, as well
as studies involving human and animal subjects.

» o«

MD and OS in diabetes

Mitochondrial dynamics: Fusion, fission, and mitophagy

A healthy population of mitochondria is crucial for cell survival.
Mitochondrial fusion, fission, and trafficking are key processes
that maintain mitochondrial morphology, function, and distri-
bution, as these organelles are not static [1, 10]. Mitochondrial
respiratory activity, mitochondrial DNA (mtDNA) distribu-
tion, cell survival, calcium signaling, and apoptosis are all
highly dependent on fusion and fission processes [1, 10]. Sev-
eral dynamin-related GTPases serve as master regulators of
the balance between mitochondrial fusion (Mitofusin 1 [Mfn1],
Mitofusin 2 [Mfn2], and Optic Atrophy 1 [OPA1]) and fission
(dynamin-related protein 1 [Drpl]), thereby contributing to
sophisticated mitochondrial dynamics [11, 12].

The integrity and functionality of mitochondria pri-
marily hinge on fusion, which facilitates the exchange
of mitochondrial contents. During mitochondrial fusion,
mtDNA complementation allows normal mtDNA to com-
pensate for damaged mtDNA, enabling mitochondria with
defective mtDNA to survive [12]. Consequently, fusion acts
as a guardian of genetic and biochemical homogeneity by
diluting superoxide species and mutated DNA, alongside
repolarizing membranes [10]. Impaired fusion and frag-
mented mitochondria compromise mitochondrial function.
Conversely, fission is a division process that produces one
or more daughter mitochondria, necessitating cytosolic Drpl
for execution [13]. During this process, damaged mtDNA is
segregated from normal mtDNA, preserving portions of healthy
mitochondria [12]. Excessive fission leads to mitochondrial
fragmentation and mitophagy, selectively eliminating defective
mitochondria. Thus, small individual mitochondria result from
fission, while large interconnected mitochondrial networks
arise from fusion. Insulin resistance (IR) and DM are classified
as mitochondria-related diseases [1, 10].

Recent research implicates mitochondrial dynamics in reg-
ulating glucose metabolism and insulin signaling, contribut-
ing to the pathophysiology of obesity and type 2 diabetes.
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Mitochondria in pancreatic p cells are continuously recruited
during fusion and fission processes. In nutrient-overloaded
states, such as obesity and DM, mitochondrial fission is pro-
moted, while fusion decreases, correlating with uncoupled
respiration [10]. In contrast, genetic ablation of Drpl in the
liver (DrplLiKO mice) results in decreased fat mass and lower
HOMA-IR, thus protecting mice against high-fat diet-induced
obesity and IR [14].

Diaz-Morales et al. posited that in type 2 DM (T2DM), poor
glycemic control adversely affects mitochondrial dynamics,
promoting leukocyte-endothelial interactions and facilitating
the development of CV diseases. Their research demonstrated
reduced mitochondrial fusion and enhanced fission in leuko-
cytes from patients, with these characteristics becoming more
pronounced in individuals with poor glycemic control [15].

Autophagy is a process that removes defective organelles by
recycling essential components, with mitochondria undergoing
a specialized form known as mitophagy [16]. Mitochondrial
fission precedes mitophagy [1, 10]. As previously mentioned,
during mitochondrial fission, mitochondria divide, allowing the
damaged segment to be segregated from the healthy part for
removal via mitophagy [12].

Phosphatase and tensin homolog (PTEN)-induced putative
kinase 1 (PINK1), the ubiquitin ligase PARKIN, ubiquitin, and
sequestosome-1 (p62/SQSTM1) are recognized as pivotal agents
in the mitophagy process. PINK1and PARKIN are indispensable
for mitophagy [17]. Consequently, alterations in mitochondrial
dynamics and mitophagy recycling through these proteins may
create a conducive environment for the development of certain
diseases [10].

mtDNA damage and mutations in diabetic conditions
Mitochondrial DNA encodes essential components of the mito-
chondrial electron transport chain (ETC). Due to its close asso-
ciation with the ETC and the absence of protective histones,
mtDNA is particularly vulnerable to oxidative damage. Elevated
levels of ROS can lead to mtDNA impairment, resulting in base
modifications, strand breaks, and deletions, ultimately disrupt-
ing mitochondrial protein synthesis and oxidative phosphory-
lation (OXPHOS) function [1, 18]. The accumulation of mtDNA
mutations consequently impairs ETC activity, reduces ATP pro-
duction, and increases ROS generation, creating a cycle of OS
and dysfunctional mitochondria [19, 20].

Several factors can disrupt ATP synthesis through OXPHOS,
including ETC activity, mitochondrial uncoupling, and sub-
strate overload [21]. Specifically, ATP synthesis may be com-
promised due to impaired proton pumping across the inner
mitochondrial membrane, as well as disruption of electron
flow primarily resulting from dysfunctional ETC complexes I
and III [22]. Furthermore, alterations in mitochondrial uncou-
pling proteins (UCPs—UCP1, UCP2, and UCP3), which are
upregulated in DM, can compromise the regulation of mito-
chondrial membrane potential (AW¥m), further impairing ATP
synthesis [23,24]. Additionally, substrate overload due to
excessive nutrient uptake poses a significant challenge to
mitochondrial capacity, leading to elevated levels of fatty
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acids and glucose that ultimately result in defective substrate
oxidation [25].

Given the crucial role of mtDNA integrity in metabolic home-
ostasis, a well-established correlation exists between mtDNA
mutations, mitochondrial dynamics, DM, and its vascular
complications [10]. The mutation m.8561 C>G in MT-ATP6/8,
which encodes subunits of mitochondrial ATP synthase, has
been associated with the onset of DM through diminished ATP
production and assembly of mitochondrial ATP synthase [26].
Additionally, the m.A3243G mutation in the mitochondrial
tRNALeu gene has been implicated in both DM and mito-
chondrial disease [27]. Notably, diabetes-related mutations and
mitochondriopathies share numerous common mutations, sug-
gesting a connection between mtDNA alterations and disease
through similar pathways. To establish causality for each muta-
tion, techniques such as cybrid or animal models must be
employed for validation. Nonetheless, mtDNA analysis remains
a significant tool for personalized management and the identi-
fication of at-risk individuals [1, 27].

ROS in DM

The impact of hyperglycemia on ROS production and the failure
of antioxidant defense mechanisms in DM

Several mitochondrial pathways are altered in diabetes
(Figure 1). Hyperglycemia can directly lead to increased ROS
generation. Upon glucose entry into cells, two oxidation path-
ways may be activated, particularly the pentose phosphate and
glycolytic pathways [4, 28]. Glycolysis is followed by the Krebs
cycle, which generates nicotinamide adenine dinucleotide
(NADH) and reduced flavin adenine dinucleotide (FADH?2),
which are subsequently utilized in OXPHOS to produce ATP.
However, ROS byproducts, including hydrogen peroxide
(H202), superoxide anions (O2e-), and hydroxyl radicals
(eOH), are also produced during this process. Under normal
physiological conditions, the antioxidant defense system,
composed of enzymes such as superoxide dismutase (SOD),
glutathione peroxidase (GPx), and catalase (CAT), effectively
neutralizes these ROS [28-30].

In a hyperglycemic state, excessive ROS generation inhibits
antioxidant systems, leading to DNA damage and activation of
DNA repair enzymes, such as Poly (ADP-ribose) polymerase-1
(PARP-1) [4].

Subsequently, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) can become inactivated by PARP-1, resulting in
the accumulation of intermediates such as glyceraldehyde-3-
phosphate (GA3P), fructose-6-phosphate (F-6-P), and glucose-
6-phosphate (G-6-P), which are susceptible to diverse reactions
that collectively contribute to OS (e.g., GA3P and G-6-P autoox-
idation, AGE precursor formation, and activation of protein
kinase C (PKC) by GA3P) [31].

Significantly, in hyperglycemic conditions, hexokinase
enzymatic activity may be impaired due to oversaturation,
rendering the catalysis of G-6-P formation ineffective. Fur-
thermore, glucose can enter the sorbitol pathway via aldose
reductase, leading to the depletion of nicotinamide adenine din-
ucleotide phosphate (NADPH), which is normally a substrate
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for glutathione (GSH) production. This depletes antioxidant
enzymes and exacerbates OS [28, 32].

Additionally, non-enzymatic reactions between glucose and
proteins should not be overlooked, as they contribute to the
formation of Amadori products, followed by advanced glycation
end products (AGEs) that interact with AGE receptors (RAGE).
This interaction induces OS and activates PKC, which enhances
the upregulation of NADPH oxidase and lipoxygenase, further
increasing ROS production [4, 33].

ROS-mediated inflammation and diabetic complications
Inflammation and OS have a reciprocal relationship. In a
state of general inflammation, ROS-producing macrophages
become activated to eliminate pathogens. Concurrently, DM
is characterized by persistent ROS generation, which depletes
the antioxidant system and leads to cellular damage. In this
metabolic disorder, pro-inflammatory cytokine expression is
stimulated by both ROS and adipose tissue, including tumor
necrosis factor-alpha (TNF-a) and interleukins 1 (IL-1) and
6 (IL-6) [34], thereby amplifying OS [35-37].

In the development of microvascular and macrovascular
complications, hyperglycemia plays a critical role, as described
in previous processes, triggering OS and continuous activa-
tion of the immune system, creating a vicious cycle [36].
Free radicals are integral to both the onset and progres-
sion of diabetic complications through pathways such as the
aldose reductase pathway, the PKC pathway, and the pro-
duction of AGEs. It is also important to note that the inter-
play between OS and inflammation can lead to increased
secretion of monocyte chemoattractant protein-1 (MCP-1) and
decreased levels of insulin-like growth factor-1, thereby pro-
moting adipocyte differentiation and contributing to IR and
hyperinsulinemia [36, 38].

In terms of complications, diabetic retinopathy is partic-
ularly concerning due to the high concentration of polyun-
saturated fats in the retina, rendering it highly susceptible
to OS [39]. In diabetic nephropathy, activation of NADPH
oxidase with p47phox translocation drives ROS overproduc-
tion, reduces NO availability, and promotes proteinuria and
glomerular matrix expansion. In one study, application of apoc-
ynin, an NADPH oxidase inhibitor, effectively prevented these
changes [40]. Furthermore, OS may contribute to neuronal
apoptosis and diminish regenerative capacity within the ner-
vous system [41].

0S-induced B-cell dysfunction and IR
Oxidative stress may deactivate the main signaling pathways
essential for insulin actions (CB1, PI3K, and p38 MAPK). On
the contrary, OS can also activate several stress-sensitive sig-
naling pathways containing elements such as NF-kB, inducible
nitric oxide (NO) synthase, and a class II histocompatibility
complex, collectively leading to a great effect on insulin secre-
tion and action. As a result, B-cells may change the shape, vol-
ume, and function of mitochondria, disrupting ATP-dependent
K+ channels and impairing insulin secretion [36, 42].

Studies show that the liver’s expression levels of mitochon-
drial Mn-dependent SOD2 and cytoplasmic Cu/Zn-dependent
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Figure 1. Oxidative stress in diabetes mellitus. In the state of hyperglycemia, the TCA cycle is fueled by increased mitochondrial pyruvate oxidation,
thereby increasing mitochondrial ROS production. In parallel, several pro-oxidative pathways become activated, further amplifying the generation of
ROS. These include the AGE and PKC pathways, driven by the accumulation of GA3P, as well as the hexosamine and polyol pathways, activated by
hyperglycemia and elevated levels of F-6-P, respectively. Under conditions of hyperglycemia, hexokinase activity may be impaired, limiting the conversion
of glucose to G-6-P. Consequently, excess glucose is shunted into the polyol pathway, resulting in substantial NADPH consumption. Since NADPH is
essential for GSH regeneration, its depletion suppresses antioxidant defense systems and exacerbates oxidative stress. Within the hexosamine pathway,
accumulation of UDP-GlcNAc promotes hyperactivation of O-GlcNAc transferase, leading to protein dysfunction and oxidative damage. Hyperglycemia
also drives the activation of NOXs, thereby contributing to the overproduction of ROS. Excessive ROS accumulation causes DNA damage and activates
DNA repair enzymes such as PARP-1. PARP-1, in turn, can inactivate GAPDH, leading to the buildup of metabolic intermediates, including GA3P, F-6-P,
and G-6-P, which are prone to undergo diverse harmful reactions. Abbreviations: Acetyl-CoA: Acetyl coenzyme A; AGEs: Advanced glycation endproducts;
ATP: Adenosine triphosphate; DAG: Diacylglycerol; DHAP: Dihydroxyacetone phosphate; F-6-P: Fructose 6-phosphate; FADH2: Reduced form of flavin
adenine dinucleotide cofactor; G-3-P: Glycerol-3-phosphate; G-6-P: Glucose-6-phosphate; GA3P: Glyceraldehyde-3-phosphate; GAPDH: Glyceraldehyde-
3-phosphate dehydrogenase; GFAT: Glutamine fructose-6-phosphate amidotransferase; Gln: Glutamine; Glu: Glutamic acid; GSH: Glutathione; HBP:
Hexosamine Biosynthetic pathway; HK: Hexokinase; NAD+: Nicotinamide adenine dinucleotide; NADH: Reduced nicotinamide adenine dinucleotide; NADPH:
Reduced nicotinamide adenine dinucleotide phosphate; NOXs: NADPH oxidases; OGT: O-linked N-acetylglucosamine transferase; OXPHOS: Oxidative
phosphorylation; PFK: Phosphofructokinase; PKC: Protein kinase C; PARP-1: Poly [ADP-Ribose] polymerase-1; RAGEs: Receptor for advanced glycation
endproducts; ROS: Reactive oxygen species; TCA: Tricarboxylic acid; UDP-GlcNAc: Uridine diphosphate N-acetylglucosamine.

SODI genes are below 50% of their maximum synthesis. In com-
parison, GPx and CAT levels are only about 5%. This makes
islet cells highly susceptible to damage from ROS and other
diabetogenic agents [42].

The triangular interplay: MD, ROS, and diabetes

As previously noted, MD affects several key processes, includ-
ing OXPHOS, ROS generation, and mtDNA integrity and
dynamics. Collectively, these factors contribute to the mani-
festation of IR, B-cell dysfunction, and the onset of DM and its
complications. Additionally, OS and T2DM are associated with
alterations in mitochondrial membrane potential (AWm) in
B-cells, potentially leading to pathological changes in mitochon-
drial dynamics that impair glucose-stimulated insulin secre-
tion. This unravels a complex interplay of impaired fusion
and fission processes, which are essential for mitochondrial
lifespan [4, 10]. Notably, AWm serves as a central regulator
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of endothelial function in T2DM [43]. Hyperglycemia pro-
motes AWm hyperpolarization, leading to diminished electron
flux and increased ROS production via the ETC, as well as
prolonging the half-life of ROS-generating intermediates [43].
Furthermore, studies in cultured cells demonstrate that exces-
sive mitochondrial ROS production elevates the expression of
endothelial adhesion molecules, reduces NO bioavailability,
and increases pro-inflammatory cytokine levels. These changes
occur as part of the inflammatory cascade, which is partially
mediated through the activation of NF-kB and protein kinase
C-B [43, 44]. Moreover, findings from a study in human sub-
jects conducted by Kizhakekuttu et al. [45] underscore the
importance of A{ym as a determinant that, at least partially
through mitochondrial ROS generation, likely modulates the
endothelial phenotype as well as vascular endothelial function
in individuals with T2DM, notably through rapid adjustments
in arteriolar endothelial responsiveness.
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Diagnostic tools and biomarker insights

While the clinical framework for diagnosing diabetes is well
established, insight into the role of MD in its onset remains
limited and underdeveloped [1]. From the perspective of
adjunct diagnostic modalities and biomarker utilization,
several approaches have been proposed, including mtDNA
analysis, respiratory chain enzyme assays, advanced imaging
techniques, as well as metabolomic and proteomic profiling [21].

For instance, mtDNA analysis may serve as an early warning
tool to identify individuals at heightened risk of developing
diabetes, thus enhancing the reach of personalized medicine.
This analysis encompasses the evaluation of mutations, copy
number variations, and overall genomic integrity [20]. Respira-
tory chain enzyme assays facilitate the assessment of individual
ETC complexes and can be conducted using tissue biopsies or
cell cultures derived from diabetic patients [46].

Metabolomic profiling, which involves the analysis of
small-molecule metabolites in biological samples, identifies
metabolic signatures associated with p-cell dysfunction, IR, OS
pathways, and diabetes-related complications. This approach
provides valuable insights into systemic metabolic abnormali-
ties and mitochondrial impairment [47].

Non-invasive imaging techniques, such as positron emis-
sion tomography (PET), magnetic resonance imaging (MRI),
and near-infrared spectroscopy (NIRS), offer opportunities to
assess tissue metabolism and mitochondrial function in vivo.
Collectively, these strategies highlight the urgent need to define
and classify prognostic biomarkers in diabetic patients at risk
of MD, ultimately aiming to develop tailored therapeutic and
preventive interventions [48]. Figure 2 presents a summary of
the discussed diagnostic tools and potential biomarkers of MD.

Therapeutic strategies targeting

mitochondria and ROS in diabetes
Mitochondria-targeted antioxidants, pharmacological
interventions, and nutritional and lifestyle approaches
When considering mitochondria as therapeutic targets, it is
essential to acknowledge their extraordinary complexity as
central integrators of oxidative metabolism, cellular signaling,
and apoptotic pathways. This complexity poses challenges
in targeting mitochondria, as evidenced by inconsistent
results from preclinical and sometimes clinical trials involving
mitochondria-directed antioxidants or peptides. Nonethe-
less, therapeutic benefits have been observed in certain
diabetes-related complications, including impaired wound
healing, diabetic nephropathy, diabetic neuropathy, and
hepatic steatosis. Consequently, mitochondria represent a
promising area for scientific exploration in developing novel
targeted therapies. Advances in technology, such as molecular
dynamics simulations and molecular docking, may enable
the development of interventions aimed at specific aspects
of mitochondrial biology, including mitochondrial dynamics,
mitophagy, ionic overload, and the regulation of mitochondrial
channels, such as uncoupling proteins (UCPs) [49].

Studies indicate that traditional antioxidants, such as vita-
mins C and E, do not effectively address diseases involving
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oxidative damage to mitochondria, likely due to the limited
amount of these antioxidants reaching the mitochondria, with
the remainder distributed throughout the body. As a result, the
identification of antioxidants that can directly target mitochon-
dria has become necessary [50]. Possible therapeutic strategies
targeting mitochondria and ROS in diabetes are summarized in
Figure 3.

MitoQ is a mitochondria-targeted derivative of coenzyme
Q10 and is among the most extensively studied antioxi-
dants. Its unique structure, featuring a ubiquinone moiety
linked to a triphenylphosphonium moiety, facilitates MitoQ’s
transfer and accumulation in mitochondria [51]. However,
the effects of MitoQ on glycemic control in preclinical
models of diabetes and obesity have been inconsistent. For
instance, in ATM+/-/ApoE-/- mice, which develop metabolic
syndrome rapidly on a high-fat diet, a 7-week treatment
with MitoQ improved glucose tolerance and reduced fasting
glucose, insulin, triglycerides, and cholesterol levels [52].
Similarly, MitoQ enhanced insulin secretion in pancreatic
B cells exposed to hyperglycemic conditions, mimicking
human hyperglycemia [53]. In contrast, two recent studies
reported that MitoQ did not lower glycemia in rat models of
type 2 diabetes induced by a high-fat diet and streptozotocin.
This discrepancy may be attributed to the severity of diabetes
in these models, which is greater than that typically observed
in humans [54,55]. Comparable findings were noted in a
type 1diabetes model using Akita (Ins2+/-Akita]) mice [56].
Despite these limitations, the therapeutic potential of MitoQ
should not be overlooked, as promising benefits have been con-
sistently observed in diabetic complications, including kidney
injury [56, 57], neuropathy [55], and hepatic steatosis [52, 54].
It was shown that MitoQ improved microvascular function in
patients with chronic kidney disease, partially by reducing the
NADPH oxidase [58]. Also, treatment of T2DM patients with
MitoQ decreased mitochondrial ROS production, as well as the
level of NFkB-p65 and TNFa, supporting the idea that MitoQ
shows anti-inflammatory and antioxidant properties [59].

Coenzyme QIO protects cells and mitochondria from
oxidative damage, decreases ROS generation, and enhances
antioxidant defenses. CoQ10 reduces electron leakage in mito-
chondrial Complex II, facilitating electron transfer to Complex
I1I and thereby indirectly decreasing superoxide production in
hyperglycemic conditions. This contributes to the protection
of endothelial cells and fosters favorable oxidative conditions
in the cell [4, 60, 61]. Diabetic patients receiving 150 mg of
CoQ10 for 12 weeks exhibited decreased levels of triglycerides,
HDL-C, fasting plasma glucose, and hemoglobin A1C, although
LDL-C levels increased [62]. Similarly, diabetic patients with
neuropathic signs who received 200 mg/day of CoQ10 showed
improved insulin sensitivity and total antioxidant capacity
(TAC), alongside a reduction in high-sensitivity C-reactive
protein (hsCRP) levels [63].

Furthermore, vigorous antioxidant properties aimed
at mitochondrial bioenergetics are attributed to other
mitochondrial-targeted antioxidants, such as SkQ1l and SS-31
(elamipretide), making them promising adjunctive therapies
for DM [64]. SkQI improves the functioning of mitochondria
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Figure 2. Diagnostic tools and biomarkers of mitochondrial dysfunction. Overview of adjunct approaches to assess mitochondrial dysfunction in
diabetes: Enzyme assays with bioenergetic markers, omics profiling, mitochondrial DNA markers, and noninvasive imaging (PET, NIRS, MRI). Abbre-
viations: L:P ratio: Lactate/pyruvate ratio; PET: Positron emission tomography; NIRS: Near-infrared spectroscopy; MRI: Magnetic resonance imaging;
mtDNA: Mitochondrial DNA; TFAM: Transcription factor A, mitochondrial; SDHC: Succinate dehydrogenase complex subunit C; CS: Citrate synthase;
MT-CO1/2: Mitochondrially encoded cytochrome ¢ oxidase subunits 1/2; TOMM70A/TOMM?20: Translocase of outer mitochondrial membrane 70/20;
RABIA: Ras-related protein Rab-1A; NDUFS3: NADH dehydrogenase (ubiquinone) iron-sulfur protein 3; COX2: Cytochrome c oxidase subunit 2 (MT-CO2);
COX6B1/6C: Cytochrome c oxidase subunits 6B1/6C; CALR: Calreticulin; SORT: Sortilin; TXN2: Thioredoxin 2; SOD2: Superoxide dismutase 2; miR-27b-3p:

MicroRNA-27b-3p; MT-TL1: Mitochondrially encoded tRNA-Leu(UUR); m.3243A>G: A-to-G variant at mtDNA position 3243 in MT-TL1.

like a MitoQ, while SS-31 affects MD by improving fusion,
reducing OS damage, and IR [51]. Regarding SkQl, similar mixed
results have been reported in the context of hyperglycemia and
OS. For instance, in a study using db/db mice, a model of T2DM,
administration of SkQ1 for up to 12 weeks was ineffective in
reducing HbAlc or blood glucose levels, but decreased the level
of lipid peroxidation end products [65]. Conversely, in rats
with alloxan-induced type 1 diabetes, pre-treatment with SkQ1
inhibited diabetes onset, likely due to its antioxidant properties,
as alloxan induces diabetes by causing oxidative damage
to pancreatic B cells [66, 67]. To address these translational
gaps, it has been proposed that SkQl should be evaluated
in models that more closely resemble human diabetes or in
established alloxan-induced diabetes [49]. Nevertheless, when
considering diabetes-related complications, SkQl appears to
exert protective effects, most notably by promoting wound
healing, despite the absence of glucose-lowering action [68].
Preclinical, in vivo and in vitro studies show that treatment with
SS-31, a novel mitochondria-targeting antioxidant, ameliorates
high glucose-induced MD and myocardial injury [69]. In
patients with T2DM, SS-31 treatment decreased mitochon-
drial and total ROS, as well as the level of indicators of
inflammation, NF«B-p65, and TNFa. Also, mitochondrial
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function was restored, most likely by increasing the level of
SIRT1 [70].

Mito-TEMPO is a mitochondria-targeted SOD mimetic that
neutralizes free radicals via conjugation of piperidine nitroxide
with a triphenylphosphonium group. By converting superoxide
anions into oxygen and hydrogen peroxide, it alleviates mito-
chondrial 0S, akey factor in diabetic complications [71]. Beyond
reducing ROS, apoptosis, and hypertension, Mito-TEMPO
enhances endothelial function, restores mitochondrial complex
II activity diminished by IR, and modulates key signaling
pathways, including ERK1/2 and GLP-1/CREB/adiponectin [72].
In diabetic mice, Mito-TEMPO alleviated myocardial dysfunc-
tion and decreased mitochondrial ROS [71], while in diabetic
nephropathy models of TID and T2D inhibited the PKR/elF2a
pathway and reduced mitochondrial ROS [73].

In the context of human studies on mitochondria-targeted
antioxidants, a recent systematic review and meta-analysis
of randomized controlled trials evaluated nineteen studies
(n = 884 participants) investigating agents such as
elamipretide, MitoQ, and MitoTEMPO. The analysis concluded
that although short-term interventions suggest these com-
pounds are generally well tolerated, there is currently insuffi-
cient evidence from RCTs to support their efficacy in improving
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Figure 3.

Possible therapeutic strategies targeting mitochondria and ROS in diabetes. Mitochondria-targeted antioxidants (MitoQ, CoQ10, SkQ1,

SS-31, Mito-TEMPO), pharmacologic modulators (metformin, SGLT2 inhibitors), lifestyle measures (exercise, diet), and emerging gene editing converge
to reduce ROS, restore mitochondrial function, and improve insulin sensitivity. Abbreviations: DM: Diabetes mellitus; MD: Mitochondrial dysfunction;
ROS: Reactive oxygen species; MitoQ: Mitoquinone; CoQ10: Coenzyme Q10; SkQ1: Plastoquinonyl decyltriphenylphosphonium; SS-31: Elamipretide; Mito-
TEMPO: Mitochondria-targeted TEMPO; SGLT2 inhibitors: Sodium-glucose cotransporter 2 inhibitors.

glycemic control. Future research should focus on assessing
mitochondria-targeted antioxidants in specific patient popula-
tions and under conditions of hyperglycemia [64]. The results
of animal and human studies are summarized in Table 1.

Besides antioxidants, various metabolic modulators that
enhance mitochondrial function and cellular metabolism
exhibit promising therapeutic properties. For instance,
metformin, a widely used medication for diabetes, significantly
influences mitochondrial dynamics. Its therapeutic effects
primarily arise from the inhibition of mitochondrial complex
I activity and the reduction of OS-induced damage [74].
Metformin plays a vital role in maintaining cellular health
by promoting mitochondrial autophagy and facilitating the
removal of dysfunctional mitochondria [74, 75].

Sodium-glucose cotransporter 2 inhibitors are effective
therapeutic agents that function by blocking the renal reab-
sorption of glucose, which increases its urinary excretion and
leads to glucosuria. This primary mechanism is associated with
downstream metabolic effects, including a shift toward keto-
genesis, a reduction in inflammation, and an enhancement
of mitochondrial function [76]. Consequently, their beneficial
effects on improving mitochondrial function and mitigating OS,
which are crucial for their cardiorenal protective effects, should
not be overlooked [77].
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From the perspective of lifestyle interventions, including
dietary modifications and physical activity, the primary
mechanism focuses on modulating energy balance and sub-
strate utilization. Various nutritional patterns that promote
overall metabolic health, such as ketogenic, low-carbohydrate,
and intermittent fasting regimens, have gained significant
attention in recent years [1]. These approaches enhance
mitochondrial biogenesis and improve insulin sensitivity.
Additionally, specific nutrients and bioactive compounds,
including 5-aminoimidazole-4-carboxamide ribonucleotide
(AICAR), GW501516, and epicatechin, have been investigated
for their ability to activate key metabolic regulators such
as AMP-activated protein kinase (AMPK) and peroxisome
proliferator-activated receptors (PPARs) [78]. Furthermore, it
is well established that physical activity significantly benefits
mitochondrial function and insulin sensitivity while simulta-
neously reducing OS [1].

Emerging therapies: Gene editing

Gene expression and mtDNA integrity represent important
targets for future gene-based therapies aimed at treating
MD in DM and CV conditions [79]. Current treatments for
DM-related mtDNA mutations primarily address symptoms;
thus, emerging mitochondrial gene therapies aim to rectify
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Table 1. Mitochondria-targeted antioxidants: Animal and human studies
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Treatment/Antioxidant ~ Condition Model Key outcome Ref
MitoQ Atherosclerosis metabolic Preclinical/in vivo ApoE(-/-) mice Improved glucose tolerance [52]
syndrome ATM(+/-)/ApoE(~/-) mice | Fasting glucose,
J Insulin
1 Triglycerides,
JCholesterol
Hyperglycaemia Preclinical/in vitro pancreatic B cell tnsulin secretion [53]
line INS-1E J GSH levels
LER stress markers (GRP78, P-elF2a)
| NFkB-p65
T2D Preclinical/in vivo rats (high-fat | Liver fat [54]
diet+streptozotocin) {Hydroperoxside
Unchanged glycemia
Pre-diabetes late-stage 2D Preclinical/in vivo rats (high-fat Unchanged glycemia [55]
diet+streptozotocin)
T1D Diabetic nephropathy Preclinical/in vivo Ins2(+/)-(Akita)) Improved tubular function [56]
mouse model (Akitamice) Improved glomerular function
JUrinary albumin
Diabetic kidney disease Preclinical/in vivo diabetic db/db mice  $OCR [57]
LATP
T2D Human/ex vivo leukocytes from T2D JROS [59]
patients INFiB-p65
L TNFa
Chronic kidney disease Human/pilot study Improved vascular function (58]
JNADPH oxidase
CoQ10 Diabetes Human/randomized, double blind, LFPG [62]
placebo-controlled trial JHbA1C
1 Triglyceride
| HDL-C
ALDL-C
Diabetes neuropathic signs Human/randomized tInsulin sensitivity [63]
placebo-controlled clinical trial 1 TAC
JCRP
skQ1 T2D Preclinical/in vivo C57BL/KsJ-db-/db- | TBARS [65]
mice Unchanged hyperglycemia Improved
healing of skin wounds
T1D Preclinical/in vivo rats (pre-therapy Normalized Blood Glucose Level [66]
SkQ1+ alloxan)
SS-31 Diabetic cardiomyopathy Preclinical/in vivo; in vitro diabeticC57  Ameliorates mitochondrial dysfunctionand  [69]
BL/6) mice; HIC2 cells myocardial injury
T2D Human/ex vivo leukocytes from T2D INFkB-p65 [70]
patients JTNFa
SIRTL
Jtotal ROS
I Mitochondrial ROS
mitoTEMPO T2DT1D Preclinical/in vivo streptozotocinand | Mitochondrial ROS [71]
db/db mice Alleviated myocardial dysfunction
Diabetic nephropathy T2D Preclinical/in vivo; in vitro JMitochondrial ROS (73]
T1D streptozotocin-and db/db mice; 1PKR/elF2a

HK-2 cells

Abbreviations: CoQ10: Coenzyme Q10; CRP: C-reactive protein; FPG: Fasting plasma glucose; GSH: Glutathione; HbA1C: Hemoglobin; HDL-C: High-density
lipoprotein cholesterol; LDL-C: Low-density lipoprotein cholesterol; NADPH: Nicotinamide adenine dinucleotide phosphate; NF-kB: Nuclear factor kappa B
p65 subunit; OCR: Mitochondrial oxygen consumption; ROS: Reactive oxygen species; SIRT1: Class Il histone deacetylase sirtuin-1; TAC: Total antioxidant
capacity; TBARS: Thiobarbituric acid-reactive substances; T1D: Type 1 diabetes; T2D: Type 2 diabetes; TNF-a: Tumor necrosis factor-alpha; | : Decrease;
1 Increase.
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mtDNA mutations and restore mitochondrial function [80].
Although mitochondrial gene therapy is a relatively recent
concept, significant progress has been made, yet many chal-
lenges remain. The multicopy nature of the mitochondrial
genome complicates the diagnosis and prediction of mtDNA dis-
ease progression. While heteroplasmy manipulation has been
a research focus for decades, effective and practical methods
have only recently begun to materialize. Mitochondrial gene
editing technologies are being developed to specifically target
variant mtDNA molecules, thereby steering a heteroplasmic
state toward a healthier, wild-type mtDNA population [81].

Current mitochondrial editing techniques are based on two
primary strategies. The first aims to remove mutated mtDNA
using mitochondrial-targeted nucleases, while the second seeks
to modify mtDNA through mitochondrial-targeted base edi-
tors. Mitochondrial-targeted nucleases, such as transcription
activator-like effector nucleases (TALENs) and zinc-finger
nucleases (ZNFs), provide a CRISPR-free alternative capable
of cleaving double-stranded mutant mtDNA within mitochon-
dria. However, these editing tools face significant limitations,
including susceptibility to nonspecific DNA interactions and
the need for extensive engineering for each new target site,
which affects their clinical applicability. Since mitoTALENs and
mitoZFN can only remove mutated mtDNA without directly
repairing specific mutations, base editors have been developed.
Mitochondrial base editing technology enables nucleotide con-
versions, most frequently from C to T or A to G, facilitat-
ing the repair of mutated mtDNA and promoting a healthy
mtDNA population. Overall, the further development of more
precise editors and improved delivery systems is essential for
transitioning these technologies from experimental to clinical
application [82-85].

While current advancements in mitochondrial gene edit-
ing primarily rely on allotopic expression and DNA-editing
enzymes/base editors designed for mitochondrial function,
conventional CRISPR delivery to mtDNA remains a significant
hurdle, despite the widespread use of the CRISPR-Cas9 sys-
tem as a genome editing tool [1, 86, 87]. Allotopic expression
entails the nuclear relocation of mitochondrial genes to bypass
mtDNA mutations and restore mitochondrial protein synthesis.
The application of CRISPR-Cas9 for mtDNA editing continues to
be debated, primarily due to its inefficiency, despite its poten-
tial to target mitochondria. These challenges will shape future
research directions, which may focus on enhancing mitochon-
drial transport mechanisms to improve the delivery efficiency
of editing components into mitochondria, as well as develop-
ing Cas protein variants with higher editing efficiency through
genetic engineering [80-82].

Conclusion

This review critically examines recent literature on the role of
MD in the development and progression of DM and its asso-
ciated CV complications. It also provides an overview of the
disrupted molecular pathways related to the balance of ROS
production and antioxidant defense in this pathology. Further-
more, the review explores the latest strategies for restoring
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mitochondrial function and reducing OS, highlighting recent
advancements in targeted treatments and lifestyle interven-
tions. The precise regulation of cellular physiology underpins
the interaction between mitochondria, ROS, and DM. The het-
erogeneity of DM phenotypes underscores the importance of
personalized medicine approaches tailored to specific disease
manifestations.
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