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Advancing regenerative therapies with umbilical
cord-derived mesenchymal stem cells: A review
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Umbsilical cord-derived mesenchymal stem cells (UC-MSCs) are a clinically attractive regenerative and immunomodulatory platform
that combines ethical accessibility, low immunogenicity, rapid expansion, genetic stability, and a potent paracrine secretome. This
study aimed to synthesize evidence on safety, efficacy, and translational readiness by conducting a focused PubMed review
(2014-2024) restricted to clinical studies and trials, using predefined inclusion and exclusion criteria and structured data extraction.
Across indications, UC-MSCs show a consistent safety profile and signals of benefit mediated by tissue repair and immune regulation:
in musculoskeletal disease they improve osteoarthritis pain and function and may slow osteonecrosis; in hepatology they sustain gains
in decompensated cirrhosis, mitigate acute allograft rejection, and aid recovery from ischemic-type biliary lesions; as induction in renal
transplantation they are feasible with early graft benefits; in type 2 diabetes responders improve glycemic control and inflammation,
while maternal and obstetric factors can shape intrinsic cell properties; in neurology, studies in cerebral palsy, chronic spinal cord
injury, and traumatic optic neuropathy report motor, sensory, and visual improvements; in COVID-19-related acute respiratory distress

syndrome (ARDS) trials show better oxygenation, radiological recovery, quality of life, and modulation of the TNF-sTNFR2 axis; in
immune-mediated and transplant settings they reduce graft-versus-host disease, with signals in systemic lupus erythematosus,
refractory immune thrombocytopenia, Crohn’s fistulas, and as cotransplant support in aplastic anemia. The limitations of this study
encompass small sample sizes, single-center designs, and short-duration trials. Additionally, there is significant heterogeneity
concerning the source, manufacturing processes, dosage, administration routes, and endpoints. Other challenges include adherence to
good manufacturing practices (GMP), issues related to potency, biobanking, logistical constraints, cost factors, and regulatory
obstacles. Large multicenter randomized trials with standardized protocols and long-term follow-up, and combination strategies with
biomaterials, gene engineering, and extracellular vesicle or exosome products, are needed to confirm durable benefit and enable

routine clinical integration.

Keywords: Regenerative medicine, clinical studies, immunomodulation, anti-inflammatory therapy, tissue repair and

regeneration.

Introduction
Mesenchymal stem cells (MSCs) are multipotent stromal cells
characterized by their ability to self-renew and differenti-
ate into various cell types, including adipocytes, chondro-
cytes, and osteoblasts. These attributes render MSCs highly
valuable in regenerative medicine, tissue engineering, and
immunotherapy [1]. MSCs are identified by their absence of
hematopoietic markers such as CD34 and CD45, their expres-
sion of specific markers including CD73, CD90, and CD105,
and their capacity to adhere to plastic surfaces in culture [2].
Beyond their differentiation capabilities, MSCs possess signifi-
cant immunomodulatory effects, interacting with immune cells
such as T cells, B cells, and macrophages [3].

MSCs can be sourced from various tissues, each present-
ing unique advantages and limitations. Bone marrow is the
most well-established source, known for its high differentiation

potential; however, its collection is invasive, and yield dimin-
ishes with age. Adipose tissue offers a less invasive alterna-
tive with good availability, though it exhibits slightly reduced
osteogenic capacity [4]. Umbilical cord tissue, particularly
Wharton’sjelly, serves as an abundant and non-invasive source,
although these cells may demonstrate lower self-renewal
potential compared to other sources. Amniotic fluid and mem-
branes also show promise due to their pluripotent-like proper-
ties, yet they raise ethical considerations. Additional sources,
including peripheral blood, dental pulp, synovial fluid, liver,
lung, and skeletal muscle, have been investigated but often
suffer from low yield and limited accessibility [5] (Figure 1).
Among these sources, umbilical cord-derived MSCs (UC-MSCs)
are emerging as a leading candidate for clinical applications.
Derived from Wharton'’s jelly, cord blood, or perivascular tis-
sue, UC-MSCs can differentiate into multiple lineages and are
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Figure 1.

Cross-sectional schematic of the human umbilical cord highlighting the anatomical source of Wharton’s jelly and umbilical cord-derived

mesenchymal stem cells (UC-MSCs). The illustration depicts a cross-section of the umbilical cord, highlighting two umbilical arteries and a central umbilical
vein containing cord blood, all encapsulated within Wharton’s jelly. Wharton’s jelly serves as a rich extracellular matrix that supports the presence of
UC-MSCs, which can be efficiently isolated for regenerative and therapeutic purposes. This schematic underscores the vascular structures and the adjacent

stromal compartment, identifying them as the primary niche for UC-MSCs.

readily accessible from tissue typically discarded after birth.
Their collection is safe, non-invasive, and ethically acceptable,
making them a particularly valuable resource for advancing
regenerative therapies and immune-based treatments [6, 7).

UC-MSCs are attracting increasing attention in regenera-
tive medicine due to their combination of accessibility, safety,
and biological efficacy [8]. They can be harvested easily and
non-invasively since the umbilical cord is usually discarded
after childbirth, thereby mitigating ethical concerns and donor
risks [9]. This characteristic positions them as a widely avail-
able and ethically sound source of stem cells. A significant
advantage of UC-MSCs is their “youthful” biology, as they
originate from neonatal tissue. They exhibit rapid prolifer-
ation, long-term genetic stability, and resistance to cellular
aging [10]. These attributes facilitate the expansion of large,
clinically relevant cell populations without compromising cel-
lular integrity. Functionally, UC-MSCs can differentiate into
multiple lineages, including bone, cartilage, and adipose tis-
sue, while secreting a diverse array of bioactive molecules that
regulate immune responses and suppress inflammation [11].
Such immunomodulatory properties render them particularly
promising for treating inflammatory and immune-related dis-
eases, where traditional therapies often fall short [12].

Another critical advantage of UC-MSCs is their robust safety
profile. Being derived from neonatal tissue, they harbor fewer
accumulated genetic mutations compared to adult-derived
stem cells, thereby reducing concerns regarding malignant
transformation [13]. Additionally, unlike embryonic stem cells,
they circumvent significant ethical controversies, as their
source material would otherwise be discarded as medical waste.
Collectively, UC-MSCs represent a highly reliable and versa-
tile platform for advancing cell-based therapies. Their combi-
nation of ethical accessibility, strong biological performance,
and proven immunomodulatory effects positions them as a
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cornerstone resource for the future of regenerative medicine
and immune-targeted treatments [14] (Figure 2).

Methods
A comprehensive literature search was conducted in PubMed
to identify studies on UC-MSCs published between 2014 and
2024. The search utilized Medical Subject Headings (MeSH)
and free-text terms, including “Umbilical cord-derived mes-
enchymal stem cells,” “UC-MSCs AND therapy,” and “UC-MSCs
AND immune disorders,” employing Boolean operators and
field tags ([Title/Abstract], [MeSH Terms]) to refine the results.
Filters were applied to include only clinical studies and trials,
with additional restrictions on disease-specific topics such as
liver cirrhosis, immune disorders, COVID-19, and metabolic
diseases. The selected time frame of 2014-2024 encompasses
a decade of significant growth in UC-MSC research, highlight-
ing major advances in clinical translation and the publica-
tion of large-scale trials. PubMed was chosen as the primary
database due to its extensive coverage of biomedical and clinical
research, particularly peer-reviewed journal articles indexed in
MEDLINE, which ensures the reliability and quality of sources.
Retrieved records were imported into Excel, duplicates were
removed, and titles and abstracts were screened for relevance,
followed by a full-text assessment for eligible studies. Inclusion
criteria consisted of clinical studies (randomized controlled tri-
als, pilot studies, and phase I-11I trials) involving UC-MSCs as
a therapeutic intervention and reporting outcomes on efficacy,
safety, or therapeutic potential. Exclusion criteria eliminated
preclinical or in vitro research, reviews, meta-analyses, confer-
ence abstracts, editorials, and studies lacking methodological
detail. Data were extracted and categorized by study design,
patient population, UC-MSC source and administration, and
clinical outcomes, ensuring a focused dataset by excluding irrel-
evant studies.
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Figure2. Illustration of the umbilical cord as a rich source of diverse stem and progenitor cells with significant therapeutic potential. Hematopoietic
stem cells (HSCs) generate all types of blood cells and are extensively utilized in hematologic therapies. Immune progenitor cells, which differentiate into
T cells, B cells, and natural killer (NK) cells, play a pivotal role in immune regulation and transplantation. Mesenchymal stem cells (MSCs) can differentiate into
various tissues while exerting significant immunomodulatory and regenerative effects. Additionally, non-hematopoietic stem cells contribute to neural and
cardiac repair. Collectively, these cell populations underscore the umbilical cord’s potential as an ethically accessible and versatile source for regenerative

medicine, immunotherapy, and hematologic treatments.

Results and discussion

Findings from clinical research underscore the significant ther-
apeutic potential of UC-MSCs. With a robust safety profile
and the capacity to regenerate tissue and modulate immune
responses, UC-MSCs emerge as a promising treatment option
for a variety of conditions, including musculoskeletal disor-
ders and immune-related diseases. However, clinical outcomes
are inconsistent, influenced by factors such as the specific dis-
ease under investigation, the design of clinical trials, and indi-
vidual patient characteristics. This variability underscores the
necessity for standardized methodologies and larger multicen-
ter studies to validate and optimize the application of UC-MSCs.
To provide context for this discussion, Table 1 summarizes the
primary therapeutic areas explored, the reported benefits, and
the current limitations.

UC-MSCs in musculoskeletal regeneration

Clinical studies increasingly demonstrate that UC-MSCs hold
significant potential for treating musculoskeletal disorders,
although the strength of evidence varies across trials. In a
phase I dose-escalation study, Matas et al. [15] found that
intra-articular UC-MSC injections in knee osteoarthritis were
safe and resulted in improvements in pain and joint func-
tion, providing early proof of concept for their application in
degenerative joint diseases. These findings align with those of
Dilogo et al. [16], whose open-label study reported similar ben-
efits, further validating the feasibility of UC-MSC therapy in
osteoarthritis. Expanding the evidence base, Chen etal. [17] pre-
sented three-year follow-up data in patients with osteonecrosis
of the femoral head, showing not only symptom relief but also a
deceleration of disease progression, suggesting a more durable
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regenerative effect. Beyond joint diseases, Widodo et al. [18]
investigated UC-MSCs in late-onset brachial plexus injury,
demonstrating that either the cells or their secretome enhanced
functional recovery and tissue repair, indicating a broader role
in complex neuromuscular injuries. Collectively, these studies
underscore the safety, regenerative potential, and versatility of
UC-MSCs in musculoskeletal medicine. However, comparisons
among studies are complicated by variations in trial design,
patient populations, and treatment protocols. Improvements
in osteoarthritis outcomes are consistent across short-term
studies, while the long-term benefits observed in osteonecro-
sis necessitate further confirmation. The findings concerning
brachial plexus injuries are promising but remain preliminary
and require validation in larger trials. Overall, the evidence
suggests that UC-MSCs could revolutionize treatment for mus-
culoskeletal disorders, provided that future multicenter studies
optimize dosing strategies, standardize methods, and confirm
both safety and long-term efficacy.

UC-MSCs in liver disease

Clinical research into UC-MSCs in liver disease indicates a
broad therapeutic potential across conditions such as cirrho-
sis, transplantation, and biliary complications. In a long-term
follow-up study, Shi et al. [19] demonstrated that UC-MSC
therapy in patients with decompensated cirrhosis led to
sustained improvements in liver function scores and over-
all clinical status, highlighting both the regenerative and
immunomodulatory effects of the therapy. These findings pro-
vide critical long-term evidence that UC-MSCs can stabilize
chronic liver disease, a condition with limited effective treat-
ment options outside of transplantation. Complementing this,
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Shi et al. [20] reported in a pilot trial that UC-MSC infusion
was safe and clinically beneficial for patients experiencing
acute liver allograft rejection. Here, MSCs not only reduced
inflammatory activity but also appeared to support graft sur-
vival, suggesting that their immunoregulatory properties may
be harnessed in transplant settings where rejection remains a
significant challenge. Extending to biliary complications, Zhang
et al. [21] explored UC-MSCs in patients with ischemic-type
biliary lesions following transplantation. Their findings indi-
cated improved biliary repair and function, with the therapy
being well tolerated. Together, these studies illustrate that
UC-MSCs operate through a combination of regenerative and
immunomodulatory mechanisms to enhance outcomes across
diverse liver-related conditions. While the long-term cirrhosis
trial underscores their potential in managing chronic diseases,
the transplant-focused studies highlight their role in addressing
acute immune-mediated injury and post-transplant complica-
tions. Nevertheless, the evidence base remains relatively small,
predominantly consisting of pilot studies and single-center tri-
als. Larger, multicenter randomized studies are essential to con-
firm efficacy, standardize treatment protocols, and determine
how UC-MSC therapy can be integrated into existing liver dis-
ease and transplantation frameworks. Current data, however,
suggest that UC-MSCs are a versatile tool capable of addressing
both chronic degeneration and acute immune-driven injury in
hepatology.

UC-MSCs in renal transplantation

Research on UC-MSCs in renal transplantation has primarily
focused on their potential as induction therapy to enhance graft
survival and mitigate immune complications. Sun et al. [22]
first outlined a comprehensive study protocol investigating
whether allogeneic MSCs could prevent delayed graft function
and acute rejection in recipients of deceased donor kidneys.
This protocol established a scientific rationale for introducing
MSCs at the time of transplantation, aiming to leverage their
immunomodulatory and anti-inflammatory properties during
the critical early post-transplant phase. Building on this frame-
work, Sun et al. [23] later published pilot results from a
multicenter randomized controlled trial, demonstrating that
UC-MSC induction therapy was both safe and feasible in
renal allografts. Importantly, early findings indicated improve-
ments in graft function and reduced immune-mediated injury
compared to standard care. Collectively, these studies illus-
trate a methodical progression from conceptual design to
clinical application. The protocol paper laid the groundwork
for methodological rigor, while the subsequent clinical trial
provided preliminary evidence that UC-MSCs may enhance
short-term transplant outcomes without presenting significant
safety concerns. However, both studies remain early in scope,
with small sample sizes and short follow-up limiting conclu-
sions about long-term efficacy. Larger, multicenter trials with
extended monitoring will be critical to determine whether
UC-MSC therapy can reduce rejection rates, improve long-term
graft survival, and ultimately be incorporated into standard
transplantation protocols.
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Metabolic applications of UC-MSCs

Research into the metabolic applications of UC-MSCs reveals
both their direct therapeutic potential and the influence of
maternal and obstetric factors on their biological properties.
In patients with type 2 diabetes mellitus, Wang et al. [24]
identified predictive factors that influenced the clinical efficacy
of UC-MSC therapy, demonstrating that treatment improved
glucose control, insulin sensitivity, and systemic inflamma-
tion in responders. This study emphasizes that patient-specific
characteristics may shape therapeutic outcomes, highlighting
the importance of precision in applying UC-MSC therapy for
metabolic disorders. Concurrently, maternal factors have been
shown to affect the biological function of UC-MSCs. Jevtovic
et al. [25] demonstrated that maternal exercise during preg-
nancy positively influenced glucose and lipid metabolism in
offspring stem cells, suggesting that lifestyle factors can pro-
gram neonatal cell biology in ways that may enhance their
regenerative and metabolic potential. Similarly, Avercenc-
Léger et al. [26] reported that certain obstetric conditions pre-
dicted UC-MSC proliferation and chondrogenic differentiation
capacity, providing further evidence that the perinatal environ-
ment directly impacts stem cell quality and function. Together,
these studies expand the understanding of UC-MSCs beyond
their therapeutic effects in established diseases to include the
maternal and perinatal factors that shape their baseline biology.

UC-MSCs for neurological disorders

Clinical investigations into UC-MSCs for neurological disor-
ders highlight their potential to promote functional recovery,
although findings vary depending on the condition and study
design. In cerebral palsy, Boyali et al. [27] provided preliminary
evidence that allogeneic MSC therapy may be a viable treat-
ment, reporting improvements in motor function with good
tolerability. These results were reinforced by Gu et al. [28],
who conducted a randomized controlled trial showing signif-
icant gains in gross motor function compared with controls,
underscoring the therapeutic promise of UC-MSCs in pediatric
neurorehabilitation. Adding nuance, Wang et al. [29] studied
identical twins with cerebral palsy and observed improvements
in motor function, while also suggesting that hereditary factors
may influence the degree of clinical response, an important
consideration for tailoring treatment strategies. Spinal cord
injury has also been a major focus of UC-MSC research. Awidi
et al. [30] demonstrated in a phase I/II trial that expanded
stromal cells from both bone marrow and umbilical cord were
safe and feasible in chronic spinal cord injury, with some
patients experiencing neurological improvement. Similarly,
Albuetal. [31] investigated intrathecal administration of Whar-
ton’s jelly-derived MSCs and reported improvements in sen-
sory and motor recovery, further affirming both safety and
therapeutic potential in this challenging patient population.
Extending the scope to neuro-ophthalmology, Li et al. [32]
combined optic canal decompression with UC-MSC transplan-
tation for traumatic optic neuropathy. Their phase I results
showed that the procedure was safe and provided preliminary
indications of visual function improvement. Collectively, these
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studies suggest that UC-MSCs exert neuroprotective and regen-
erative effects across a range of neurological conditions, from
developmental disorders such as cerebral palsy to traumatic
injuries of the spinal cord and optic nerve. While improvements
in motor and sensory outcomes appear consistent, the mag-
nitude of benefit varies, and long-term durability remains to
be fully established. Variability in cell sources, administration
routes, and patient populations further complicates direct com-
parisons. Nonetheless, the convergence of evidence across mul-
tiple indications highlights UC-MSCs as a versatile therapeutic
platform for neuroregeneration. Future research should focus
on larger randomized trials, standardized treatment protocols,
and long-term follow-up to clarify the extent and durability of
neurological recovery achievable with UC-MSC therapy.

UC-MSCs for respiratory disorders

Clinical research into UC-MSCs for respiratory disorders, par-
ticularly acute respiratory distress syndrome (ARDS) associ-
ated with COVID-19, has demonstrated promising safety and
early efficacy signals, although results vary across trials. In a
multicenter randomized double-blind trial, Sitbon et al. [33]
reported that UC-MSC therapy was safe and improved res-
piratory function and quality of life in specific patient sub-
sets, suggesting meaningful long-term benefits. Similarly, Shi
et al. [34] confirmed sustained improvements in pulmonary
outcomes in their one-year follow-up study of severe COVID-19
patients, reinforcing the therapy’s durability and safety pro-
file. Earlier work by Shi et al. [35] indicated that UC-MSC
treatment reduced lung damage and improved radiological out-
comes, providing mechanistic evidence of tissue repair. In a
phase I trial, Meng et al. [36] reported that UC-MSC infu-
sions were well tolerated and associated with signs of clin-
ical improvement. Additionally, Kaffash Farkhad et al. [37]
observed improvements in oxygenation and disease severity in
a controlled phase I study, further supporting the feasibility
of UC-MSC use in acute respiratory injury. Complementing
these clinical outcomes, Kouroupis et al. [38] explored immuno-
logical mechanisms, demonstrating that UC-MSCs modulated
TNF and soluble TNF receptor 2 levels in patients with COVID-
19 ARDS, thereby supporting the hypothesis that their thera-
peutic benefits are mediated through immunomodulation and
dampening of hyperinflammatory pathways. Collectively, these
studies highlight several consistent themes: UC-MSCs are safe
across diverse patient populations, improve short-term oxy-
genation and radiological findings, and may contribute to
longer-term recovery of lung function. However, trial het-
erogeneity—including differences in sample size, dosing reg-
imens, and outcome measures—limits definitive conclusions.
While phase I and pilot studies provide encouraging feasibility
data, larger multicenter randomized trials, such as those led by
Sitbon et al. [33], are critical for validating efficacy and inform-
ing clinical guidelines. Overall, UC-MSCs appear to offer dual
benefits in ARDS by reducing inflammation and promoting
lung repair, yet robust evidence from large-scale studies is
still required before their integration into standard respiratory
care.
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UC-MSCs in immune-mediated and transplant-related disorders
Clinical studies investigating UC-MSCs in immune-mediated
and transplant-related disorders demonstrate consistent safety
and notable immunomodulatory benefits, though variabil-
ity in outcomes is observed depending on the disease con-
text. In graft-versus-host disease (GVHD), Niu et al. [39]
reported durable clinical responses in patients with severe,
steroid-refractory GVHD, with long-term follow-up confirm-
ing sustained improvements and manageable safety concerns.
Expanding on this, Gao et al. [40] conducted a multicen-
ter randomized controlled trial and found that prophylac-
tic use of UC-MSCs significantly reduced the incidence and
severity of chronic GVHD, highlighting their potential role
in both prevention and treatment. Similarly, Nagamura-Inoue
et al. [41] provided mechanistic insight, demonstrating that
serum-free manufactured UC-MSCs shifted immunological
responses in steroid-resistant GVHD without increasing infec-
tion risk, underscoring their capacity to restore immune bal-
ance safely. Beyond transplantation, UC-MSCs have been tested
in autoimmune and inflammatory diseases. Chen et al. [42]
showed that UC-MSC infusion in refractory immune throm-
bocytopenia improved platelet counts and reduced bleeding
events in a subset of patients, while Kamen et al. [43] reported
reductions in disease activity indices in systemic lupus ery-
thematosus, confirming both safety and immunological benefit.
Complementing these clinical findings, Ma et al. [44] pro-
vided in vitro evidence that UC-MSCs suppressed pathogenic
immune activity in autoimmune hemolytic anemia, reinforc-
ing the rationale for their use in autoimmune conditions. In
inflammatory bowel disease, Wei et al. [45] reported higher
closure rates of complex perianal fistulas in Crohn’s disease
patients treated with UC-MSCs, demonstrating benefits in tis-
sue repair alongside immune regulation. UC-MSCs have also
been explored as supportive therapy in hematologic transplan-
tation. Zu et al. [46] combined UC-MSCs with reduced-dose
cyclophosphamide and peripheral blood stem cells in patients
with severe aplastic anemia, reporting encouraging engraft-
ment and improved GVHD control with acceptable toxicity.
This study highlights how UC-MSCs function synergistically in
cotransplant settings to enhance outcomes. Collectively, these
studies consistently underscore the ability of UC-MSCs to mod-
ulate immune responses across diverse conditions, from GVHD
and autoimmune cytopenias to Crohn’s disease and systemic
lupus erythematosus, while maintaining a strong safety profile.

Critical barriers to the clinical integration of UC-MSCs

Although the accumulated evidence highlights the therapeu-
tic promise of UC-MSCs, several important limitations must
be acknowledged before their clinical use can be fully estab-
lished. Findings across studies are not always consistent. For
instance, clinical trials in neurological disorders, such as cere-
bral palsy and spinal cord injury, have reported variable out-
comes: some demonstrated substantial gains in motor function
and quality oflife, while others noted only modest or short-lived
improvements. Such discrepancies are likely influenced by dif-
ferences in cell origin (e.g., Wharton’s jelly vs cord blood),
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methods of expansion and preparation, delivery routes (intra-
venous, intrathecal, or scaffold-based), and heterogeneity in
patient characteristics, such as age, disease stage, and comor-
bidities. Likewise, trials in liver and renal disorders have shown
promising but uneven results, underscoring the importance
of developing standardized protocols for cell preparation, dos-
ing, and administration. Without harmonization, direct com-
parisons between studies remain challenging, and conclusions
about efficacy are tentative [47].

Another critical limitation of the current literature is its
reliance on small, early-phase clinical studies. Most trials enroll
fewer than 50 patients and follow them for less than a year.
While these studies demonstrate safety and short-term efficacy,
they cannot provide definitive evidence of long-term outcomes,
including durability of therapeutic benefit or the risk of late
adverse effects such as unwanted immune reactions, fibrosis, or
tumorigenicity. Moreover, inconsistencies in reporting meth-
ods and outcome measures hinder meaningful meta-analyses
and systematic reviews, which are essential for translating pre-
clinical and early clinical findings into widely accepted treat-
ment guidelines. Currently, the absence of uniform standards
in trial design, patient selection, and clinical endpoints remains
a significant obstacle to progress [48]. Additionally, several
translational and regulatory barriers must be addressed before
UC-MSCs can transition from experimental therapy to main-
stream clinical practice. Large-scale production under good
manufacturing practice (GMP) conditions necessitates rigor-
ous quality control to ensure product consistency, viability,
and potency. The regulatory landscape is fragmented, with
differing approval processes and safety requirements across
regions, complicating global commercialization. Logistical chal-
lenges related to biobanking, cryopreservation, transport, and
cost-effectiveness must also be resolved for UC-MSC therapy to
be scalable and accessible. Addressing these issues will require
coordinated international efforts, multicenter randomized con-
trolled trials with long-term follow-up, and continued innova-
tion in cell engineering and delivery strategies. Only then can
UC-MSCs progress from promising experimental interventions
to standardized, evidence-based therapies that transform rou-
tine clinical care [49].

Conclusion
UC-MSCs represent a significant advancement in regenerative
medicine, demonstrating potential across a diverse array of
medical conditions. Current evidence indicates that UC-MSCs
can facilitate immune regulation, tissue repair, and recov-
ery in both chronic and acute diseases, such as autoim-
mune disorders, liver cirrhosis, neurological injuries, chronic
kidney disease, osteoarthritis, and COVID-19-related ARDS.
Their unique biological properties—such as a low risk of
immune rejection, robust paracrine signaling, and high prolif-
erative capacity—render them a valuable therapeutic option for
patients whose needs are inadequately addressed by existing
treatments.

However, the field remains nascent. Much of the existing
datais derived from small pilot or Phase I/1I studies with limited
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follow-up periods, making it challenging to comprehensively
evaluate the long-term safety and durability of treatment
effects. Moreover, variability in the sourcing, preparation, and
administration of UC-MSCs, as well as differences in patient
demographics, contribute to inconsistencies that hinder direct
comparisons across clinical trials.

In addition to scientific challenges, obstacles such as
large-scale manufacturing, high costs, and divergent inter-
national regulatory frameworks further impede the clinical
adoption of UC-MSC therapies. To transition from experimental
applications to standard medical practice, large multicenter
randomized controlled trials utilizing standardized proto-
cols and extended follow-up are imperative. Furthermore,
achieving greater alignment in global regulatory standards and
enhancing manufacturing processes will be crucial.

Looking ahead, integrating UC-MSC therapy with innova-
tions in biomaterials, gene editing, or exosome-based strategies
may unlock even greater therapeutic potential. With contin-
ued advancements, UC-MSCs have the capacity to evolve from
promising experimental treatments to foundational elements
of future regenerative and personalized medicine, providing
enduring benefits for conditions that are among the most chal-
lenging to treat.
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