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R E V I E W

Molecular and immune characteristics of neuroendocrine
bladder carcinoma—Implications for diagnosis,
prognosis, and therapy: A review
Tianxiang Zhang1,2,3#, Xi Zhang1,2#, Lei Qian3#, Chunjiang Hu1,2#, and Jianxing Li1,2∗

Neuroendocrine bladder carcinoma (NEBC) is a rare but highly aggressive histologic subtype of bladder cancer with poor prognosis,
often driven by delayed diagnosis and limited therapeutic options; despite widespread use of next-generation sequencing, its cellular
origin remains unclear and controversial. We aimed to synthesize up-to-date molecular and immune features of NEBC and translate
them into practical guidance for diagnosis and treatment. We performed a narrative review of English-language studies indexed in
PubMed and Web of Science (January 2000–August 2025) using predefined keywords, integrating genomic, transcriptomic,
immunohistochemical, and clinical outcome data. Key findings indicate frequent co-occurrence and probable common clonal origin
with urothelial bladder carcinoma, with hallmark TP53 and RB1 alterations, prevalent APOBEC-driven mutagenesis, and recurrent TERT
promoter mutations; tumor mutation burden is heterogeneous but can be high. Despite this, NEBC commonly exhibits an immune-cold
or immune-excluded microenvironment characterized by low PD-L1 expression and T-cell dysfunction, which may blunt responses to
immune checkpoint inhibitor (ICI) monotherapy. Diagnostic practice still relies on morphology supported by immunohistochemistry
(synaptophysin, chromogranin A, CD56, GATA3), with emerging tools such as INSM1 and a decision-tree model using synaptophysin,
CD117, and GATA3 that improve accuracy. Therapeutically, neoadjuvant chemotherapy (NAC)—most commonly EP or IA—followed by
radical cystectomy improves outcomes compared with initial cystectomy alone, while metastatic disease is typically managed with EP
chemotherapy and radiotherapy with limited durability. Early data support immunotherapy, particularly ICIs, and suggest potential
benefit from chemoimmunotherapy; a prospective trial of neoadjuvant anti-PD-L1 plus EP is underway, and antibody-drug conjugates
and bladder-sparing multimodality strategies are emerging. In conclusion, comprehensive molecular and immune characterization is
critical to refine diagnosis, optimize patient selection, and accelerate prospective trials that evaluate NAC, chemoimmunotherapy, and
targeted approaches in NEBC.
Keywords: Neuroendocrine bladder carcinoma, driver genes, immune microenvironment, molecular features, immune checkpoint
inhibitors.

Introduction
Bladder cancer (BC) is the most prevalent malignant tumor of
the urinary system, accounting for over 570,000 new cases
and more than 210,000 deaths globally each year [1, 2]. BC
is a heterogeneous disease characterized by various histologi-
cal subtypes, including urothelial carcinoma, adenocarcinoma,
squamous cell carcinoma, and neuroendocrine carcinoma [3].
Neuroendocrine tumors can develop in several anatomical sites,
such as the sympathetic nervous system, adrenal gland, lung,
pancreas, bladder, and prostate [4]. Regardless of their origin,
neuroendocrine tumors consist of neuroendocrine cells that
secrete bioactive substances and proteins, including somato-
statin, insulin, gastrin, serotonin, and synaptophysin [5].
Histologically, neuroendocrine bladder carcinoma (NEBC) is

classified as small cell carcinoma, large cell carcinoma, or mixed
neuroendocrine carcinoma [6, 7]. Although NEBC is rare, rep-
resenting less than 2% of BC diagnoses, it is an exceedingly
aggressive disease [8]. NEBC is often diagnosed at an advanced
stage, associated with a high metastatic potential and a 5-year
survival rate of less than 10% [9, 10]. Consequently, early diag-
nosis and multimodal treatment strategies are crucial for man-
aging NEBC [11–13]. Currently, NEBC diagnosis lacks a gold
standard, relying primarily on morphological findings supple-
mented by immunohistochemical stains [7]; imaging serves
only as an adjunctive tool and is not essential for definitive
diagnosis [14].

Therapeutically, clinical guidelines for NEBC predominantly
draw from management strategies for urothelial carcinoma and
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other neuroendocrine carcinomas (e.g., small cell lung cancer),
supported by limited high-quality evidence [15]. The scarcity
of NEBC cases in clinical trials further hampers the develop-
ment of innovative therapeutic approaches [10]. In recent years,
immunotherapy has emerged as a significant advancement in
the treatment of urothelial cancer and other neuroendocrine
carcinomas [16]. Among these therapies, immune checkpoint
inhibitors (ICIs), particularly those targeting the PD-L1/PD-1
pathway, enhance T-cell-mediated tumor cytotoxicity, thereby
exerting anti-tumor effects [17]. Our recent study has also
demonstrated the superior efficacy of combined chemoim-
munotherapy in NEBC [18]. However, a comprehensive under-
standing of the molecular and immune mechanisms underlying
NEBC remains incomplete.

This review aims to synthesize current knowledge regard-
ing the molecular and immune landscape of NEBC and provide
translational insights for implementing these findings in per-
sonalized clinical management.

Literature search strategy
This literature review explores recent advancements in the
molecular and immune characteristics of NEBC and their
implications for diagnosis and treatment. We conducted a
search in the PubMed and Web of Science databases for
published English-language articles from January 2000 to
August 2025. The search strategy employed a combination
of keywords, including “neuroendocrine bladder carcinoma,”
“bladder cancer,” “immune microenvironment,” “molecular
features,” “immune checkpoint inhibitors,” and “neuroen-
docrine cancer.” Boolean operators (AND/OR) were utilized to
refine search results.

The origin of NEBC
Common clonal origin hypothesis
Emerging evidence suggests that NEBC and urothelial blad-
der carcinoma (UBC) share a common cellular origin. In
2005, Cheng et al. [19] first proposed this common clonal
origin of small cell carcinoma of the bladder (SCBC) and
UBC at the molecular genetic level. They identified simi-
lar patterns of allelic imbalance and X-chromosome inactiva-
tion between SCBC and coexisting UBC, indicating that these
tumors may arise from undifferentiated, multipotent progen-
itor cells within the urothelium [7, 19]. The heterogeneity of
NEBC presents significant challenges to the accurate immuno-
histochemical identification of large cell NEBC [20]. NEBC and
UBC are frequently observed together during histopathological
examinations [7]. Approximately 40% of SCBC cases have been
documented to exhibit mixed histological components of small
cell and urothelial carcinomas [13]. Furthermore, NEBC and
UBC often share similar somatic mutations within the same
lesion, suggesting a clonal relationship between the two cancer
types [19, 21]. Studies utilizing comparative genomic hybridiza-
tion, next-generation sequencing, and immunohistochemistry
have indicated that urothelial carcinoma may transform into
NEBC through the accumulation of genetic mutations [22, 23].

Shen et al. [24] later demonstrated that the genomic pro-
files of NEBC are comparable to those of conventional UBC.
Notably, both NEBC and UBC exhibit similar carcinogenic
pathways driven by age-related and APOBEC-mediated muta-
tional processes. By comparing genomic data from tumor sam-
ples of 87 SCBC cases to those of 303 high-grade UBC and
149 small cell lung cancers, Chang et al. [22] identified a sim-
ilar histology-specific mutational pattern of somatic RB1 and
TP53 driver mutations in SCBC and UBC, which were absent
in small cell lung cancers. A comparative analysis of 25 BC
cases coexisting with SCBC and non-small-cell phenotypes
in the urothelium revealed an identical somatic mutation in
the TERT promoter across both components [21]. Experimen-
tally, Wang et al. [25] constructed a patient-derived xenograft
model demonstrating that genetically engineered urothelial
cells can give rise to mixed histological subtypes of NEBC and
UBC. Additionally, another study suggested that miR-145 could
induce a stem cell-like phenotype in urothelial carcinoma cells,
promoting their differentiation into neuroendocrine cells by
inhibiting syndecan-1 [26]. A case report from Robert-Bosch
Hospital further illustrated that an invasive tumor developed
within classical urothelial carcinoma in situ, comprising a
mixed tumor of urothelial carcinoma in situ, NEBC, and an
adenocarcinomatous component, with concurrent upregula-
tion of p53 and strong cytoplasmic and membranous β-catenin
staining [27]. Collectively, this evidence supports the hypoth-
esis of a common origin between NEBC and UBC. However,
further preclinical experimental models, particularly organoid
models, warrant exploration to validate this hypothesis, as seen
in studies involving small cell lung carcinoma and neuroen-
docrine prostate cancer [28–32].

Other hypotheses
While considerably less common, alternative theories regard-
ing the origins of NEBC have been proposed. A study utiliz-
ing lineage tracing in a murine model of BC indicated that
fundamental differences in the cell of origin may account for
variations in clinical course, prognosis, and histological mor-
phology, potentially explaining the distinctions between NEBC
and UBC [33]. Additionally, a case study by Olivieri et al.
found that UBC expressed cytokeratin but lacked synapto-
physin expression, while NEBC co-expressed both markers.
This led them to propose that NEBC may originate from the
neuroendocrine system rather than from urothelial cells [34].

Molecular characteristics of NEBC
Emerging evidence suggests that BC ranks among the most
frequently mutated human tumors, following lung and skin
cancers in mutation frequency [35, 36]. This section examines
the critical molecular alterations in NEBC and their potential
implications.

TP53 and RB1
The inactivation of TP53 and RB1 serves as a significant
biomarker for NEBC [37]. Alterations in these genes are
present in nearly 80% of poorly differentiated neuroendocrine
carcinomas [38]. Dysfunction of TP53 and RB1 is associated with
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histological progression to neuroendocrine carcinoma in lung
and prostate cancers [39–42]. Recent studies have reported high
mutation frequencies of TP53 and RB1 in NEBC. For instance, a
study involving 61 SCBC patients indicated mutation frequen-
cies of up to 90% for both genes [22]. Additionally, 80% of SCBC
patients exhibited double mutations in TP53 and RB1. Similar
findings emerged from research conducted by the Johns Hop-
kins Greenberg Bladder Cancer Institute, which documented
mutation frequencies of 92% for TP53, 75% for RB1, and 72%
for concurrent TP53/RB1 mutations in 132 SCBC patients [43].
Another study identified genetic alterations in TP53 and RB1
linked to reduced responsiveness to targeted therapies [24].
Notably, integrative analyses of muscle-invasive BC identified a
neuronal subtype where 10 of 20 (50%) tissues displayed either
both RB1 and TP53 alterations or E2F3 amplification [37]. Fur-
thermore, 17 out of 20 (85%) tumor samples harbored somatic
mutations in the p53/cell-cycle signaling pathway. Interest-
ingly, in cases of UBC, inactivating mutations in TP53 and RB1
were reported in 12% of cases, suggesting these mutations may
be sufficient, but not necessary, for the transformation into
NEBC [44].

APOBEC
The apolipoprotein B mRNA editing enzyme, catalytic
polypeptide (APOBEC) family comprises a group of cytosine
deaminases [45]. Analyses of The Cancer Genome Atlas (TCGA)
data indicate that APOBEC-mediated mutagenesis significantly
contributes to BC carcinogenesis [44]. Conversely, another
study integrating whole-exome sequencing, next-generation
sequencing, and transcriptome analysis suggested that high
APOBEC activity correlates with favorable prognosis, immune
activation, and response to immune-checkpoint blockade in
BC [46]. Specifically, in NEBC, APOBEC-driven mutational
events occur in 95% of SCBC patients, potentially resulting in
a high mutation burden [22]. Our previous study identified
a prevalent APOBEC-mediated subtype characterized by
distinct mutational signatures in NEBC patients [18, 24, 47].
Additionally, Robertson et al. identified a neuronal subtype in
muscle-invasive BC associated with genes mutated alongside
APOBEC activity [37, 47].

TERT promoter
Mutations in the TERT promoter represent a frequent molecu-
lar characteristic of NEBC. One study detected TERT promoter
mutations in 55% (29 of 53) of SCBC cases [21]. Another study
reported that 100% (10 of 10) of NEBC cases exhibited the TERT
promoter C228T mutation [23]. Notably, SCCs from other cancer
types, including prostate, lung, cervix, esophagus, and skin, did
not harbor TERT promoter mutations, highlighting its potential
as a diagnostic biomarker [23, 48]. Furthermore, the common
allele rs2853669 within the TERT promoter mutation was asso-
ciated with reduced overall survival and an elevated risk of
tumor recurrence in BC [49, 50].

Immune features of NEBC
The bladder urothelium is continuously exposed to urinary
carcinogens, such as tobacco-derived compounds, microbiota,

and aromatic hydrocarbons. This ongoing exposure renders
BC a highly immunogenic disease, often characterized by
a high somatic mutation rate and an abundance of tumor
neoantigens [51, 52]. Consequently, BC is particularly amenable
to immunotherapy, resulting in the approval of multiple ICIs
for clinical use [53]. However, the efficacy of immunotherapy
remains limited in a subset of BC patients. Urgent investiga-
tion is warranted to comprehensively characterize the immune
microenvironment of NEBC, identify responsive patient sub-
groups, and develop optimized therapeutic strategies.

Tumor mutation burden (TMB)
TMB, defined as the number of mutations present in a tumor,
reflects the level of neoantigens and the likelihood of T-cell
recognition [54, 55]. A significant association between TMB
and response to immunotherapy has been reported across
various tumor types, including non-small cell lung cancer,
melanoma, and urothelial carcinoma [56–58]. NEBC exhibits
heterogeneous TMB levels. A study of 132 cases of small cell
carcinoma of the bladder and upper urinary tract found that
26% of SCBC samples exhibited TMB ≥ 10 mutations/Mb,
3% had TMB ≥ 20 mutations/Mb, and the median TMB value
was 6.2 mutations/Mb [43]. Another study involving 17 SCBC
patients reported a median TMB of 10.7 (ranging from 1.2 to
41.1) mutations/Mb, significantly higher than observed in other
genitourinary tumors [22]. Furthermore, Shen et al. reported
an average mutation rate of 12.91 (ranging from 0.6 to 41.4)
mutations/Mb in 12 resected genitourinary neuroendocrine
neoplasms derived from the bladder [24]. A meta-analysis
encompassing 27 tumor types demonstrated that the aver-
age response rate positively correlates with the logarithm of
TMB [59]. Importantly, BC with a neuroendocrine-like molec-
ular subtype is among the most sensitive tumors to ICIs, sug-
gesting promising therapeutic efficacy for immunotherapy in
NEBC [60, 61].

Immune infiltration
The tumor immune microenvironment—particularly the
infiltration of CD8+ T cells associated with anti-tumor effects—
enables the classification of NEBC into two (immune-cold and
immune-hot) or three primary immunophenotypes (immune-
inflamed, immune-excluded, and immune-desert) [62–64].
Despite high TMB, NEBC predominantly exhibits an
immune-cold phenotype. Based on transcriptome sequencing
of 24 SCBC cases and 51 UBC cases, Jean Hoffman-Censits et al.
demonstrated that the expression of T-cell-related markers
and inflammatory signaling pathways was suppressed in
SCBC [43]. Another study comparing potential predictors
between 12 SCBC and 69 UBC by immunohistochemistry
concluded that SCBC primarily exhibited an immune-excluded
subtype, which is characterized by the absence of PD-L1
expression and few tumor-infiltrating lymphocytes in the
center of the cancer [65]. Similar findings were reported in
small cell lung cancer research [66]. Chan et al. [67] identified
an immunosuppressive tumor microenvironment in small
cell lung cancer through single-cell sequencing, characterized
by CD8+ T cell exhaustion. The distinct immune-excluded
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Figure 1. Hematoxylin–eosin and immunohistochemistry staining of representative markers for the diagnosis of NEBC. (A) Hematoxylin–eosin
staining of NEBC tissues. Immunohistochemistry staining of GATA3 (B), CGA (C) and SYN (D) in NEBC samples. 10× corresponds to 200 um, and
40× corresponds to 50 um. The images and stains were done following the approval from the Ethics Committee of Ren Ji Hospital (approval code:
KY2022-038-B). The following primary antibodies were used: Anti-CGA (Proteintech, catalog no. 10529-1-AP, 1:500), anti-GATA3 (Proteintech, catalog no.
66400-1-Ig, 1:100), and anti-SYN (Proteintech, catalog no. 17785-1-AP, 1:1000). Abbreviations: NEBC: Neuroendocrine bladder cancer; GATA3: GATA-binding
protein 3; CGA: Chromogranin A; SYN: Synaptophysin.

phenotype of NEBC may compromise the therapeutic efficacy
of monotherapy with ICIs.

Clinical management of NEBC
Diagnosis
NEBC is characterized by an aggressive clinical course, typically
presenting at an advanced stage with a high propensity
for metastasis, resulting in a low overall 5-year survival
rate of 8%–25%. Key negative prognostic factors include age
over 65 years, advanced TNM stage, and metastatic disease
at diagnosis, with tumor stage being the most significant
predictor [3]. The diagnosis of NEBC poses considerable
challenges for both pathologists and clinicians [68]. Currently,
clinical diagnosis primarily relies on pathological morphology
and immunohistochemistry [69]. Small cell neuroendocrine
carcinoma is defined histologically by features such as sheets
and nests of small cells, scant cytoplasm, speckled nuclei, and
indistinct nucleoli [70, 71]. In the urinary bladder, NEBC often
presents as a mixed component of SCBC and non-SCBC [12, 72].
Diagnosing large cell NEBC is considered more challenging
than that of SCBC due to its morphologic characteristics. Large
cell NEBC and mixed NEBC cases frequently exhibit enlarged
nuclei, which may lead to misdiagnosis as high-grade urothelial
carcinoma and delays in appropriate clinical intervention [6].
Distinguishing features between SCBC and large cell NEBC
include larger tumor cells, a lower nuclear-to-cytoplasmic ratio,
and prominent nucleoli in large cell NEBC [73]. Traditional
neuroendocrine markers for NEBC, such as synaptophysin,
chromogranin A (CGA), and CD56, have their limitations. For
instance, CGA demonstrates a lack of sensitivity [7, 74], while
CD56 exhibits high sensitivity but low specificity [75]. A com-
bination of morphologic features and traditional immunohisto-
chemical markers, including GATA3, CGA, and synaptophysin,
is widely employed for NEBC diagnosis in clinical practice
(Figure 1) [70, 74]. However, immunohistochemical staining

may be focal or weak, and often only a few markers yield
positive results. Thus, histomorphology alone may suffice for
diagnosis, as neuroendocrine markers can be negative in 10% of
cases [76]. There is an urgent need for novel diagnostic methods
to enhance accuracy for NEBC. Kim et al. [70] developed a
decision tree model based on synaptophysin, CD117, and GATA3,
achieving 98.4% accuracy in identifying neuroendocrine
differentiation in NEBC. Additionally, insulinoma-associated
protein 1 (INSM1) has emerged as a promising diagnostic
biomarker for neuroendocrine carcinomas across various
anatomical sites, including the uterine cervix, pancreas,
prostate, thoracic cavity, and head and neck, demonstrating
both high sensitivity and specificity [77–80]. After evaluating
INSM1 staining in NEBC, a study demonstrated that INSM1 was
positive in 87% (28 of 32) of cases, highlighting its potential as
a diagnostic tool for NEBC [81]. Moreover, neuronal markers
identified through RNA sequencing or immunohistochemistry
can also be utilized to define the neuroendocrine sub-
type in urothelial carcinoma, as these tumors may not
exhibit the classic morphologic features of neuroendocrine
neoplasms [37, 82].

Treatment
The sensitivity of neoadjuvant chemotherapy (NAC) in NEBC
has been confirmed in reports from various institutions [13, 83].
Recent studies have demonstrated significantly improved
outcomes in SCBC patients receiving NAC, with 5-year
cancer-specific survival rates increasing from 38% to 78% [84].
We summarized prior studies of large NEBC patient cohorts
(Table 1), we found that IA (ifosfamide and doxorubicin)
or EP (etoposide and cisplatin)-based NAC combined with
radical resection resulted in significantly better survival
outcomes than those observed in patients who did not receive
NAC [84–89]. However, for patients with metastatic NEBC
unsuitable for surgery, current treatment options are lim-
ited to EP chemotherapy and radiotherapy for metastatic
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Table 1. Representative studies exhibit the survival outcomes of NAC in NEBC patients

Study (first author) Treatment Number of patients Regimen Downstaging rate* Median survival months 5-year survival rate

Siefker-Radtke [85] RC only 25 NA – 23 (CSS) 36%
NAC+RC 21 IA or EP 57% Not reached 78%

Siefker-Radtke [86] NAC+RC 18 IA or EP 78% 58 (OS) –

Lynch [87] RC only 47 NA – 18.3 (OS) 20%
NAC+RC 48 IA or EP etc. 62% 159.5 (OS) 79%

Vetterlein [88] RC only 144 NA – 17.3 (OS) –
NAC+RC 125 cisplatin-based 15.2% (pCR) 34.7 (OS) –

Alhalabi [89] RC only 38 NA 21.1% 20.6 (OS) 22%
NAC+RC 141 EP or IA etc. 49.5% 86.1 (OS) 57%

Bakaloudi [90] NAC+RC 29 EP or CE or GC – 46 (OS) 41%

*Downstaging rate refers to pathologic stage ≤ pT1N0 proportion at cystectomy; “–” represents unclear data. The study from Vetterlein is a study of
a broader variant-histology cohort, while the other five studies are about NEBC-only cohorts. Abbreviations: RC: Radical cystectomy; NAC: Neoadjuvant
chemotherapy; IA: Ifosfamide plus doxorubicin; EP: Etoposide and cisplatin; CE: Carboplatin and etoposide; GC: Gemcitabine and cisplatin; CSS: Cancer
specific survival; OS: Overall survival; pCR: Pathologic complete response.

Figure 2. Overview of NEBC management: Diagnosis, prognosis, and treatment. Abbreviations: IHC: Immunohistochemistry; NE: Neuroendocrine; EP:
Etoposide and cisplatin; IA: Ifosfamide plus doxorubicin; GC: Gemcitabine and cisplatin; CE: Carboplatin and etoposide; TNM: Tumor-node-metastasis.

lesions [37, 90]. Although these therapies achieve a relatively
favorable response rate, limited progression-free survival
and drug resistance remain prevalent [87, 91]. Given the high
immunogenic potential of BC, immunotherapy, particularly
ICIs, represents a promising therapeutic strategy for various
BC subtypes, including NEBC [92]. A study reported that a
recurrent metastatic NEBC patient responded favorably to
pembrolizumab therapy in the sixth-line setting, with minimal
drug toxicity [93]. Conversely, another retrospective study
indicated that BC patients with neuroendocrine features exhib-
ited shorter overall survival following ICI therapy compared
to those with pure urothelial carcinoma [94]. Furthermore,
our real-world experiences with off-label ICI use suggest that
chemoimmunotherapy—a combination of chemotherapy and
immunotherapy—might provide a therapeutic advantage for

certain NEBC patients compared to chemotherapy alone [18].
Building on these promising preliminary findings, we have
initiated a prospective clinical trial (ClinicalTrials.gov iden-
tifier: NCT06091124; Registration date: November 16, 2023;
Registry: Ren Ji Hospital) to formally assess the efficacy and
safety of neoadjuvant adebrelimab (anti-PD-L1) plus EP in
patients with NEBC. Additionally, novel targeted therapies,
particularly antibody-drug conjugates such as rovalpituzumab
tesirine and sacituzumab govitecan, have shown preliminary
efficacy in small cell lung cancer and NEBC [94–96]. Further-
more, innovative bladder-preserving approaches have been
widely applied in the treatment of muscle-invasive BC. For
instance, our preliminary findings suggest the safety and
efficacy of combining disitamab vedotin with toripalimab
and radiotherapy as a multimodal organ-sparing strategy
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for muscle-invasive BC [97]. As these approaches mature,
their future application in bladder-preserving therapy for
non-metastatic NEBC appears promising. Overall, compared
to other neuroendocrine carcinomas, therapeutic options for
NEBC remain limited. Additional novel therapies should be
evaluated through prospective clinical trials involving NEBC
patients.

Conclusion
Given its aggressive nature and unfavorable prognosis, NEBC
requires prompt clinical intervention (Figure 2). The origin of
NEBC remains unclear and controversial, necessitating further
research to elucidate this phenomenon. Notably, the coexis-
tence of high TMB and immune exclusion in the NEBC microen-
vironment offers novel insights for guiding immunotherapy. A
comprehensive understanding of the molecular characteristics
and an increased number of well-designed clinical trials are
essential for addressing this aggressive subtype of BC.
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