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ABSTRACT

Immunotherapy, a therapeutic strategy aimed at modulating the host immune system,

has undergone rapid evolution over recent decades, particularly in oncology.

Advanced methodologies, including immune checkpoint inhibition, cytokine therapy,

chimeric antigen receptor T-cell therapy (CAR-T), and tumor-infiltrating lymphocyte

therapies, have significantly transformed cancer treatment. This review summarizes

recent advancements in immunotherapy and examines its expanding applications

across a range of diseases, such as autoimmune disorders, infectious diseases,

transplant rejection, and allergic conditions. A structured literature search was

conducted using PubMed and Google Scholar, prioritizing studies published from

2015 to 2026. The findings underscore the efficacy of monoclonal antibodies,

adoptive cell therapies, cytokine modulation, and checkpoint-targeted strategies

beyond oncology. However, challenges remain, including variable patient responses,

immune-related adverse events, and treatment costs. This review also explores the

emerging role of artificial intelligence (AI) in enhancing personalized immunotherapy

through patient stratification, biomarker identification, and predictive modeling. The

integration of multi-omics data with AI presents promising opportunities for

improving treatment efficacy and safety, although issues related to data quality,

interpretability, regulatory frameworks, and ethical considerations must be addressed.

In conclusion, immunotherapy is rapidly extending beyond cancer, and AI-supported

personalized approaches offer a promising pathway to safer, more effective, and

broadly applicable treatments.

Keywords: Immunotherapy, cancer immunotherapy, autoimmune disorders,

infectious diseases, artificial intelligence.
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INTRODUCTION

The therapeutic approach of utilizing the host’s immune system for protection against

a diseased state, either through the initiation, enhancement, or suppression of immune

response is termed immunotherapy. The field of immunotherapy has progressed

tremendously since its inception, particularly with its efficacy in the treatment of

cancer. Currently, immunotherapies are being exploited for countering a variety of

diseases [1].

This review attempts to highlight the progress made in immunotherapy and further

focus on how these advances are currently being explored for devising superior

therapeutics against diverse diseases. Further, the role of AI in conjunction with the

application of immunotherapy and precision medicine has been discussed.

SEARCH METHODOLOGY

A structured literature search strategy was followed in compiling this study. Relevant

studies focusing on the areas of immunotherapy, cancer immunotherapy,

immunotherapy beyond cancer, AI and the intersection of AI and immunotherapy

were screened. Google scholar and PubMed were the databases that were used for

retrieving primary literature. The keywords and Boolean operators encompassed-

“immunotherapy”, “history of immunotherapy”, “immunotherapy AND diverse

diseases -cancer”, “immunotherapy NOT cancer”, “immunotherapy AND artificial

intelligence”, “immunotherapy AND artificial intelligence OR predictive models -

cancer”, “artificial intelligence AND healthcare”, “explainable artificial intelligence”.

No strict inclusion criteria were utilized; however, to get an updated context

preference was given to articles published between 2015-2026. Only articles written

in English were selected. Articles were strictly excluded from the study if they were

not published in a peer-reviewed, indexed journal.

HISTORICAL PERSPECTIVE

Immunotherapy has its origins dating back to 1721, when Charles Maitland

intentionally infected children with low doses of smallpox to prevent them from

contracting the disease [1]; [2]. Research in the mid-19th century brought infectious

diseases into the limelight. However, possibility of a host defense mechanism against

such invaders was not evidenced at that point. Later, the discovery of phagocytic cells
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and antibodies proved the existence of an inherent host defense mechanism [3]. These

discoveries led to the advent of immunology as a distinct discipline [4] (Figure 1).

The dawn of cancer immunotherapy came in the late 19th century, when Busch,

Fehleisen and Coley independently observed tumors to regress in patients post

infection with erysipelas. However, their observations were not paid much attention at

that time [2]; [1]. Cancer immunotherapy regained attention around the mid-20th

century as evidence for the existence of tumor associated antigens was first presented

[5]; [6]; [7]. This was followed by proposition of the immunological surveillance

theory that claimed lymphocytes played a key role in identifying and eliminating

malignant cells [8]; [9]; [10]. The search for antibodies with binding specificity to

malignant cells also began. In 1975, the advent of hybridoma technology spearheaded

therapeutic antibody research and eventually led to the development of rituximab as

the first Food and Drug Administration (FDA) approved monoclonal antibody against

cancer (non-Hodgkin's lymphoma) [11]. A remarkable breakthrough in cancer

immunotherapy came with the discovery of T-cell antigen receptor [12] and Cytotoxic

T-lymphocyte associated protein-4 (CTLA-4) [13]. These discoveries set the stage for

further investigations and ultimately resolved the debate on the feasibility of utilizing

the immune system to fight cancer [14]. Additionally, the discovery of interferon (IFN)

and interleukin-2 (IL-2), led to the development of cytokine-based immunotherapies

[15]. In 1986, IFN-α2 was granted approval by the FDA for treating hairy cell

leukemia, marking the first approval for an immunotherapeutic drug [2].

The 20th century also saw advances in the field of allergen immunotherapy. In 1911,

Leonard Noon recognized grass pollen as the causative agent behind hay fever and

observed the protective effects of its crude extract preparations. Drawing insights

from this work, William Frankland conducted the first randomized, double-blind,

placebo-controlled immunotherapy trial, showcasing the therapeutic efficacy of

subcutaneous grass pollen injection therapy. In the years that followed, allergy shots

became the standard treatment for allergies [16].

BASIC TO ADVANCED IMMUNOTHERAPY

Immunotherapy can have different forms depending on the disease condition (Figure

2). Immunotherapeutics are primarily categorized as immunostimulants e.g. vaccines,

and immunosuppressants e.g. corticosteroids. Cytokine therapy and allergy

immunotherapy are immunomodulating in nature.
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Cancer immunotherapy is the most popular form of immunotherapy; it has been in the

forefront of most advances made in this medicinal field. Most clinically approved,

advanced cancer immunotherapies utilize T cell functions and can be broadly

categorized into two types: modulators of endogenous T cell responses and cellular

therapies [17]. Immune checkpoint inhibitor (ICI) therapy, cytokine therapy, cancer

vaccines and oncolytic virus therapy fall under modulators of endogenous T cell

responses category, while chimeric antigen receptor T-cell (CAR-T) therapy and

tumor infiltrating lymphocytes (TIL) therapy comprise the principal forms of cellular

therapies [18].

Checkpoint inhibitor therapies

Cancerous cells employ cell-surface, immunoregulatory proteins termed checkpoint

molecules to evade the immune system; these proteins inhibit T-cell function. CTLA-

4 and programmed cell death-1 (PD-1) were the first immune checkpoint molecules to

be discovered, leading to the development of anti-cancer therapeutic monoclonal

antibodies (mAbs) called checkpoint inhibitors [19]. mAbs such as anti-CTLA-4, anti-

PD-1 or anti-PD-L1, impede the activity of these immune checkpoints. In 2011, an

anti-CTLA-4 mAb Ipilimumab, became the first FDA approved ICI therapeutic

against advanced melanoma. Since then, over 6 checkpoint inhibitors have been

approved by the FDA as neoadjuvant and/or adjuvant therapies against different

malignancies [20]. Despite their revolutionary impact, checkpoint inhibitor therapy

has some limitations that affects its wider applicability [21]; [22].

Cytokine therapy

Cytokines act as molecular coordinators among immune cells, triggering self-limited,

highly specific immune responses. There are seven different types of cytokine

receptors, and targeting cytokines or their receptors has been at the forefront of

developing anti-cancer therapeutics [1]; [23]. The FDA has approved several

cytokines for treating different malignancies including IL-2 (high dose) for metastatic

melanoma, IFN-α for renal cell carcinoma [24], and IFN-α2a and IFN-α2b for

patients with hairy cell leukemia [1]; [21]. Recently, the combination of BCG with an

IL-15 super agonist termed N-803 received approval for treating non-muscle invasive

bladder cancer [23]; [25].
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Cancer vaccines

Cancer vaccines comprise formulations of whole tumor lysates (either patient’s own

or from another), tumor specific antigens and viral vectors, amongst others. When

administered with adjuvants, these vaccines can trigger anti-tumor immune responses

by activating T cells [21]. In 2010, Provenge (Sipuleucel-T) became the first FDA

approved cancer vaccine for treating prostate cancer [26]. Intravesical BCG indicated

for non-muscle invasive bladder cancer is another FDA approved immunotherapy

[27]. Preventative vaccines against cancers caused by human papillomavirus (HPV)

and hepatitis B virus (HBV) infections are also under clinical use [28]. Numerous

promising vaccine candidates are under different stages of clinical evaluation [29].

Therapeutic cancer vaccines are generally safe and do not cause major side-effects;

but outcomes may vary significantly among individuals [21].

Oncolytic virus therapy

Oncolytic virus therapy is an innovative immunotherapeutic approach, which utilizes

genetically engineered viruses to target and destroy cancer cells. When the genetically

altered viruses are administered into tumors, they cause lysis of cancer cells resulting

in release of tumor antigens. These antigens can activate immune cells, which

subsequently target other cancer cells expressing those antigens. This approach

capitalizes on the fact that cancer cells are more prone to viral infections compared to

normal cells [1]. Various viruses including adenovirus, herpes simplex virus 1,

measles virus, and reovirus have been explored as agents of oncolytic virus therapy

[30]. The first therapeutic oncolytic viral therapy to gain FDA approval was

Talimogene laherparepvec (Imlygic) or T-Vec, which is directed against melanoma

[1]. Several other candidates are currently under clinical trials, for various

malignancies [1]; [30].

TIL therapy

The lymphocytic cell populations that invade tumor tissue are termed tumor

infiltrating lymphocytes. TIL immunotherapy involves isolating TILs from tumors,

followed by their cytokine mediated activation and expansion in culture, and finally

re-administration into the patient. TIL therapy was first tested for the treatment of

Melanoma in the 1980’s. In recent decades the technique has been improved and

extended for treating cervical cancer and other solid tumors. In case of melanoma
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particularly, optimal responses have risen to 50-75% [31], [21]. This increased

efficacy is attributed to patient pre-conditioning and the depletion of lymphoid tissues

[21]. Lymphodepletion helps by reducing the number of regulatory T cells (Tregs)

that suppress immune responses and other endogenous lymphocytes that can compete

with the transferred TILs [32]. Despite the promise, TIL still faces challenges in its

standardization which limits its broader applicability [21].

CAR-T therapy

A cutting-edge immunotherapy where patient derived T lymphocytes are genetically

modified in-vitro to express a chimeric antigen receptor (CAR) on their surface. Post

this the cells are multiplied and administered back into the patient. A CAR comprises

of an extracellular, a transmembrane and an intracellular domain. The extracellular

domain binds to a specific antigen on cancer cells, while the transmembrane and

intracellular domains trigger T-cell activation, leading to destruction of targeted cells

[21]. In 2017, FDA approved Tisagenlecleucel (Kymriah) as the first CAR-T therapy

for treating B-cell leukaemia. Thereafter, 5 other CAR-T cell therapies have received

regulatory approvals from FDA for treating various malignancies [33]. Design of

CARs has evolved to offer enhanced activation, proliferation, and survival potential.

Although later generations of CARs provide superior anti-tumor effects, they also

cause various side effects. Therefore, at present the clinical landscape of this therapy

is currently dominated by the second-generation of CAR-T cells that exhibit

intermediate efficacy [34].

IMMUNOTHERAPY BEYOND CANCER

Surge and the success of cancer immunotherapy has led to an enhanced understanding

of immune homeostasis. The techniques thus developed have equipped researchers

with tools to build novel, efficient therapeutics against other diseases.

Autoimmune disorders

Conventionally, immunosuppressants are preferred for treating autoimmune diseases.

Although immunosuppressants can provide long lasting remission against some

autoimmune diseases, their efficiency often wears off with time [35]. Therefore,

developing novel measures to modulate the immune system for treating different

autoimmune diseases is needed. Technological advancements in immunotherapy, such
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as checkpoint inhibitor therapy, anti-cytokine therapy, anti-T cell therapy etc., have

shown promising results in treating several autoimmune diseases [1].

Anti-PD-1 and anti-CTLA-4 antibodies have been developed for treatment of

autoimmune disorders. The mAb Abatacept is prescribed to treat subtypes of arthritis,

it mimics the action of native CTLA-4 by interacting with co-stimulatory ligands

CD80 and CD86, impeding T-cell activation and ultimately inhibiting immune

response [36]. Abatacept is currently being evaluated for safety and efficacy against

other autoimmune diseases as well [1]; [17]; [37]. Abatacept has been observed to

have a disease modifying effect on Type 1 Diabetes Mellitus (T1DM) in research

studies on individuals recently diagnosed with the disease [38]; [39]. Additionally,

Abatacept has been evaluated for safety and efficacy against systemic lupus

erythematosus (SLE) and multiple sclerosis (MS). However, further research is

required to establish its potency as a therapeutic for these ailments [1]. Belatacept, a

successor of Abatacept that exhibits superior affinity for B7 ligands is also being

clinically evaluated for its therapeutic efficacy against SLE, MS and T1DM [1]; [40].

Additionally, Peresolimab a mAb designed to serve as PD-1 agonist, has shown

promising results in managing Rheumatoid Arthritis (RA) in a phase 2a clinical trial

[41].

Administration of specific cytokines or cytokine antagonists, either alone or in

conjunction with different immunosuppressants, has demonstrated promising results

in managing various autoimmune conditions [1]. The cytokine type and the

therapeutic approach are specific to the pathological profile of the different auto-

immune conditions. The principal cytokine or cytokine directed therapies currently in

use or being investigated for treating autoimmune diseases are briefed in Table 1.

Targeted killing of harmful B cells using mAbs [49]; [17], and the utilization of CAR-

Tregs that express high-affinity T cell receptors (TCRs) to recognize antigens

responsible for triggering autoimmune responses are being tested for therapeutic

efficacy against autoimmune diseases [50]; [51]; [17]. Rituximab is a mAb that binds

to CD20 a cell surface protein on B lymphocytes, mediating the death of these cells

through antibody dependent cell mediated cytotoxicity (ADCC) and/or complement

mediated cytotoxicity. Rituximab is used to treat conditions like RA, SLE, and MS

[52]. Belimumab is a mAb that inhibits the interaction between soluble B-lymphocyte
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stimulator (BLyS) and B cell receptor, this obstructs the activation and survival of

auto-reactive B cells. Belimumab is used to treat SLE [53].

Adoptive Treg cell transfer therapy relies on the immunosuppressive role of Tregs to

accomplish beneficial effects against autoimmune disorders. Adoptive Treg cell

transfer involves isolation of Tregs from patients, their in-vitro expansion and finally

autologous transplantation back to patients. Expansion of Tregs involves transducing

them with an appropriate auto-antigen specific, high-affinity TCR or a CAR. These

engineered, antigen specific Tregs can deliver local immunosuppressive effects upon

being transferred back to the host [54]. This immunotherapeutic approach has shown

promising therapeutic results in several pre-clinical studies against autoimmune

diseases such as MS [55]; [56], SLE [57]; [58] and T1DM [59]; [60]; [61]. Currently,

⁓54 clinical trials are evaluating the therapeutic efficacy of adoptive Treg cell transfer

for different ailments attributed to dysregulated immune responses [54].

Transplant rejection

Immunosuppressive drugs have long been utilized to avert the problem of graft

rejection. However, the use of such immunosuppressants is reported to cause

significant side effects. To avoid these side effects and to curb the low-grade immune

responses that result in delayed allograft loss, there is a need for the development of

novel therapeutics. To this end, a promising approach has been targeting immune

checkpoint pathways involving the cell surface costimulatory molecules. Different co-

stimulatory signaling molecules such as, CTLA-4, CD40, ICOS, OX40, TIM family

and LFA-1 have been examined for efficacy in preventing allograft rejections in pre-

clinical studies. Several leads are currently being tested for clinical efficacy [62]; [63];

[64]. In 2011, Belatacept (CTLA-4-Ig) received FDA approval for usage as an

immunosuppressant for adult, kidney transplant patients [40].

Infectious diseases

mAb based therapies, checkpoint inhibition, manipulation of cytokine levels and T-

cell-based therapies are being explored as alternatives to the conventionally utilized

medications against infectious diseases [63].

Infectious viruses such as Human Immunodeficiency Virus (HIV), Hepatitis B Virus

(HBV), Hepatitis C Virus (HCV) and Epstein-Barr virus are being targeted using

CAR-T therapy. Research on anti-HIV CAR-T cell therapy has seen steady progress
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since its inception in the 1990’s. Three generations of anti-HIV CAR-T cells have

completed safety and efficacy evaluations in clinical trials [66], [67], [65] [68]. The

next generation of anti-HIV CAR-T cells have shown promising results in animal

model studies [68] and have recently entered clinical trials (NCT03240328,

NCT03617198). Figure 3 highlights main features of the different generations of anti-

HIV CAR-T cells. As for the other viral and fungal pathogens, CAR-T therapy

development is still at pre-clinical testing stages [66].

When compared to cancer and autoimmune diseases, development of therapeutic

antibodies against infectious diseases has progressed rather slowly [69]. However,

COVID-19 prompted scientific community to achieve extraordinary accomplishments

in the development, utilization and approval of mAbs against SARS-CoV-2 virus [70].

Many neutralizing mAbs against SARS-CoV-2 were developed using memory B cells

obtained from infected or recovered patients. These designed mAbs target the spike

protein of the virus, which facilitates the virus’s entry into the host cells via binding to

angiotensin converting enzyme-2 (ACE2) receptor [69]. Several of these received

emergency use authorization (EUA) and proved to be crucial in treating COVID-19.

However, the emergence of new COVID-19 variants dampened their efficacy.

Laboratory evaluations revealed that some variants could avoid neutralization by

mAbs. Subsequently, FDA ended the EUA and placed limitations on the use of

several existing anti-SARS-CoV-2 mAbs and/or their combinations [71].

Previously, the FDA has approved the use of mAb therapy against ebolavirus disease

(EVD) [72], HIV-1 [73]. The mAbs Nirsevimab and Palivizumab are used as

prophylactics against Respiratory Syncytial Virus (RSV) [74]. Additionally, several

candidate antibodies against EVD, HIV, Influenza, HCV, HBV, Zika and Dengue are

currently under investigation for safety and efficacy [75]; [76]; [69]; [65]. Most of

these anti-viral antibodies are receptor targeted and disrupt the binding and entry of

viruses into host cells. In recent times, broadly neutralizing antibodies (bNAbs) are

gathering significant attention due to their enhanced anti-viral potency against

genetically diverse strains of HIV and Influenza.

The FDA has also approved mAbs for treating bacterial infections, Table 2. Several

new candidates have recently entered clinical trials, and others are at pre-clinical

levels of development [77]; [78]. The main targets of these anti-bacterial mAb’s are-
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neutralizing toxins, membrane proteins, surface glycans or glycoconjugates and

biofilm components.

mAb therapy is also being evaluated for efficacy against parasitic infections such as

malaria, trypanosomiasis, schistosomiasis and leishmaniasis, amongst others [81].

Several candidate mAbs for the treatment of malaria are currently being reviewed for

their safety and efficacy. CIS43LS, a mAb against Plasmodium falciparum has

demonstrated promising results in phase I clinical trials [82]; [83]. Another mAb

against malaria, termed as TB31F acts by binding the P. falciparum gamete surface

protein Pfs48/45, thus impeding parasite progression and subsequent transmission.

TB31F has been evaluated in a phase I clinical trial and proved to be safe and

efficacious as a P. falciparum transmission blocking mAb (NCT04238689) [84].

Checkpoint molecules are vital for upholding self-tolerance in healthy individuals, but

they often turn rogue under diseased conditions. Upregulated expression of immune

checkpoint molecules results in T cell exhaustion, evidenced in chronic infectious

diseases such as HIV, malaria, hepatitis and tuberculosis. This has led to an interest in

exploring the efficacy of checkpoint inhibitor therapy as a safeguard against such

infectious diseases [85].

Several pre-clinical studies report inhibition of checkpoint signaling results in

elevated T cell responses against HIV [86]; [87]; [18]. In recent years, clinical studies

have corroborated the same, through the utilization of anti-cancer mAbs for mediating

immune checkpoint blockade [85]; [88]. A phase I trial (NCT02028403) involving

HIV patients on suppressive ART, inspected the effects of anti-PD-L1 antibody BMS-

936559. It found HIV-specific CD8 T cell responses to be boosted in subjects

receiving the treatment, also no severe immune-related adverse events (irAEs) were

reported. However, BMS-936559 did not impact the viral load, but was observed to

be safe with no severe immune-related adverse events (irAEs) reported. This could be

attributed to the single, low dose administration mode followed in this study [89].

Further evaluations with an optimized dosing regimen would be necessary for

determining BMS-936559’s therapeutic role. Additionally, another PD-1 receptor

blocking mAb Budigalimab was found to be protective against HIV, in recently

completed clinical trials (NCT04223804, NCT04799353). Budigalimab was
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efficacious in delaying HIV rebound in participants with interrupted ART; detailed

results from this clinical trial are yet to be published.

Blockade of checkpoint molecules is also reported to augment CD8 T and CD4 T cell

responses against HBV [85]. In separate clinical studies, the PD-1 directed mAb,

Nivolumab was efficacious in decreasing HCV and HBV load in infected individuals

[90]; [91]. A recent clinical trial with dual checkpoint blockade of PD-1 (Nivolumab)

and CTLA-4 (Ipilimumab), in patients with advanced hepatocellular carcinoma

(with/without hepatitis B or C) observed no significant difference in overall survival

amongst patients. However, the incidence of adverse events was observed to be higher

than that formerly associated with nivolumab monotherapy [92]. Another clinical trial

examining the effect of Ipilimumab treatment in advanced melanoma patients positive

for HBV and/or HCV infection has recently been completed and results from the

same are awaited (NCT02402699). Overall, currently available evidence points to

Nivolumab being safe against chronic HBV/HCV infection. However, more clinical

studies are required to validate the efficacy of immune checkpoint blockers like

Nivolumab in inducing HBV/HCV remission.

Examination of immune checkpoint blockade therapy against tuberculosis has yielded

varied results, depending on the checkpoint molecule being targeted. Mycobacterium

tuberculosis infected PD-1 knockout mice are significantly prone to developing

elevated mycobacterial loads and overall fatality [93]; [94]. Reportedly, cancer

patients undergoing anti-PD-1/PD-L1 blockade immunotherapy develop atypical M.

tuberculosis infections [93]; [95]. However, contrasting results have been obtained in

animal studies where TIM3 and LAG3 checkpoint function was blocked. Blockade of

TIM3 in mice with chronic M. tuberculosis infection, was found to enhance T-cell

function and significantly control bacterial growth [96]. Likewise, silencing LAG3

expression in a co-culture model comprising CD4 T cells and differentiated macaque

macrophages infected with M. tuberculosis, triggered T-cell activation and revoked

regulatory T-cells induced suppressive activity [97]. This disparity is likely a

consequence of the baseline immune status of the host as evidenced in pre-clinical

research and clinical studies on cancer patients being treated with ICIs [98]. In

seriously immunocompromised hosts, immune checkpoint inhibition successfully

counters mycobacterial infection. Whereas application of ICI therapy in

immunocompetent hosts results in a hyperinflammatory state and worsening control
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over bacterial levels [99]. These findings demand testing for a more personalized

immunotherapy approach against tuberculosis infection.

Checkpoint blockade has also been investigated as a therapeutic strategy against

protist infections, albeit only in animal models. Leishmania amazonensis infected

mice treated with anti-PD-1 and anti-PD-L1 presented remarkably lower levels of

parasite; however, blockade of PD-L2 did not deliver the same results [100]. This is

likely to be a consequence of the varied mechanisms by which PD-L1 and PD-L2

control immune responses during infection with Leishmania sp. [101]. Being a

chronic infection, leishmaniasis has numerous immunoregulatory features in common

with cancer. Like a one size fits all approach does not work in cancer and specific

combinations of ICI’s are required for obtaining an optimal response; similarly, fine-

tuning of different checkpoint inhibitory pathways is suggested to offer better

outcomes against Leishmaniasis [102].

The possibility of using ICI therapy against malaria has been tested in several animal

model studies. Currently, the case made for efficacy is not considerable enough to

neglect the safety concerns posed, as summarized below. Butler et al. observed mAb

mediated dual checkpoint blockade of PD-L1 and LAG3 to increase the clearance of

Plasmodium yoelii via enhanced CD4 T cell function and humoral immune response

in C57BL/6 mice [103]. Likewise, Hou et al. observed that lymphocyte activity is

reinstated upon blocking TIM3-signalling in cultured PBMC’s isolated from patients

infected with P. falciparum. Furthermore, they observed increased clearance of P.

berghei, in infected C57BL/6 mice [104]. In contrast, blockade of PD-L1/ CTLA-4

checkpoint pathways in BALB/c mice had no effect on parasitaemia and led to

enhanced T cell activation and IFNγ levels which made the mice vulnerable to

develop cerebral malaria [105]. Future investigations are required to understand

whether these varied findings stem from differences in the checkpoint pathway

targeted, the animal model used in experimentations and/or species level differences.

Allergies

The last few decades have witnessed an increased prevalence of allergic diseases, a

consequence of the changing environment as well as socio-economic status [106].

This has presented a significant public health burden, and it demands devising novel
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therapeutics. To this end, advances made in immunotherapy are being explored for

their safety and efficacy [107].

Allergic reactions are the aftermath of a predominant T helper type 2 (Th2) immune

response, arising due to the disrupted balance of Th1, Th2, and Th17 immune

functions. Th2 immune responses are steered by IL-4 and IL-13 cytokines, which

makes them attractive therapeutic targets against such diseases [108]. Consequently,

antagonists of these cytokines such as the synthetic peptide Pitrakinra have been

developed and tested for their efficacy. However, Pitrakinra demonstrated only

limited efficacy in Phase2b clinical evaluations in patients with allergic asthma and

did not proceed to further stages of drug development [109]. The focus has since

shifted towards developing alternative antagonists of IL-4/IL-13 such as mAbs, and

CAR-T cell therapy [108].

mAb therapy for alleviating allergic reactions involves disruption of cytokine

signaling or targeting of soluble or membrane bound IgE, the key mediators of an

allergic response [110]. Several mAbs against allergic reactions are currently

available for use [107].

Omalizumab is an FDA approved humanized anti-IgE mAb utilized for treating

moderate to severe allergic asthma. Additionally, Omalizumab has shown positive

influence against other diseases like seasonal allergic rhinitis and chronic urticaria

[110]. Recently, it became the first FDA approved medicine for treating IgE mediated

food allergies [111]. Ligelizumab is another IgE directed mAb, which proved to be

more efficacious than Omalizumab in the management of symptoms associated with

asthma as well as spontaneous urticaria [112]. Recently, phase III evaluations

(NCT03580356) of Ligelizumab for the treatment of moderate-to-severe chronic

spontaneous urticaria concluded that it was less efficacious than Omalizumab in

managing the disease [113]. UB-221 is another IgE directed mAb candidate that has

demonstrated promising results in relieving symptoms associated with chronic

spontaneous urticaria [114].

Dupilumab is an IL4-Rα directed mAb that functions by disrupting IL-4/IL-13

signaling. It has been approved by FDA for the treatment of moderate to severe atopic

dermatitis in adults and also as an adjunct therapeutic in asthmatic patients above 6

years of age [115]; [116]. Furthermore, Dupilumab has delivered promising results
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against chronic rhinosinusitis with nasal polyposis and allergic rhinitis [110].

Tralokinumab is the first FDA authorized IL-13 directed mAb, used for treating

atopic dermatitis in adults [117].

In recent times, CAR-T therapy has been tested in several pre-clinical studies for the

management of allergic asthma by targeting dysregulated Tregs. This mechanism is

responsible for the predominant Th2 immune responses that drive allergic diseases. In

mice, directing Tregs towards the inflamed airways proved efficacious in the

management of allergic asthma [118]. T cells Redirected for Universal Cytokine-

mediated Killing (TRUCKs), represent the fourth generation of CAR-T cells that

secrete specific cytokines. Using asthma specific biomarkers, TRUCKs can be

directed to inflammatory sites where they can secrete cytokines like IL-12 that

promote the proliferation of Th1 cells while suppressing Th2 immune responses [119].

Additionally, the approach of targeting IgE producing cells has been explored. This

can result in long-term suppression of IgE levels and likely improve treatment

outcomes for patients with severe allergic diseases. The transmembrane form of IgE

(mIgE) expressed by all IgE producing cells, serves as a suitable target for recognition.

Recently, Ward et al. generated CARs expressing the extracellular domain of FcεRIα

(a high affinity IgE receptor) for mIgE recognition. These CAR-T cells specifically

detected the immune cells expressing mIgE and excluded those that captured secreted

IgE (mast cells, basophils, and eosinophils) [120]. FcεRIα-based CAR-T cells that

additionally express the co-stimulatory domains 4-1BB and/or CD28 are a promising

prospect for developing adoptive T-cell therapy for allergic diseases [119].

Type 2 innate lymphoid cells (ILC2s) play crucial roles in the development of Th2

immune response, these cells produce cytokines in a non-allergen specific manner

[106]. ILC2s are activated by allergen induced, epithelial-derived cytokines such as

IL-33 and thymic stromal lymphopoietin, and interactions with lymphocytes and

dendritic cells [121]. Relative to T and B-cells facilitated allergic response, ILC2-

mediated response is rapid and independent of antigen stimulation. Reversing the

blockade of certain immune checkpoint molecules on ILC2S is being explored for

potential therapeutic efficacy against allergic diseases. Recently, strategies like cross-

linking immune checkpoint molecules [121], or using agonists of checkpoint

molecules such as PD-1 for activating inhibitory pathways [122], [106] have been
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reported in pre-clinical studies to suppress the process of allergic inflammation. These

can be further investigated for their safety and efficacy in humans.

OVERCOMING IMMUNOTHERAPY ROADBLOCKS THROUGH AI-

DRIVEN PERSONALIZED APPROACHES

Immunotherapy is not uniformly efficacious in alleviating the diseased state, in all

patients [123]; [124]. Another common complication is the development of irAEs

[125]. irAEs are the result of enhanced activation of immune system, mostly

inflammatory in nature. irAEs are usually treated with steroids; however, in some

cases irAEs take a more aggressive form [17]. As interest in implementation of

advanced immunotherapeutic approaches grows, there is a compelling need to

identify patients that will benefit the most from immunotherapy without developing

untreatable irAEs and thus avoiding unnecessary health care costs [1].

The therapeutic efficacy of immunotherapy is determined by a complex interplay of

factors, or a patient’s immune landscape [126]; [127]; [128]; [129] and our

understanding of these is still in initial stages. Techniques such as- epigenetic

profiling, proteomics, single-cell transcriptomics, T cell receptor (TCR) repertoire

analysis, and high-dimensional imaging of immune cells, amongst others are being

utilized to develop insights into the intricate nature of this immune landscape [17]. In

this way identification of specific signatures or biomarkers can aid the clinicians in

anticipating immunotherapy outcomes.

In case of cancer, the immune landscape is primarily shaped by the expression of

checkpoint molecules, tumor immunogenicity (mutational burden and antigen

presentation) and tumor microenvironment [126]; [130]; [131]; [132]. Additionally,

genetics, epigenetic modifications and gut-microbiome have also been observed to

influence immunotherapy outcomes especially in case of ICI therapy [130].

Research on identification and validation of potential biomarkers for predicting

sensitivity to cancer immunotherapy has remained largely focused on application of

ICI therapy. Currently, the FDA has approved three biomarkers- microsatellite

instability, PD-L1 expression and tumor mutational burden (TMB) for predicting

response to ICI therapy [133]. However, in diverse clinical settings neither of these

biomarkers have been observed to persistently correlate with treatment efficacy. This

is primarily attributed to factors such as tumor heterogeneity and temporal variability
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[134]. In comparison, research on predictive biomarkers for irAEs is still in its early

stages and at present there are none that are widely accepted or validated for use

under clinical settings [135].

Research on predictive biomarkers against autoimmune diseases such as RA, MS and

allergies has also advanced. Presently, there are no biomarkers that are authorized for

routine use in a clinical set-up [136]; [137]; [138]. However, several lead biomarker

candidates have emerged Table 3.

It is increasingly becoming evident that a single biomarker is unlikely to yield an

accurate estimate of the response to immunotherapy [130]. Tailored treatments

specific towards a patient's characteristics and immune status can yield better

outcomes and prevent unnecessary risks. Advancements in genomic sequencing and

immune profiling techniques have endorsed personalized approaches to

immunotherapy. These approaches aim to predict patient responses to

immunotherapies like checkpoint inhibitors; identifying neo-antigens and developing

novel antibodies [158]; [159]. The successful integration of sequencing information

and AI in predicting immunotherapy outcomes in cancer patients has been witnessed

through several research studies.

Analyzing somatic mutations such as base substitutions, rearrangements, insertions

and deletions (indels) in combination with AI techniques demonstrated potential in

predicting PD-1 ICI outcomes [160]; [161]. Likewise, transcriptomics or RNA

sequencing data in conjunction with machine learning (ML) has facilitated the

identification of responders from non-responders and elucidating the mechanisms

employed by tumors in developing resistance to immunotherapy, against diverse types

of cancer [162]; [163]. A deep learning model developed on specific TCR repertoire

sequences in combination with Human leukocyte antigen (HLA) typing enabled

patient stratification and predicting response towards ICI therapy in melanoma

patients [164].

Currently, multi-omics profiling of tumor and/or tumor microenvironment (TME) is

receiving significant interest for identification of novel biomarkers for cancer

immunotherapy [124]; [134]. Complexity of the data being obtained makes it

implausible to capture intricate signals across these data sets by human experts;

however, AI encapsulates this information remarkably [124]. Following a multi
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modular approach with AI models built and trained on multi-omics datasets can

provide a more comprehensive, accurate, and clinically useful framework for

prognostic modelling in immunotherapy [159].

Table 4 summarizes some research studies focused on developing predictive AI

models for examining the success of immunotherapy across different diseases. As is

evident omic datasets are widely utilized in model construction either alone or in

combination with other biological information. Prognostic AI models built on routine

clinical information that is relatively easy to access and cost effective to obtain, have

also been observed to perform at par with multi-omics-based AI models. However, for

gaining an in-depth explanation or basis for the predictions made reliance on

sequencing information is perceived [165]. Moreover, the performance of models

built using a multi-modular approach is observed to be more reliable. Therefore, for

efficient predictions and user adoption of predictive AI models, utilization of omics as

well as real world clinical data for model construction is important. Currently ICI

therapy remains at the forefront of most multi-omics ML models developed for

predicting immunotherapy outcomes against cancer. However, much recently there

has been interest in exploring the power of ML and multi-omics for interpreting the

TME in the context of CAR-T cell therapy for treating solid tumors [181].

Based on their explainability, AI-ML algorithms can be broadly demarcated into

transparent or opaque categories. Transparent algorithms offer end-to-end

interpretation but are not as adept as opaque algorithms in handling complex tasks

with greater accuracy. K-Nearest Neighbors, Naive-Bayes, Logistic Regression (LR)

and Decision Trees are some examples of transparent algorithms; while Random

Forests (RFs), Support Vector Machines (SVMs) and Deep Learning (DL) methods

such as Convolution Neural Networks (CNNs) and Multilayer Perceptron (MLP)

represent some opaque algorithms [201].

Wider user adoption of AI-ML prognostic tools necessitates gaining the trust of

clinicians, for which AI decision systems need to be thoroughly validated and made

understandable. Achieving superior prediction ability requires simultaneous

assessment of multiple biological parameters, which demands the utilization of

complex or ensemble ML methods. This makes the tools opaquer and their decision-
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making process unclear. Achieving the balance between explainability and accuracy

of AI systems is therefore essential [201].

Now, while clinicians do not always need to fathom the complete algorithm, they

must understand how biological underpinnings drive the decision-making process.

Several methods have been developed for making ML models more interpretable

which are briefly discussed here. One approach for making ML models explainable is

performing post-hoc analysis, where information is extracted without precisely

focusing on internal processing. In this approach, most methods are model-agonistic,

implying they are applicable for a variety of models and do not essentially access the

internal model structure. There are also methods that are model-specific, catering only

to particular ML algorithms; these yield more precise interpretations. Additionally,

ML explanation methods can be classified based on whether they yield explanations

for individual samples (local), or for the working of the model at an abstract level

(global interpretation) [202]. Shapley Additive Explanations (SHAP) and Local

Interpretable Model-Agnostic Explanations (LIME) are widely used interpretability

methods in the healthcare-AI sector, they have also been utilized for developing

explainable AI models for immunotherapy outcome prediction [168, 169, 165, 203,

204].

CHALLENGES AND OPPORTUNITIES

Advances in immunotherapy and the expanding accessibility of AI and ML

algorithms are transforming treatment scenarios for a range of diseases and

facilitating precision medicine. However, the synergy of these fields is currently in the

stages of infancy, with its wider implementation facing challenges such as data

privacy and security, algorithmic bias and integration into clinical workflows.

Data quality and quantity

Data bias can be problematic in arriving at a generalized AI model. The development

of robust ML models requires large cohort sizes and thorough profiling of patients;

this demands huge financial investments and collaborative efforts [189]. Currently,

most AI models are limited in accuracy due to the unavailability of larger

comprehensive datasets and/or lack of validation in large clinical trials [189]; [159].

Recent studies aim to address these challenges by using training data from several
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centres and deployment of transfer learning algorithms. Nevertheless, biases in

funding, resource allocation, ethnic disparity etc. can persist [190]; [191]; [192].

Model interpretability

The “black-box nature” of AI models wherein explanations for the internal analytical

processes are not understandable, presents a significant hurdle to their wider adoption

[159]. This is especially true in healthcare where decision-making is risk-intensive,

and patient’s consent is impacted by knowledge of the operable inherent mechanisms

[193]. As outlined above, response to immunotherapy depends on several

interconnected and varying parameters making the data non-linear and complex. This

multidimensional information is interpreted using ML and DL algorithms such as

CNN’s and the nuances involved are not always comprehensible, especially to non-

experts. Moreover, it is challenging to deliver explanations for model workflow in a

manner that is understandable, without relinquishing the accuracy factor [194]. An

understanding of the decision-making process is likely to facilitate wider adoption of

such predictive models in clinical practice [192]. To this end, a promising solution

can be implementation of explainable AI (XAI) approaches wherein every step of the

ML process is traceable with explanations [159]. However, the debate on explainable

AI as a solution to the “black-box problem” is still not settled. This is mainly because

of the varied concerns this issue presents to the different stakeholders involved in the

process, namely developers, clinicians, patients and regulatory authorities (193), (194).

Regulatory framework and ethical aspects

As of now, regulations governing the usage of AI in healthcare are still at a nascent

stage of development. Currently, AI applications in healthcare are majorly being

governed under regulations of the software as a medical device (SaMD) criterion, put

forth by the international medical device regulators forum (IMDRF) and the FDA

[195]. Recently, principles for good machine learning practice (GMLP) have also

been released by IMDRF. These can serve as a foundation for further advancing

GMLP standards through co-operation amongst different international standards and

regulatory organizations.

Additionally, there is the recently enacted European Union (EU) AI Act, which is the

world’s first thorough legal framework on AI. EU AI act is likely to drive changes in

the AI based healthcare technology sector at an international level, as it establishes
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benchmarks for the development and utilization of AI. This act is significant to the

healthcare sector as it specifically covers medical AI technologies, unlike other

existing regulations [196]. According to provisions of this act, prognostic AI models

such as those for predicting immunotherapy outcomes, are classified as “high risk”.

This obligates developers to present model interpretability reports and longitudinal

safety data to assess their clinical feasibility [196], [197].

AI tools face serious accountability issues due to their “black-box nature” and

propensity to be built on biased inputs, which can result in biased outputs [198]. In

scenarios where AI assistance results in unintentional harm to patients, onus should

not lie solely with the clinicians but also with the manufacturers of the AI tool, the

clinician’s organization and the healthcare system at large. To address the unforeseen

challenges posed by the application of AI in healthcare, it is important that current

healthcare ethical guidelines are revaluated [199].

Another major ethical concern is that of data confidentiality and security. AI tools are

trained on extensive and sensitive patient information, un-intended and un-authorized

access to this data can potentially favour certain stakeholders and impact patient

interests. It is imperative that patient interests are protected by reinforcing robust

security measures and adherence to regulatory laws [192].

CONCLUSION

The term immunotherapy is often associated with cancer; but it is now rapidly being

explored to treat several other diseases such as asthma, MS, arthritis, HIV and

tuberculosis etc. Although the overall results from such explorations have been

encouraging, the setbacks identified from the clinical application of novel

immunotherapeutics in treating cancer must be considered, along with the associated

high cost. To ensure immunotherapy is safe, efficacious, and ultimately successful in

its application across the wide spectrum of diseases, following a personalized

approach is essential. Personalized immunotherapy is being supported by advances in

omic profiling, biomarker identification and development of prognostic models, the

latter two of which are enabled by AI. Concerningly, the pace of advances happening

in AI is not at par with the establishment of regulatory frameworks. This imbalance

along with issues such as interpretability, quality (data bias), and ethics poses a

formidable barrier to the application of AI across healthcare. Overcoming these
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barriers would require collaborative efforts from clinicians, research scientists,

developers, regulatory agencies and policy makers.

In sum, this article presents a broad overview of how immunotherapy is being utilized

or examined for treating ailments other than just cancer. It further dwells on how AI

can assist the wider implementation of immunotherapy and the challenges associated

with it. However, the article has limitations due to its narrative nature and the lack of

a standardized methodology or quality appraisal process followed in its framework.
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TABLES AND FIGURES WITH LEGENDS

Table 1. Cytokine therapy and cytokine-directed therapy for autoimmune diseases

S. No. Cytokine therapy/

targeted cytokine

Autoimmune

condition

Mechanism of action Clinical status References

1 Low Dose IL-2 therapy GvHD, SLE, T1DM confer Tregs with a

competitive advantage

leading to high Treg:Teff

ratios.

Under investigation [42]; [17]; [43]

2 IFN-β therapy MS upregulation of Th2 anti-

inflammatory response

while dampening the pro-

inflammatory Th1/Th17

response

Approved [44]

3 IFN inhibition

(Anifrolumab)

SLE complete blockade of type I

IFN pathway leading to

reduced inflammatory

damage

Approved [45]; [46]

4 TNF-α inhibition Psoriasis and blocking the pro- Approved [47]
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different forms of

arthritis

inflammatory action of

TNF-α

5 IL-1 inhibition (Anakinra,

Canakinumab)

RA and Juvenile

idiopathic arthritis

(JIA)

binds to IL-1 receptor thus

inhibiting the activity of

inflammatory IL-1 α and β

cytokines

Approved [47]

6 IL-6 inhibition

(Tocilizumab, Sarilumab)

RA, JIA, SLE binds to IL-6 receptor/ IL-6

thus inhibiting the

inflammatory action of this

cytokine

Approved (RA, JIA);

under investigation

(Tocilizumab for SLE)

[47]; [1]; [48]

7 IL-17 inhibition

(Ixekizumab,

Secukinumab,

Brodalumab)

Psoriasis, Psoriatic

arthritis, ankylosing

spondylitis, SLE

binds to IL-17/ IL-17

receptor thus inhibiting the

inflammatory action of this

cytokine

Approved (Psoriasis,

Psoriatic arthritis,

ankylosing

spondylitis); under

investigation

(Secukinumab for

SLE)

[47]

8 IL-23 inhibition

(Ustekinumab,

Guselkumab,

Risankizumab,

Psoriasis binds to IL-23 leading to

disruption of its

inflammatory signalling

pathway

Approved [47]
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Tildrakizumab)

Abbreviations: GvHD: Graft-versus-host disease; SLE: Systemic lupus erythematosus; T1DM: Type 1 diabetes mellitus; Treg:

Regulatory T cell; Teff: Effector T cell; IFN: Interferon; IFN-β: Interferon-beta; MS: Multiple sclerosis; Th1: T helper 1 cell; Th2: T

helper 2 cell; Th17: T helper 17 cell; TNF-α: Tumor necrosis factor-alpha; RA: Rheumatoid arthritis; JIA: Juvenile idiopathic arthritis.

Table 2. Monoclonal antibodies developed as therapeutics for infectious diseases

S. No. Pathogen mAb Regulatory

status

Reference

1 Virus

SARS-CoV-2 Bamlanivimab, Bamlanivimab and Etesevimab,

Casirivimab and Imdevimab, Sotrovimab

Received EUA

which was later

revoked by FDA

[70]

Ebola Virus Ansuvimab (mAb114), Inmazeb FDA-approved [72]

RSV Nirsevimab, Palivizumab FDA-approved [74]

HIV-1 Ibalizumab FDA- approved [73]

2 Bacteria

Bacillus anthracis Raxibacumab, Obiltoxaximab FDAApproved [79]

Clostridium difficile Obiltoxaximab FDAApproved [80]
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Abbreviations: mAb: Monoclonal antibody; EUA: Emergency use authorization; FDA: Food and Drug Administration; RSV:

Respiratory syncytial virus; HIV-1: Human immunodeficiency virus type 1.

Table 3. Candidate biomarkers for predicting immunotherapy outcomes in autoimmune diseases

S. No Disease Candidate biomarker Biomarker type Biomarker

relevance

Clinical implementation Reference

1 RA Anti-CCP and RF Protein Diagnostic and

Prognostic

Clinically utilized

diagnostic biomarker;

Investigational prognostic

biomarker (tested in

small/moderate sized

cohorts)

[139]; [140]; [141];

[142]

2 RA HLA-DRB1*01, HLA-

DRB1*04,

HLADRB1*10 and

HLA-DRB1*14:02.

Genetic Prognostic Investigational (tested in

small cohorts)

[143]; [144]; [142]

3 MS NFL Protein Prognostic Investigational (tested in

large and small cohorts)

[145]; [146]; [147];

[148]
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4 MS GFAP Protein Prognostic Investigational (tested in

small cohorts)

[149]

5 MS CXCL13 Protein

(Chemokine)

Predictive and

Prognostic

Investigational (tested in

small cohorts)

[200]

6 MS CHI3L1 Protein Prognostic Investigational (tested in

small cohorts)

[150]

7 Asthma IgE Humoral Diagnostic,

Prognostic and

Predictive

Clinically utilized

diagnostic biomarker;

Investigational prognostic

biomarker (tested in

small/medium cohorts)

[138]; [151]

8 Asthma Eosinophil count Cellular Diagnostic,

Prognostic and

Predictive

Clinically utilized

diagnostic biomarker;

Investigational prognostic

biomarker (tested in small

and large cohorts)

[152]; [153]; [154];

[155]

9 Asthma FeNO Metabolic Diagnostic,

Prognostic and

Predictive

Clinically utilized

diagnostic biomarker;

Investigational prognostic

and predictive biomarker

[156]; [157]; [155]
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(tested in large cohort)

Abbreviations: RA: Rheumatoid arthritis; Anti-CCP: Anti-cyclic citrullinated peptide; RF: Rheumatoid factor; HLA-DRB1: Human

leukocyte antigen DR beta 1; MS: Multiple sclerosis; NFL: Neurofilament light chain; GFAP: Glial fibrillary acidic protein; CXCL13: C-

X-C motif chemokine ligand 13; CHI3L1: Chitinase-3-like protein 1; IgE: Immunoglobulin E; FeNO: Fractional exhaled nitric oxide.

Table 4. Representative prognostic AI models for predicting immunotherapy outcomes in cancer and autoimmune diseases, along

with their key features

Input dataset Outcome AI model Validation Performance

metric

Model

interpretability

Disease

Cancer Allergy RA T1DM MS

Omics Distinguishes

responders from

non-responders for

anti-PD-1 therapy

against skin cancer

10 Different

models;

multilayer

perceptron

neural network

and AdaBoost

were observed

to be most

accurate

Internal 96.7% testing

accuracy for

basal cell

carcinoma

and 60.7%

testing

accuracy for

melanoma

Moderate [162]
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Predicts success of

anti PD/PD-L1

therapy in NSCLC

patients

Convolutional

neural network

(CNN),

logistic

regression,

support vector

machine

(SVM), and

random forest

(RF) models

External

cohort

Area under

the curve

(AUC) in the

range of

0.959-0.965

for the

different

models

Moderate [160]

Predicts success of

anti PD/PD-L1

therapy

9 Different

models; Least

Absolute

Shrinkage

and Selection

Operator

(LASSO)

offered the

highest

prediction

performance

Internal AUC of 0.93 High [161]
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Distinguishes

Responders from

Non-Responders

for ICI therapy

SVM,

XGBoost and

Deep Neural

Networking

External

cohort

(leave-

one-out

cross

validation)

Accuracy of

100%

Moderate [163]

Enables patient

stratification and

predicts success of

ICI Therapy

CNN,

variational

autoencoders,

and multi-

instance

learning

algorithm

External

cohort

AUC of 0.86 Moderate [164]

Multi-omics Enables a

consistently

effective

therapeutic strategy

REFLECT:

combination of

sparse

hierarchical

clustering and

LASSO

algorithm

In-vitro

cell lines,

patient-

derived

xenografts

and

clinical

trial data

Average

concordance

of 83%

High [166]
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Predicts the

efficacy of different

anti-cancer

therapeutic

regimens

StepCox

(forward) + Ri

dge algorithm

Multiple

external

datasets

and

previously

published

models

AUC >0.65 High [167]

Predicts success of

anti-PD-1 therapy

LASSO

regression

Internal AUC in the

range of

0.62-0.64 for

the different

models

High [168]

Predicts response

to Adalimumab and

Etanercept in RA

patients

RF-MLModel Internal Models

displayed

accuracy in

the range of

72-88%

Moderate [169]

Immune cell

profiling

Enables

stratification of

T1D patients into

responders/non-

Gradient

boosting

model

Internal

and

External

AUC of 0.81 Moderate [170]
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responders w.r.t

Abatacept

treatment

Clinical

Parameters

Predicts outcome

of subcutaneous

immunotherapy in

paediatric allergic

rhinitis patients

Binary

improved sine

cosine

algorithm

(birSCA)-

SVM

algorithm

Internal Accuracy of

88.99%

Moderate [171]

Predicts the

efficacy of mite

subcutaneous

immunotherapy in

asthma

Disperse

Foraging

Strategy Salp

Swarm

Algorithm-

Kernel

Extreme

Learning

Machine

(DFSSSA-

KELM)

Internal Accuracy of

87.18%

Moderate [172]



58

Predicts a disease

activity score for

RA patients

undergoing

immunotherapy

8 Regression

models; Ridge

regression

model was

observed to be

most accurate

Internal

and

External

Mean

absolute error

values for the

different

models

ranged

between

0.633-0.857

High [173]

Immunoassays Predicts sustained

unresponsiveness

to milk oral

immunotherapy

Elastic Net

algorithm

(logistic

regression

method)

Internal Average

accuracy of

92%- 95%

High [174]

Multi-

Dimensional

Provides a risk

score for response

to

immunotherapeutic

agents

Random

Survival Forest

(RSF)

Algorithm

Internal Not listed High [175]
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Predicting overall

survival and

success of ICI

therapy

Deep

Learning-

Natural

Language

Processing and

RSF

Internal

and

External

AUC >0.95 Low [176]

Differentiates

responders from

non-responders and

enables patient

stratification into

high and low-risk

groups for anti-PD-

1/PD-L1 therapy

SimTA: deep

learning model

with temporal

attention

module

assembled

using multi

layer

perceptron

Internal SimTA60d-

AUC of 0.77

and

SimTA90-

AUC of 0.80

Low [177]
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Predicts patient's

survival post ICI-

therapy

SCORPIO:

ensemle of

ridge logistic

regression,

SVM and RF

with soft

voting

algorithm

Internal

and

External-

test sets

and

cohorts

Internal:

median pan-

cancer AUC's

of 0.759 and

0.641 for

overall

survival and

clinical

benefit

respectively.

External test

set: median

pan-cancer

AUC of

0.725 for

overall

survival

High [165]

Predicts response

to SCIT

RF Modelling-

MLAlgorithm

Internal

and

External

cohort

Internal:

AUC of

0.899 and

External:

Moderate [178]
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AUC of

0.893

Predicts clinical

response to

Adalimumab and

Etanercept therapy

in RA patients

RFAlgorithm Internal Accuracy of

the different

models

ranged

between

79%-88%

Moderate [169]

Predicts response

to Fingolimod

therapy in MS

patients

RFAlgorithm External

test set

AUC of 0.71 Moderate. [179]

Predicts response

to TNF inhibitor

therapy in RA

patients

Linear

Regression,

RF, XGBoost

and CatBoost

External

cohort

AUC values

of 0.7 and

0.71

Moderate [180]

Abbreviations: AI: Artificial intelligence; anti-PD-1: Anti–programmed cell death protein 1; PD-L1: Programmed death-ligand 1;

NSCLC: Non-small cell lung cancer; CNN: Convolutional neural network; SVM: Support vector machine; RF: Random forest; RF-ML:

Random forest–based machine learning; ML: Machine learning; AUC: Area under the curve; ICI: Immune checkpoint inhibitor; RA:
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Rheumatoid arthritis; T1D: Type 1 diabetes; T1DM: Type 1 diabetes mellitus; MS: Multiple sclerosis; LASSO: Least absolute shrinkage

and selection operator; XGBoost: Extreme gradient boosting; CatBoost: Categorical boosting algorithm; REFLECT: Name of an AI

framework combining sparse hierarchical clustering and LASSO; StepCox: Stepwise Cox proportional hazards regression; w.r.t.: With

respect to; birSCA: Binary improved sine cosine algorithm; DFSSSA: Disperse Foraging Strategy Salp Swarm Algorithm; KELM:

Kernel Extreme Learning Machine; DFSSSA-KELM: Disperse Foraging Strategy Salp Swarm Algorithm–Kernel Extreme Learning

Machine; RSF: Random survival forest; DL: Deep learning; NLP: Natural language processing; SimTA: Deep learning model with

temporal attention module; SCIT: Subcutaneous immunotherapy; TNF: Tumor necrosis factor; SCORPIO: Ensemble prognostic model

(ridge logistic regression, SVM and RF with soft voting).



63

Figure 1. Chronological overview of landmark discoveries that shaped modern

immunology and immunotherapy. The upper panels trace the recognition of

infectious diseases and host defence mechanisms—from early variolation and

Jenner’s smallpox vaccination, through the germ theory of disease, discovery of

phagocytosis, antibodies and serum therapy, to the identification of T and B

lymphocytes. The lower panels highlight pivotal advances in cancer immunotherapy,

including observations of infection-induced tumour regression, the therapeutic use of

BCG, the description of tumour-associated antigens and cancer immunosurveillance,

the advent of hybridoma technology and monoclonal antibodies, and the discovery of

TCR, CTLA-4 and key cytokines that enabled modern immune-based therapies. Dates

indicate the approximate time of each discovery; bracketed numbers correspond to the

primary references cited in the Historical Perspective section. Figure created by the

authors from cited sources. Abbreviations: BCG: Bacillus Calmette–Guérin; TCR: T-

cell receptor; CTLA-4: Cytotoxic T-lymphocyte-associated protein 4.
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Figure 2. Schematic overview of common forms of basic immunotherapy,

grouped according to their predominant effect on the immune system.

Immunosuppressive approaches include corticosteroids, T-cell inhibitors that block

calcineurin, mTOR signalling or co-stimulation (CD28/CD80 antagonists), and anti-

proliferative/cytotoxic agents used in cancer, autoimmune disease and prevention of

allograft rejection. Immunomodulating approaches comprise cytokine therapy, which

restores or blocks specific signalling proteins to re-establish immune homeostasis, and

allergen immunotherapy, which gradually increases allergen exposure (e.g. via SCIT

or SLIT) to induce long-term tolerance and reduce IgE-mediated hypersensitivity.

Immunostimulatory approaches are exemplified by vaccines, in which inactivated or

attenuated pathogens or their components are administered to elicit durable protective

immunity against subsequent infections. Figure created by the authors from cited

sources. Abbreviations: IgE: Immunoglobulin E; SCIT: Subcutaneous

immunotherapy; SLIT: Sublingual immunotherapy; mTOR: Mechanistic target of

rapamycin.
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Figure 3. Evolution of anti-HIV CAR-T cell designs and their clinical

development status. First-generation products comprised CD8⁺ T cells expressing a

CD4-based CAR, in which the CD4 extracellular domain was linked to an

intracellular signalling module derived from the native T-cell receptor complex.

These constructs were safe in early trials but failed to induce substantial, durable

reductions in viral load. Second-generation CAR-T cells incorporated an additional

intracellular co-stimulatory domain (CD28 or CD137) into this backbone, resulting in

superior control of HIV replication and increased cytokine secretion, but the cells

remained susceptible to HIV infection and elimination. Third-generation constructs

replaced extracellular CD4 with single-chain variable fragments from bNAbs,

enabling recognition of multiple HIV strains, although antiviral potency varied

between specific bNAbs. “Next-generation” strategies, currently in pre-clinical and

early clinical evaluation, include trispecific CAR-T cells and CXCR5⁺ CAR-T cells

with CCR5 knocked out, designed to recognise multiple epitopes on Env, home to

lymphoid HIV reservoirs, enhance cytotoxicity against infected cells and resist de

novo HIV infection. Figure created by the authors from cited sources. Abbreviations:

CAR-T: Chimeric antigen receptor T cell; HIV: Human immunodeficiency virus;

bNAb: Broadly neutralizing antibody; scFv: Single-chain variable fragment; Env:

Viral envelope glycoprotein; CXCR5: C-X-C chemokine receptor type 5; CCR5: C-C

chemokine receptor type 5.
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