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ABSTRACT

Immunotherapy, a therapeutic strategy aimed at modulating the host immune system,
has undergone rapid evolution over recent decades, particularly in oncology.
Advanced methodologies, including immune checkpoint inhibition, cytokine therapy,
chimeric antigen receptor T-cell therapy (CAR-T), and tumor-infiltrating lymphocyte
therapies, have significantly transformed cancer treatment. This review summarizes
recent advancements in immunotherapy and examines its expanding .applications
across a range of diseases, such as autoimmune disorders, infectious diseases,
transplant rejection, and allergic conditions. A structured literature search was
conducted using PubMed and Google Scholar, prioritizing studies published. from
2015 to 2026. The findings underscore the efficacy. of monoclonal antibodies,
adoptive cell therapies, cytokine modulation, and checkpoint-targeted strategies
beyond oncology. However, challenges remain; ineluding variable patient responses,
immune-related adverse events, and treatment costs. This review also explores the
emerging role of artificial intelligence (Al) in enhancing personalized immunotherapy
through patient stratification, biomarker identification, and predictive modeling. The
integration of multi-omics data with Al presents promising opportunities for
improving treatment efficacy and safety, although issues related to data quality,
interpretability, regulatory frameworks, and ethical considerations must be addressed.
In conclusion, immunotherapy is rapidly extending beyond cancer, and Al-supported
personalized approaches offer a promising pathway to safer, more effective, and

broadly applicable treatments.
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INTRODUCTION

The therapeutic approach of utilizing the host’s immune system for protection against
a diseased state, either through the initiation, enhancement, or suppression of immune
response is termed immunotherapy. The field of immunotherapy has progressed
tremendously since its inception, particularly with its efficacy in the treatment of
cancer. Currently, immunotherapies are being exploited for countering a variety of

diseases [1].

This review attempts to highlight the progress made in immunotherapy and further
focus on how these advances are currently being explored for devising superior
therapeutics against diverse diseases. Further, the role of ALin conjunction with the

application of immunotherapy and precision medicine has-been discussed.

SEARCH METHODOLOGY

A structured literature search strategy was followed in compiling this study. Relevant
studies focusing on the areas of immunotherapy, cancer immunotherapy,
immunotherapy beyond cancer, Al and the intersection-of Al and immunotherapy
were screened. Google scholar and PubMed were the databases that were used for
retrieving primary literature. The keywords ‘and Boolean operators encompassed-
“immunotherapy”, “history of immunotherapy”, “immunotherapy AND diverse
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diseases -cancer”, “immunotherapy NOT cancer”, “immunotherapy AND artificial
intelligence”, “immunotherapy AND artificial intelligence OR predictive models -
cancer”, “artificial intelligence AND healthcare”, “explainable artificial intelligence”.
No strict inclusion criteria were utilized; however, to get an updated context
preference was given to articles published between 2015-2026. Only articles written

in English were selected. Articles were strictly excluded from the study if they were

not published in a peer-reviewed, indexed journal.

HISTORICAL PERSPECTIVE

Immunotherapy has its origins dating back to 1721, when Charles Maitland
intentionally infected children with low doses of smallpox to prevent them from
contracting the disease [1]; [2]. Research in the mid-19th century brought infectious
diseases into the limelight. However, possibility of a host defense mechanism against

such invaders was not evidenced at that point. Later, the discovery of phagocytic cells



and antibodies proved the existence of an inherent host defense mechanism [3]. These
discoveries led to the advent of immunology as a distinct discipline [4] (Figure 1).
The dawn of cancer immunotherapy came in the late 19th century, when Busch,
Fehleisen and Coley independently observed tumors to regress in patients post
infection with erysipelas. However, their observations were not paid much attention at
that time [2]; [1]. Cancer immunotherapy regained attention around the mid-20th
century as evidence for the existence of tumor associated antigens was first presented
[5]; [6]; [7]. This was followed by proposition of the immunological-surveillance
theory that claimed lymphocytes played a key role in identifying and eliminating
malignant cells [8]; [9]; [10]. The search for antibodies with binding specificity to
malignant cells also began. In 1975, the advent of hybridoma technology spearheaded
therapeutic antibody research and eventually led to the-development of rituximab as
the first Food and Drug Administration (FDA) approved monoclonal antibody against
cancer (non-Hodgkin's lymphoma) [11]. A’ remarkable breakthrough in cancer
immunotherapy came with the discovery of T-cell antigen receptor [12] and Cytotoxic
T-lymphocyte associated protein-4 (CTLA=4) [13]. These discoveries set the stage for
further investigations and ultimately resolved the debate on the feasibility of utilizing
the immune system to fight cancer [14]. Additionally, the discovery of interferon (IFN)
and interleukin-2 (IL-2), led to the development of cytokine-based immunotherapies
[15]. In 1986, IFN-a2 was granted approval by the FDA for treating hairy cell
leukemia, marking the first approval for an immunotherapeutic drug [2].

The 20th century also saw advances in the field of allergen immunotherapy. In 1911,
Leonard Noon recognized grass pollen as the causative agent behind hay fever and
observed the protective effects of its crude extract preparations. Drawing insights
from this»work, William Frankland conducted the first randomized, double-blind,
placebo-controlled immunotherapy trial, showcasing the therapeutic efficacy of
subcutaneous grass pollen injection therapy. In the years that followed, allergy shots

became the standard treatment for allergies [16].

BASIC TO ADVANCED IMMUNOTHERAPY

Immunotherapy can have different forms depending on the disease condition (Figure
2). Immunotherapeutics are primarily categorized as immunostimulants e.g. vaccines,
and immunosuppressants e.g. corticosteroids. Cytokine therapy and allergy

immunotherapy are immunomodulating in nature.



Cancer immunotherapy is the most popular form of immunotherapy; it has been in the
forefront of most advances made in this medicinal field. Most clinically approved,
advanced cancer immunotherapies utilize T cell functions and can be broadly
categorized into two types: modulators of endogenous T cell responses and cellular
therapies [17]. Immune checkpoint inhibitor (ICI) therapy, cytokine therapy, cancer
vaccines and oncolytic virus therapy fall under modulators of endogenous T cell
responses category, while chimeric antigen receptor T-cell (CAR-T) therapy and
tumor infiltrating lymphocytes (TIL) therapy comprise the principal forms. of cellular
therapies [18].

Checkpoint inhibitor therapies

Cancerous cells employ cell-surface, immunoregulatory ‘proteins:termed checkpoint
molecules to evade the immune system; these proteins inhibit T-cell function. CTLA-
4 and programmed cell death-1 (PD-1) were the first immune checkpoint molecules to
be discovered, leading to the development of anti-cancer. therapeutic monoclonal
antibodies (mAbs) called checkpoint inhibitors [19]. mAbs such as anti-CTLA-4, anti-
PD-1 or anti-PD-L1, impede the activity of these immune checkpoints. In 2011, an
anti-CTLA-4 mAb Ipilimumab, became the first FDA approved ICI therapeutic
against advanced melanoma. Since then, over 6 checkpoint inhibitors have been
approved by the FDA' as neoadjuvant and/or adjuvant therapies against different
malignancies [20]. Despite their revolutionary impact, checkpoint inhibitor therapy

has some limitations that affects its' wider applicability [21]; [22].

Cytokine therapy

Cytokines act'as‘molecular coordinators among immune cells, triggering self-limited,
highly specific immune responses. There are seven different types of cytokine
receptors,. and. targeting cytokines or their receptors has been at the forefront of
developing anti-cancer therapeutics [1]; [23]. The FDA has approved several
cytokines for treating different malignancies including IL-2 (high dose) for metastatic
melanoma, IFN-a for renal cell carcinoma [24], and IFN-a2a and IFN-02b for
patients with hairy cell leukemia [1]; [21]. Recently, the combination of BCG with an
IL-15 super agonist termed N-803 received approval for treating non-muscle invasive

bladder cancer [23]; [25].



Cancer vaccines

Cancer vaccines comprise formulations of whole tumor lysates (either patient’s own
or from another), tumor specific antigens and viral vectors, amongst others. When
administered with adjuvants, these vaccines can trigger anti-tumor immune responses
by activating T cells [21]. In 2010, Provenge (Sipuleucel-T) became the first FDA
approved cancer vaccine for treating prostate cancer [26]. Intravesical BCG indicated
for non-muscle invasive bladder cancer is another FDA approved immunotherapy
[27]. Preventative vaccines against cancers caused by human papillomavirus (HPV)
and hepatitis B virus (HBV) infections are also under clinical use [28]. Numerous
promising vaccine candidates are under different stages of clinical evaluation [29].
Therapeutic cancer vaccines are generally safe and do not cause major side-effects;

but outcomes may vary significantly among individuals-{21].

Oncolytic virus therapy

Oncolytic virus therapy is an innovative immunotherapeutic approach, which utilizes
genetically engineered viruses to target and destroy cancer cells. When the genetically
altered viruses are administered into tumors, they cause lysis of cancer cells resulting
in release of tumor antigens.”These antigens can activate immune cells, which
subsequently target other-cancer cells expressing those antigens. This approach
capitalizes on the fact that cancer cells are more prone to viral infections compared to
normal cells [1]. Various viruses including adenovirus, herpes simplex virus 1,
measles virus,‘and reovirus have been explored as agents of oncolytic virus therapy
[30]. The. first therapeutic. oncolytic viral therapy to gain FDA approval was
Talimogene laherparepvee-(Imlygic) or T-Vec, which is directed against melanoma
[1].. Several other candidates are currently under clinical trials, for wvarious

malignancies [1]; [30].

TIL therapy

The lymphocytic cell populations that invade tumor tissue are termed tumor
infiltrating lymphocytes. TIL immunotherapy involves isolating TILs from tumors,
followed by their cytokine mediated activation and expansion in culture, and finally
re-administration into the patient. TIL therapy was first tested for the treatment of
Melanoma in the 1980’s. In recent decades the technique has been improved and

extended for treating cervical cancer and other solid tumors. In case of melanoma



particularly, optimal responses have risen to 50-75% [31], [21]. This increased
efficacy is attributed to patient pre-conditioning and the depletion of lymphoid tissues
[21]. Lymphodepletion helps by reducing the number of regulatory T cells (Tregs)
that suppress immune responses and other endogenous lymphocytes that can compete
with the transferred TILs [32]. Despite the promise, TIL still faces challenges in its
standardization which limits its broader applicability [21].

CAR-T therapy

A cutting-edge immunotherapy where patient derived T lymphocytes ‘are genetically
modified in-vitro to express a chimeric antigen receptor (CAR) on their surface. Post
this the cells are multiplied and administered back into the patient. A CAR comprises
of an extracellular, a transmembrane and an intracellular domain. The extracellular
domain binds to a specific antigen on cancer cells, while the transmembrane and
intracellular domains trigger T-cell activation, leading to destruction of targeted cells
[21]. In 2017, FDA approved Tisagenlecleucel (Kymriah) as the first CAR-T therapy
for treating B-cell leukaemia. Thereafter, 5 other CAR-T cell therapies have received
regulatory approvals from FDA for treating various malignancies [33]. Design of
CARs has evolved to offer enhanced activation, proliferation, and survival potential.
Although later generations”of CARs provide superior anti-tumor effects, they also
cause various side effects. Therefore, at present the clinical landscape of this therapy
is currently dominated by the .second-generation of CAR-T cells that exhibit
intermediate efficacy [34].

IMMUNOTHERAPY BEYOND CANCER
Surge and the success of cancer immunotherapy has led to an enhanced understanding
of immune homeostasis. The techniques thus developed have equipped researchers

with tools to build novel, efficient therapeutics against other diseases.

Autoimmune disorders

Conventionally, immunosuppressants are preferred for treating autoimmune diseases.
Although immunosuppressants can provide long lasting remission against some
autoimmune diseases, their efficiency often wears off with time [35]. Therefore,
developing novel measures to modulate the immune system for treating different

autoimmune diseases is needed. Technological advancements in immunotherapy, such



as checkpoint inhibitor therapy, anti-cytokine therapy, anti-T cell therapy etc., have

shown promising results in treating several autoimmune diseases [1].

Anti-PD-1 and anti-CTLA-4 antibodies have been developed for treatment of
autoimmune disorders. The mAb Abatacept is prescribed to treat subtypes of arthritis,
it mimics the action of native CTLA-4 by interacting with co-stimulatory ligands
CD80 and CD86, impeding T-cell activation and ultimately inhibiting immune
response [36]. Abatacept is currently being evaluated for safety and efficacy against
other autoimmune diseases as well [1]; [17]; [37]. Abatacept has been observed to
have a disease modifying effect on Type 1 Diabetes Mellitus (F1DM) in research
studies on individuals recently diagnosed with the disease [38]; [39]. Additionally,
Abatacept has been evaluated for safety and efficacy against systemic lupus
erythematosus (SLE) and multiple sclerosis (MS): However, further research is
required to establish its potency as a therapeutic for these ailments [1]. Belatacept, a
successor of Abatacept that exhibits superior affinity for B7 ligands is also being
clinically evaluated for its therapeutic efficacy against SLE, MS and T1DM [1]; [40].
Additionally, Peresolimab a mAb designed to serve.as PD-1 agonist, has shown
promising results in managing Rheumatoid Atrthritis (RA) in a phase 2a clinical trial

[41].

Administration of specific cytokines or cytokine antagonists, either alone or in
conjunction with different immunosuppressants, has demonstrated promising results
in managing various autoimmune conditions [1]. The cytokine type and the
therapeutic approach are specific to the pathological profile of the different auto-
immune conditions. The principal cytokine or cytokine directed therapies currently in

use or being investigated for treating autoimmune diseases are briefed in Table 1.

Targeted killing of harmful B cells using mAbs [49]; [17], and the utilization of CAR-
Tregs that express high-affinity T cell receptors (TCRs) to recognize antigens
responsible for triggering autoimmune responses are being tested for therapeutic
efficacy against autoimmune diseases [50]; [51]; [17]. Rituximab is a mAb that binds
to CD20 a cell surface protein on B lymphocytes, mediating the death of these cells
through antibody dependent cell mediated cytotoxicity (ADCC) and/or complement
mediated cytotoxicity. Rituximab is used to treat conditions like RA, SLE, and MS

[52]. Belimumab is a mAb that inhibits the interaction between soluble B-lymphocyte



stimulator (BLyS) and B cell receptor, this obstructs the activation and survival of

auto-reactive B cells. Belimumab is used to treat SLE [53].

Adoptive Treg cell transfer therapy relies on the immunosuppressive role of Tregs to
accomplish beneficial effects against autoimmune disorders. Adoptive Treg cell
transfer involves isolation of Tregs from patients, their in-vitro expansion and finally
autologous transplantation back to patients. Expansion of Tregs involves transducing
them with an appropriate auto-antigen specific, high-affinity TCR or a CAR. These
engineered, antigen specific Tregs can deliver local immunosuppressive effects upon
being transferred back to the host [54]. This immunotherapeutic approach has shown
promising therapeutic results in several pre-clinical studies against. autoimmune
diseases such as MS [55]; [56], SLE [57]; [58] and TIDM [59]; [60]; [61]. Currently,
~54 clinical trials are evaluating the therapeutic efficacy of adoptive Treg cell transfer

for different ailments attributed to dysregulated immune responses [54].

Transplant rejection

Immunosuppressive drugs have long been utilized to avert the problem of graft
rejection. However, the use of such immunosuppressants is reported to cause
significant side effects. To avoid these side effects and to curb the low-grade immune
responses that result in delayed allograft loss, there is a need for the development of
novel therapeutics. To this end, a promising approach has been targeting immune
checkpoint pathways involving the'cell surface costimulatory molecules. Different co-
stimulatory signaling molecules such as, CTLA-4, CD40, ICOS, 0X40, TIM family
and LFA-T have been examined for efficacy in preventing allograft rejections in pre-
clinical studies. Several leads are currently being tested for clinical efficacy [62]; [63];
[64]. In 2011, Belatacept (CTLA-4-Ig) received FDA approval for usage as an

immunosuppressant for adult, kidney transplant patients [40].

Infectious diseases
mAb based therapies, checkpoint inhibition, manipulation of cytokine levels and T-
cell-based therapies are being explored as alternatives to the conventionally utilized

medications against infectious diseases [63].

Infectious viruses such as Human Immunodeficiency Virus (HIV), Hepatitis B Virus
(HBV), Hepatitis C Virus (HCV) and Epstein-Barr virus are being targeted using
CAR-T therapy. Research on anti-HIV CAR-T cell therapy has seen steady progress



since its inception in the 1990’s. Three generations of anti-HIV CAR-T cells have
completed safety and efficacy evaluations in clinical trials [66], [67], [65] [68]. The
next generation of anti-HIV CAR-T cells have shown promising results in animal
model studies [68] and have recently entered clinical trials (NCT03240328,
NCTO03617198). Figure 3 highlights main features of the different generations of anti-
HIV CAR-T cells. As for the other viral and fungal pathogens, CAR-T therapy

development is still at pre-clinical testing stages [66].

When compared to cancer and autoimmune diseases, development of therapeutic
antibodies against infectious diseases has progressed rather slowly.[69]. However,
COVID-19 prompted scientific community to achieve extraordinary.accomplishments
in the development, utilization and approval of mAbs against SARS-CoV-2 virus [70].
Many neutralizing mAbs against SARS-CoV-2 were developed using memory B cells
obtained from infected or recovered patients. These designed mAbs target the spike
protein of the virus, which facilitates the virus’s entry into the host cells via binding to
angiotensin converting enzyme-2 (ACE2) receptor [69].| Several of these received
emergency use authorization (EUA) and proved to be.crucial in treating COVID-19.
However, the emergence of new COVID-19 variants dampened their efficacy.
Laboratory evaluations revealed that some variants could avoid neutralization by
mAbs. Subsequently, FDA ended the EUA and placed limitations on the use of
several existing anti-SARS-CoV-2 mAbs and/or their combinations [71].

Previously, the FDA has approved the use of mAb therapy against ebolavirus disease
(EVD) [72], HIV-1 [73]. The mAbs Nirsevimab and Palivizumab are used as
prophylactics, against Respiratory Syncytial Virus (RSV) [74]. Additionally, several
candidate antibodies against EVD, HIV, Influenza, HCV, HBV, Zika and Dengue are
currently under investigation for safety and efficacy [75]; [76]; [69]; [65]. Most of
these anti-viral antibodies are receptor targeted and disrupt the binding and entry of
viruses into host cells. In recent times, broadly neutralizing antibodies (bNAbs) are
gathering significant attention due to their enhanced anti-viral potency against

genetically diverse strains of HIV and Influenza.

The FDA has also approved mAbs for treating bacterial infections, Table 2. Several
new candidates have recently entered clinical trials, and others are at pre-clinical

levels of development [77]; [78]. The main targets of these anti-bacterial mAb’s are-

10



neutralizing toxins, membrane proteins, surface glycans or glycoconjugates and

biofilm components.

mAb therapy is also being evaluated for efficacy against parasitic infections such as
malaria, trypanosomiasis, schistosomiasis and leishmaniasis, amongst others [81].
Several candidate mAbs for the treatment of malaria are currently being reviewed for
their safety and efficacy. CIS43LS, a mAb against Plasmodium falciparum has
demonstrated promising results in phase I clinical trials [82]; [83]. Another mAb
against malaria, termed as TB31F acts by binding the P. falciparum gamete surface
protein Pfs48/45, thus impeding parasite progression and subsequent transmission.
TB31F has been evaluated in a phase I clinical trial and proved to be safe and

efficacious as a P. falciparum transmission blocking mAb/(NCT04238689) [84].

Checkpoint molecules are vital for upholding self-tolerance in healthy individuals, but
they often turn rogue under diseased conditions. Upregulated expression of immune
checkpoint molecules results in T cell exhaustion, evidenced in chronic infectious
diseases such as HIV, malaria, hepatitis and tuberculosis. This has led to an interest in
exploring the efficacy of checkpoint inhibitor therapy as a safeguard against such

infectious diseases [85].

Several pre-clinical studies report inhibition of checkpoint signaling results in
elevated T cell responses against HIV [86]; [87]; [18]. In recent years, clinical studies
have corroborated the same, through the utilization of anti-cancer mAbs for mediating
immune checkpoint blockade [85]; [88]. A phase I trial (NCT02028403) involving
HIV patients on suppressive ART, inspected the effects of anti-PD-L1 antibody BMS-
936559 It found HIV-specific CD8 T cell responses to be boosted in subjects
receiving the treatment, also no severe immune-related adverse events (irAEs) were
reported. However, BMS-936559 did not impact the viral load, but was observed to
be safe with no severe immune-related adverse events (irAEs) reported. This could be
attributed to the single, low dose administration mode followed in this study [89].
Further evaluations with an optimized dosing regimen would be necessary for
determining BMS-936559°s therapeutic role. Additionally, another PD-1 receptor
blocking mAb Budigalimab was found to be protective against HIV, in recently
completed clinical trials (NCT04223804, NCT04799353). Budigalimab was

11



efficacious in delaying HIV rebound in participants with interrupted ART; detailed

results from this clinical trial are yet to be published.

Blockade of checkpoint molecules is also reported to augment CD8 T and CD4 T cell
responses against HBV [85]. In separate clinical studies, the PD-1 directed mAb,
Nivolumab was efficacious in decreasing HCV and HBV load in infected individuals
[90]; [91]. A recent clinical trial with dual checkpoint blockade of PD-1 (Nivolumab)
and CTLA-4 (Ipilimumab), in patients with advanced hepatocellular carcinoma
(with/without hepatitis B or C) observed no significant difference in overall survival
amongst patients. However, the incidence of adverse events was observed to be higher
than that formerly associated with nivolumab monotherapy [92]. Another clinical trial
examining the effect of Ipilimumab treatment in advanced melanoma patients positive
for HBV and/or HCV infection has recently been completed and results from the
same are awaited (NCT02402699). Overall, currently available evidence points to
Nivolumab being safe against chronic HBV/HCV infection. However, more clinical
studies are required to validate the efficacy of immune checkpoint blockers like

Nivolumab in inducing HBV/HCV remission.

Examination of immune checkpoint blockade therapy against tuberculosis has yielded
varied results, depending on the checkpoint molecule being targeted. Mycobacterium
tuberculosis infected<PD-1 knockout mice are significantly prone to developing
elevated mycobacterial loads and overall fatality [93]; [94]. Reportedly, cancer
patients undergoing anti-PD-1/PD-L1 blockade immunotherapy develop atypical M.
tuberculosis.infections [93]; [95]. However, contrasting results have been obtained in
animal studies where TIM3 and LAG3 checkpoint function was blocked. Blockade of
TIM3 in'mice with chronic M. tuberculosis infection, was found to enhance T-cell
function and significantly control bacterial growth [96]. Likewise, silencing LAG3
expression in'a co-culture model comprising CD4 T cells and differentiated macaque
macrophages infected with M. tuberculosis, triggered T-cell activation and revoked
regulatory T-cells induced suppressive activity [97]. This disparity is likely a
consequence of the baseline immune status of the host as evidenced in pre-clinical
research and clinical studies on cancer patients being treated with ICIs [98]. In
seriously immunocompromised hosts, immune checkpoint inhibition successfully
counters mycobacterial infection. Whereas application of ICI therapy in

immunocompetent hosts results in a hyperinflammatory state and worsening control

12



over bacterial levels [99]. These findings demand testing for a more personalized

immunotherapy approach against tuberculosis infection.

Checkpoint blockade has also been investigated as a therapeutic strategy against
protist infections, albeit only in animal models. Leishmania amazonensis infected
mice treated with anti-PD-1 and anti-PD-L1 presented remarkably lower levels of
parasite; however, blockade of PD-L2 did not deliver the same results [100]. This is
likely to be a consequence of the varied mechanisms by which PD-L1 and PD-L2
control immune responses during infection with Leishmania sp. [101].-Being a
chronic infection, leishmaniasis has numerous immunoregulatory features in common
with cancer. Like a one size fits all approach does not work.in cancer and-specific
combinations of ICI’s are required for obtaining an optimal response; similarly, fine-
tuning of different checkpoint inhibitory pathways is suggested to offer better

outcomes against Leishmaniasis [102].

The possibility of using ICI therapy against malaria has been tested in several animal
model studies. Currently, the case made for efficacy is not considerable enough to
neglect the safety concerns posed, as summarized below. Butler et al. observed mAb
mediated dual checkpoint blockade of PD-L1 and LAG3 to increase the clearance of
Plasmodium yoelii via enhanced CD4 T cell function and humoral immune response
in C57BL/6 mice [103]. Likewise, Hou et al. observed that lymphocyte activity is
reinstated upon blocking TIM3-signalling in cultured PBMC’s isolated from patients
infected with ‘P. falciparum. Furthermore, they observed increased clearance of P.
berghei, invinfected C57BL/6 mice [104]. In contrast, blockade of PD-L1/ CTLA-4
checkpoint pathways in BALB/c mice had no effect on parasitaemia and led to
enhanced T cell activation and IFNy levels which made the mice vulnerable to
develop cerebral’ malaria [105]. Future investigations are required to understand
whether these varied findings stem from differences in the checkpoint pathway

targeted, the animal model used in experimentations and/or species level differences.

Allergies
The last few decades have witnessed an increased prevalence of allergic diseases, a
consequence of the changing environment as well as socio-economic status [106].

This has presented a significant public health burden, and it demands devising novel
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therapeutics. To this end, advances made in immunotherapy are being explored for

their safety and efficacy [107].

Allergic reactions are the aftermath of a predominant T helper type 2 (Th2) immune
response, arising due to the disrupted balance of Thl, Th2, and Th17 immune
functions. Th2 immune responses are steered by IL-4 and IL-13 cytokines, which
makes them attractive therapeutic targets against such diseases [108]. Consequently,
antagonists of these cytokines such as the synthetic peptide Pitrakinra have been
developed and tested for their efficacy. However, Pitrakinra demonstrated only
limited efficacy in Phase2b clinical evaluations in patients with allergic asthma and
did not proceed to further stages of drug development [109]. The focus has since
shifted towards developing alternative antagonists of IL-4/IL-13"such as mAbs, and

CAR-T cell therapy [108].

mAb therapy for alleviating allergic reactions “involves distuption of cytokine
signaling or targeting of soluble or membrane bound IgE, the key mediators of an
allergic response [110]. Several mAbs. against. allergic reactions are currently

available for use [107].

Omalizumab is an FDA approved humanized anti-IgE mAb utilized for treating
moderate to severe allergic asthma. Additionally, Omalizumab has shown positive
influence against other diseases like seasonal allergic rhinitis and chronic urticaria
[110]. Recently, it became the first FDA approved medicine for treating IgE mediated
food allergies [111]. Ligelizumab is another IgE directed mAb, which proved to be
more efficacious than Omalizumab in the management of symptoms associated with
asthmaas well"as spontaneous urticaria [112]. Recently, phase III evaluations
(NCTO03580356) of Ligelizumab for the treatment of moderate-to-severe chronic
spontaneous urticaria concluded that it was less efficacious than Omalizumab in
managing the disease [113]. UB-221 is another IgE directed mAb candidate that has
demonstrated promising results in relieving symptoms associated with chronic

spontaneous urticaria [114].

Dupilumab is an IL4-Ra directed mAb that functions by disrupting IL-4/IL-13
signaling. It has been approved by FDA for the treatment of moderate to severe atopic
dermatitis in adults and also as an adjunct therapeutic in asthmatic patients above 6

years of age [115]; [116]. Furthermore, Dupilumab has delivered promising results
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against chronic rhinosinusitis with nasal polyposis and allergic rhinitis [110].
Tralokinumab is the first FDA authorized IL-13 directed mAb, used for treating

atopic dermatitis in adults [117].

In recent times, CAR-T therapy has been tested in several pre-clinical studies for the
management of allergic asthma by targeting dysregulated Tregs. This mechanism is
responsible for the predominant Th2 immune responses that drive allergic diseases. In
mice, directing Tregs towards the inflamed airways proved efficacious in the
management of allergic asthma [118]. T cells Redirected for Universal Cytokine-
mediated Killing (TRUCKS), represent the fourth generation of ‘CAR-T cells that
secrete specific cytokines. Using asthma specific biomarkers, 'TRUCKSs-. can 'be
directed to inflammatory sites where they can secrete”cytokines like I[-12 that
promote the proliferation of Thl cells while suppressing Th2 immune responses [119].
Additionally, the approach of targeting IgE producing cells has been explored. This
can result in long-term suppression of IgE' levels and likely improve treatment
outcomes for patients with severe allergic diseases. The transmembrane form of IgE
(mlIgE) expressed by all IgE producing cells, serves asasuitable target for recognition.
Recently, Ward et al. generated CARs expressing the extracellular domain of FceRla
(a high affinity IgE receptor) for mIgE recognition. These CAR-T cells specifically
detected the immune cells expressing mIgE and excluded those that captured secreted
IgE (mast cells, basophils, and eosinophils) [120]. FceRIa-based CAR-T cells that
additionally express the co-stimulatory domains 4-1BB and/or CD28 are a promising

prospect for developing adoptive T-cell therapy for allergic diseases [119].

Type'2 innate lymphoid cells (ILC2s) play crucial roles in the development of Th2
immune response, these cells produce cytokines in a non-allergen specific manner
[106]. TLC2s are'activated by allergen induced, epithelial-derived cytokines such as
IL-33 and thymic stromal lymphopoietin, and interactions with lymphocytes and
dendritic cells [121]. Relative to T and B-cells facilitated allergic response, ILC2-
mediated response is rapid and independent of antigen stimulation. Reversing the
blockade of certain immune checkpoint molecules on ILC2S is being explored for
potential therapeutic efficacy against allergic diseases. Recently, strategies like cross-
linking immune checkpoint molecules [121], or using agonists of checkpoint

molecules such as PD-1 for activating inhibitory pathways [122], [106] have been
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reported in pre-clinical studies to suppress the process of allergic inflammation. These

can be further investigated for their safety and efficacy in humans.

OVERCOMING IMMUNOTHERAPY ROADBLOCKS THROUGH AlI-
DRIVEN PERSONALIZED APPROACHES

Immunotherapy is not uniformly efficacious in alleviating the diseased state, in all
patients [123]; [124]. Another common complication is the development of irAEs
[125]. irAEs are the result of enhanced activation of immune system, mostly
inflammatory in nature. irAEs are usually treated with steroids; however, in some
cases irAEs take a more aggressive form [17]. As interest in implementation of
advanced immunotherapeutic approaches grows, there is-a.compelling need’ to
identify patients that will benefit the most from immunotherapy without developing

untreatable irAEs and thus avoiding unnecessary health care costs [1].

The therapeutic efficacy of immunotherapy is'determined by a complex interplay of
factors, or a patient’s immune landscape [126]; [127]; [128]; [129] and our
understanding of these is still in initial. stages. Techniques such as- epigenetic
profiling, proteomics, single-cell transcriptomies;. T cell receptor (TCR) repertoire
analysis, and high-dimensional imaging of immune cells, amongst others are being
utilized to develop insights into the intricate nature of this immune landscape [17]. In
this way identification of specific signatures or biomarkers can aid the clinicians in

anticipating immunotherapy outcomes.

In case of cancer, the immune landscape is primarily shaped by the expression of
checkpoint “molecules, ‘tumor immunogenicity (mutational burden and antigen
presentation) and tumor microenvironment [126]; [130]; [131]; [132]. Additionally,
genetics; epigenetic modifications and gut-microbiome have also been observed to

influence immunotherapy outcomes especially in case of ICI therapy [130].

Research on identification and validation of potential biomarkers for predicting
sensitivity to cancer immunotherapy has remained largely focused on application of
ICI therapy. Currently, the FDA has approved three biomarkers- microsatellite
instability, PD-L1 expression and tumor mutational burden (TMB) for predicting
response to ICI therapy [133]. However, in diverse clinical settings neither of these
biomarkers have been observed to persistently correlate with treatment efficacy. This

is primarily attributed to factors such as tumor heterogeneity and temporal variability
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[134]. In comparison, research on predictive biomarkers for irAEs is still in its early
stages and at present there are none that are widely accepted or validated for use

under clinical settings [135].

Research on predictive biomarkers against autoimmune diseases such as RA, MS and
allergies has also advanced. Presently, there are no biomarkers that are authorized for
routine use in a clinical set-up [136]; [137]; [138]. However, several lead biomarker

candidates have emerged Table 3.

It is increasingly becoming evident that a single biomarker is unlikely to yield an
accurate estimate of the response to immunotherapy [130]. (Tailored treatments
specific towards a patient's characteristics and immune-status can yield better
outcomes and prevent unnecessary risks. Advancements in genomic sequencing and
immune profiling techniques have endorsed & personalized approaches to
immunotherapy. These approaches aim  to “predict patient responses to
immunotherapies like checkpoint inhibitors; identifying neo=antigens and developing
novel antibodies [158]; [159]. The successful integration of sequencing information
and Al in predicting immunotherapy outcomes in cancer patients has been witnessed

through several research studies.

Analyzing somatic mutations such as base substitutions, rearrangements, insertions
and deletions (indels) in. combination with Al techniques demonstrated potential in
predicting PD-1" ICL outcomes [160]; [161]. Likewise, transcriptomics or RNA
sequencing data in_conjunction with machine learning (ML) has facilitated the
identification of responders from non-responders and elucidating the mechanisms
employed by tumors in developing resistance to immunotherapy, against diverse types
of cancer [162];[163]. A deep learning model developed on specific TCR repertoire
sequences. in combination with Human leukocyte antigen (HLA) typing enabled
patient stratification and predicting response towards ICI therapy in melanoma

patients [164].

Currently, multi-omics profiling of tumor and/or tumor microenvironment (TME) is
receiving significant interest for identification of novel biomarkers for cancer
immunotherapy [124]; [134]. Complexity of the data being obtained makes it
implausible to capture intricate signals across these data sets by human experts;

however, Al encapsulates this information remarkably [124]. Following a multi

17



modular approach with Al models built and trained on multi-omics datasets can
provide a more comprehensive, accurate, and clinically useful framework for

prognostic modelling in immunotherapy [159].

Table 4 summarizes some research studies focused on developing predictive Al
models for examining the success of immunotherapy across different diseases. As is
evident omic datasets are widely utilized in model construction either alone or in
combination with other biological information. Prognostic Al models built on routine
clinical information that is relatively easy to access and cost effective to obtain, have
also been observed to perform at par with multi-omics-based Al models. However, for
gaining an in-depth explanation or basis for the predictions made. reliance on
sequencing information is perceived [165]. Moreover, the performance of models
built using a multi-modular approach is observed to/be more reliable. Therefore, for
efficient predictions and user adoption of predictive Al models, utilization of omics as
well as real world clinical data for model construction is important. Currently ICI
therapy remains at the forefront of most multi-omics ML models developed for
predicting immunotherapy outcomes against cancer. However, much recently there
has been interest in exploring the power of ML and multi-omics for interpreting the

TME in the context of CAR<T cell therapy for treating solid tumors [181].

Based on their explainability, AI-ML. algorithms can be broadly demarcated into
transparent or _opaque categories. Transparent algorithms offer end-to-end
interpretation but are not as adept as opaque algorithms in handling complex tasks
with greater accuracy. K-Nearest Neighbors, Naive-Bayes, Logistic Regression (LR)
and Decision Trees are some examples of transparent algorithms; while Random
Forests (RFs), Support Vector Machines (SVMs) and Deep Learning (DL) methods
such as Convolution Neural Networks (CNNs) and Multilayer Perceptron (MLP)

represent some opaque algorithms [201].

Wider user adoption of AI-ML prognostic tools necessitates gaining the trust of
clinicians, for which Al decision systems need to be thoroughly validated and made
understandable. Achieving superior prediction ability requires simultaneous
assessment of multiple biological parameters, which demands the utilization of

complex or ensemble ML methods. This makes the tools opaquer and their decision-

18



making process unclear. Achieving the balance between explainability and accuracy

of Al systems is therefore essential [201].

Now, while clinicians do not always need to fathom the complete algorithm, they
must understand how biological underpinnings drive the decision-making process.
Several methods have been developed for making ML models more interpretable
which are briefly discussed here. One approach for making ML models explainable is
performing post-hoc analysis, where information is extracted without precisely
focusing on internal processing. In this approach, most methods are model-agonistic,
implying they are applicable for a variety of models and do not essentially access the
internal model structure. There are also methods that are model-specific, catering only
to particular ML algorithms; these yield more precise interpretations. Additionally,
ML explanation methods can be classified based on whether they yield explanations
for individual samples (local), or for the working of the model at an abstract level
(global interpretation) [202]. Shapley Additive Explanations (SHAP) and Local
Interpretable Model-Agnostic Explanations (LIME) are widely used interpretability
methods in the healthcare-Al sector, they have also-been utilized for developing
explainable Al models for immunotherapy outcome prediction [168, 169, 165, 203,
2041].

CHALLENGES AND OPPORTUNITIES

Advances in immunotherapy and the expanding accessibility of AI and ML
algorithms are transforming treatment scenarios for a range of diseases and
facilitating precision medicine. However, the synergy of these fields is currently in the
stages of infancy, with its wider implementation facing challenges such as data

privacy and secutity, algorithmic bias and integration into clinical workflows.

Data quality’and quantity

Data bias can be problematic in arriving at a generalized Al model. The development
of robust MLL models requires large cohort sizes and thorough profiling of patients;
this demands huge financial investments and collaborative efforts [189]. Currently,
most Al models are limited in accuracy due to the unavailability of larger
comprehensive datasets and/or lack of validation in large clinical trials [189]; [159].

Recent studies aim to address these challenges by using training data from several
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centres and deployment of transfer learning algorithms. Nevertheless, biases in

funding, resource allocation, ethnic disparity etc. can persist [190]; [191]; [192].

Model interpretability

The “black-box nature” of Al models wherein explanations for the internal analytical
processes are not understandable, presents a significant hurdle to their wider adoption
[159]. This is especially true in healthcare where decision-making is risk-intensive,
and patient’s consent is impacted by knowledge of the operable inherent mechanisms
[193]. As outlined above, response to immunotherapy depends on several
interconnected and varying parameters making the data non-linear and complex. This
multidimensional information is interpreted using ML and /DL algorithms such' as
CNN’s and the nuances involved are not always comprehensible; especially to non-
experts. Moreover, it is challenging to deliver explanations for model workflow in a
manner that is understandable, without relinquishing the accuracy factor [194]. An
understanding of the decision-making process is likely to facilitate wider adoption of
such predictive models in clinical practice [192]. To this end, a promising solution
can be implementation of explainable Al (XAI) approaches wherein every step of the
ML process is traceable with explanations [159]. However, the debate on explainable
Al as a solution to the “black-box problem” is still not settled. This is mainly because
of the varied concerns. this issue presents to the different stakeholders involved in the

process, namely developers, clinicians, patients and regulatory authorities (193), (194).

Regulatory framework and ethical aspects

As of now, regulations governing the usage of Al in healthcare are still at a nascent
stage of development. Currently, Al applications in healthcare are majorly being
governed under regulations of the software as a medical device (SaMD) criterion, put
forth by the international medical device regulators forum (IMDRF) and the FDA
[195]. Recently, principles for good machine learning practice (GMLP) have also
been released by IMDRF. These can serve as a foundation for further advancing
GMLP standards through co-operation amongst different international standards and

regulatory organizations.

Additionally, there is the recently enacted European Union (EU) Al Act, which is the
world’s first thorough legal framework on Al. EU Al act is likely to drive changes in

the Al based healthcare technology sector at an international level, as it establishes
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benchmarks for the development and utilization of Al This act is significant to the
healthcare sector as it specifically covers medical Al technologies, unlike other
existing regulations [196]. According to provisions of this act, prognostic AI models
such as those for predicting immunotherapy outcomes, are classified as “high risk™.
This obligates developers to present model interpretability reports and longitudinal

safety data to assess their clinical feasibility [196], [197].

Al tools face serious accountability issues due to their “black-box nature” and
propensity to be built on biased inputs, which can result in biased outputs-[198]. In
scenarios where Al assistance results in unintentional harm to patients, onus should
not lie solely with the clinicians but also with the manufacturers of the Al tool, the
clinician’s organization and the healthcare system at large: To address the unforeseen
challenges posed by the application of Al in healtheare, it is important that current

healthcare ethical guidelines are revaluated [199].

Another major ethical concern is that of data confidentiality and security. Al tools are
trained on extensive and sensitive patient.information, un-intended and un-authorized
access to this data can potentially favour certain stakeholders and impact patient
interests. It is imperative that patient interests are protected by reinforcing robust

security measures and adherence to regulatory laws [192].

CONCLUSION

The term immunetherapy is often-associated with cancer; but it is now rapidly being
explored to treat several other diseases such as asthma, MS, arthritis, HIV and
tubereulosis ‘etc. -Although the overall results from such explorations have been
encouraging, the setbacks identified from the clinical application of novel
immunotherapeutiCs in treating cancer must be considered, along with the associated
high cost. To‘ensure immunotherapy is safe, efficacious, and ultimately successful in
its application across the wide spectrum of diseases, following a personalized
approach is essential. Personalized immunotherapy is being supported by advances in
omic profiling, biomarker identification and development of prognostic models, the
latter two of which are enabled by Al. Concerningly, the pace of advances happening
in Al is not at par with the establishment of regulatory frameworks. This imbalance
along with issues such as interpretability, quality (data bias), and ethics poses a

formidable barrier to the application of Al across healthcare. Overcoming these
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barriers would require collaborative efforts from clinicians, research scientists,

developers, regulatory agencies and policy makers.

In sum, this article presents a broad overview of how immunotherapy is being utilized
or examined for treating ailments other than just cancer. It further dwells on how Al
can assist the wider implementation of immunotherapy and the challenges associated
with it. However, the article has limitations due to its narrative nature and the lack of

a standardized methodology or quality appraisal process followed in its framework.
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TABLES AND FIGURES WITH LEGENDS

Table 1. Cytokine therapy and cytokine-directed therapy for autoimmune diseases

S. No. Cytokine therapy/ Autoimmune Mechanism of action Clinical status References
targeted cytokine condition
1 Low Dose IL-2 therapy | GvHD, SLE, TIDM confer Tregs with a Under investigation [42]; [17]; [43]
competitive advantage
leading to high Treg:Teff
ratios.
2 IFN- therapy MS upregulation of Th2 anti- Approved [44]
inflammatory response
while dampening the pro-
inflammatory Th1/Th17
response
3 IFN inhibition SLE complete blockade of type I Approved [45]; [46]
(Anifrolumab) IFN pathway leading to
reduced inflammatory
damage
4 TNF-a inhibition Psoriasis and blocking the pro- Approved [47]

48




different forms of

inflammatory action of

arthritis TNF-a
IL-1 inhibition (Anakinra, RA and Juvenile binds to IL-1 receptor thus Approved [47]
Canakinumab) idiopathic arthritis inhibiting the activity of
(JIA) inflammatory IL-1 o and f3
cytokines
IL-6 inhibition RA, JIA, SLE binds to IL-6 receptor/ IL-6 | Approved (RA, JIA); [47]; [1]; [48]

(Tocilizumab, Sarilumab)

thus inhibiting the

under investigation

inflammatory action of this | (Tocilizumab for SLE)
cytokine
IL-17 inhibition Psoriasis, Psoriatic binds to IL-17/IL-17 Approved (Psoriasis, [47]
(Ixekizumab, arthritis, ankylosing | receptor thus inhibiting the Psoriatic arthritis,
Secukinumab, spondylitis, SLE inflammatory action of this ankylosing
Brodalumab) cytokine spondylitis); under
investigation
(Secukinumab for
SLE)
IL-23 inhibition Psoriasis binds to IL-23 leading to Approved [47]

(Ustekinumab,
Guselkumab,

Risankizumab,

disruption of its
inflammatory signalling

pathway
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Tildrakizumab)

Abbreviations: GvHD: Graft-versus-host disease; SLE: Systemic lupus erythematosus; TIDM: Type 1 diabetes mellitus; Treg:
Regulatory T cell; Teff: Effector T cell; IFN: Interferon; IFN-f: Interferon-beta; MS: Multiple sclerosis; Thl: T helper 1 cell; Th2: T

helper 2 cell; Th17: T helper 17 cell; TNF-a: Tumor necrosis factor-alpha; RA: Rheumatoid arthritis; JIA: Juvenile idiopathic arthritis.

Table 2. Monoclonal antibodies developed as therapeutics for infectious diseases

S. No. Pathogen mAb Regulatory Reference
status
1 Virus
SARS-CoV-2 Bamlanivimab, Bamlanivimab and Etesevimab, Received EUA [70]
Casirivimab and Imdevimab, Sotrovimab which was later
revoked by FDA
Ebola Virus Ansuvimab (mAbl114), Inmazeb FDA-approved [72]
RSV Nirsevimab, Palivizumab FDA-approved [74]
HIV-1 Ibalizumab FDA- approved [73]
2 Bacteria
Bacillus anthracis Raxibacumab, Obiltoxaximab FDA Approved [79]
Clostridium difficile Obiltoxaximab FDA Approved [80]
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Abbreviations: mAb: Monoclonal antibody; EUA: Emergency use authorization; FDA: Food and Drug Administration; RSV:

Respiratory syncytial virus; HIV-1: Human immunodeficiency virus type 1.

Table 3. Candidate biomarkers for predicting immunotherapy outcomes in autoimmune diseases

S. No Disease Candidate biomarker Biomarker type Biomarker Clinical implementation Reference
relevance
1 RA Anti-CCP and RF Protein Diagnostic and Clinically utilized [139]; [140]; [141];
Prognostic diagnostic biomarker; [142]
Investigational prognostic
biomarker (tested in
small/moderate sized
cohorts)
2 RA HLA-DRB1*01, HLA- Genetic Prognostic Investigational (tested in [143]; [144]; [142]
DRB1*04, small cohorts)
HLADRBI1*10 and
HLA-DRB1*14:02.
3 MS NFL Protein Prognostic Investigational (tested in [145]; [146]; [147];

large and small cohorts)

[148]
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MS GFAP Protein Prognostic Investigational (tested in [149]
small cohorts)
MS CXCLI13 Protein Predictive and Investigational (tested in [200]
(Chemokine) Prognostic small cohorts)
MS CHI3L1 Protein Prognostic Investigational (tested in [150]
small cohorts)
Asthma IgE Humoral Diagnostic, Clinically utilized [138]; [151]
Prognostic and diagnostic biomarker;
Predictive Investigational prognostic
biomarker (tested in
small/medium cohorts)
Asthma Eosinophil count Cellular Diagnostic, Clinically utilized [152]; [153]; [154];
Prognostic and diagnostic biomarker; [155]
Predictive Investigational prognostic
biomarker (tested in small
and large cohorts)
Asthma FeNO Metabolic Diagnostic, Clinically utilized [156]; [157]; [155]

Prognostic and

Predictive

diagnostic biomarker;
Investigational prognostic

and predictive biomarker
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(tested in large cohort)

Abbreviations: RA: Rheumatoid arthritis; Anti-CCP: Anti-cyclic citrullinated peptide; RF: Rheumatoid factor; HLA-DRB1: Human

leukocyte antigen DR beta 1; MS: Multiple sclerosis; NFL: Neurofilament light chain; GFAP: Glial fibrillary acidic protein; CXCL13: C-

X-C motif chemokine ligand 13; CHI3L1: Chitinase-3-like protein 1; IgE: Immunoglobulin E; FeNO: Fractional exhaled nitric oxide.

Table 4. Representative prognostic AI models for predicting immunotherapy outcomes in cancer and autoimmune diseases, along

with their key features

o | |

Input dataset Outcome Al model Validation | Performance Model Disease
metric interpretability | Cancer | Allergy | RA
Omics Distinguishes 10 Different Internal | 96.7% testing Moderate [162]
responders from models; accuracy for
non-responders for multilayer basal cell
anti-PD-1 therapy perceptron carcinoma
against skin cancer | neural network and 60.7%
and AdaBoost testing

were observed
to be most

accurate

accuracy for

melanoma
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Predicts success of | Convolutional | External Area under Moderate [160]
anti PD/PD-L1 neural network cohort the curve
therapy in NSCLC (CNN), (AUC) in the
patients logistic range of
regression, 0.959-0.965
support vector for the
machine different
(SVM), and models
random forest
(RF) models
Predicts success of 9 Different Internal | AUC of 0.93 High [161]

anti PD/PD-L1
therapy

models; Least
Absolute
Shrinkage
and Selection
Operator
(LASSO)
offered the
highest
prediction

performance
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Distinguishes SVM, External | Accuracy of Moderate [163]
Responders from XGBoost and cohort 100%
Non-Responders Deep Neural (leave-
for ICI therapy Networking one-out
Cross
validation)
Enables patient CNN, External | AUC of 0.86 Moderate [164]
stratification and variational cohort
predicts success of | autoencoders,
ICI Therapy and multi-
instance
learning
algorithm
Multi-omics Enables a REFLECT: In-vitro Average High [166]
consistently combination of | cell lines, | concordance
effective sparse patient- of 83%
therapeutic strategy | hierarchical derived
clustering and | xenografts
LASSO and
algorithm clinical
trial data
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Predicts the StepCox Multiple | AUC >0.65 High [167]
efficacy of different | (forward) +Ri | external
anti-cancer dge algorithm datasets
therapeutic and
regimens previously
published
models
Predicts success of LASSO Internal AUC in the High [168]
anti-PD-1 therapy regression range of
0.62-0.64 for
the different
models
Predicts response | RF-ML Model | Internal Models Moderate [169]
to Adalimumab and displayed
Etanercept in RA accuracy in
patients the range of
72-88%
Immune cell Enables Gradient Internal | AUC of 0.81 Moderate [170]
profiling stratification of boosting and
T1D patients into model External

responders/non-
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responders w.r.t

Abatacept

treatment
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[173]

Immunoassays | Predicts sustained Elastic Net Internal Average High [174]
unresponsiveness algorithm accuracy of
to milk oral (logistic 92%- 95%
immunotherapy regression
method)
Multi- Provides a risk Random Internal Not listed High [175]
Dimensional | score for response | Survival Forest
to (RSF)
immunotherapeutic Algorithm
agents
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Predicting overall Deep Internal AUC >0.95 Low [176]
survival and Learning- and
success of ICI Natural External
therapy Language
Processing and
RSF

Differentiates SimTA: deep Internal SimTA60d- Low [177]

responders from | learning model AUC of 0.77
non-responders and | with temporal and

enables patient attention SimTA90-
stratification into module AUC of 0.80
high and low-risk assembled

groups for anti-PD-
1/PD-L1 therapy

using multi
layer

perceptron
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Predicts patient's SCORPIO: Internal Internal: High [165]
survival post ICI- ensemle of and median pan-
therapy ridge logistic | External- | cancer AUC's
regression, test sets 0f 0.759 and
SVM and RF and 0.641 for
with soft cohorts overall
voting survival and
algorithm clinical
benefit
respectively.
External test
set: median
pan-cancer
AUC of
0.725 for
overall
survival
Predicts response | RF Modelling- | Internal Internal: Moderate [178]
to SCIT ML Algorithm and AUC of
External 0.899 and
cohort External:
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AUC of
0.893
Predicts clinical RF Algorithm Internal Accuracy of Moderate [169]
response to the different
Adalimumab and models
Etanercept therapy ranged
in RA patients between
79%-88%
Predicts response | RF Algorithm | External | AUC of 0.71 Moderate.
to Fingolimod test set
therapy in MS
patients
Predicts response Linear External | AUC values Moderate [180]
to TNF inhibitor Regression, cohort of 0.7 and
therapy in RA RF, XGBoost 0.71
patients and CatBoost

Abbreviations: Al: Artificial intelligence; anti-PD-1: Anti—programmed cell death protein 1; PD-L1: Programmed death-ligand 1;
NSCLC: Non-small cell lung cancer; CNN: Convolutional neural network; SVM: Support vector machine; RF: Random forest; RF-ML:

Random forest-based machine learning; ML: Machine learning; AUC: Area under the curve; ICI: Immune checkpoint inhibitor; RA:
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Rheumatoid arthritis; T1D: Type 1 diabetes; TIDM: Type 1 diabetes mellitus; MS: Multiple sclerosis; LASSO: Least absolute shrinkage
and selection operator; XGBoost: Extreme gradient boosting; CatBoost: Categorical boosting algorithm; REFLECT: Name of an Al
framework combining sparse hierarchical clustering and LASSO; StepCox: Stepwise Cox proportional hazards regression; w.r.t.: With
respect to; birSCA: Binary improved sine cosine algorithm; DFSSSA: Disperse Foraging Strategy Salp Swarm Algorithm; KELM:
Kernel Extreme Learning Machine; DFSSSA-KELM: Disperse Foraging Strategy Salp Swarm Algorithm—Kernel Extreme Learning
Machine; RSF: Random survival forest; DL: Deep learning; NLP: Natural language processing; SimTA: Deep learning model with
temporal attention module; SCIT: Subcutaneous immunotherapy; TNF: Tumor necrosis factor; SCORPIO: Ensemble prognostic model

(ridge logistic regression, SVM and RF with soft voting).
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Charles Maitland Edward Jenner

' Elias Metchnikoff Emil von Behring and Jacques Miller and
developed the first
observeq low-do;e clinica[l)ly offective demonstrated the Shibasabura Kitasato Max Cooper
smallpox inoculation cellular defense showed that serum discovered the T and
protected children vaccine, against mechanism- from infected animals _ Blymphocytes
from future infection cowpox[1]. phagocytosis [4]. could prevent and treat illuminating the concept

[1,2]. of acquired immunity

diphtheria [3].

113].
Wilhelm Busch and William Coley Search for cancer The role of immune
Friedrich Fehleisen demonstrated tumor cell specific system in combating
independently regression by injecting antibodies began.  cancer was established
observed regression m m
of tumors in patients heat-inactivated The Hybridoma i 5
. A umor antigens, TCR
sced erysipelas bacteria into technique for producing ' [11], CTLA-4 [13], IFN
erysipelas [1]. cancer patients [1]. mAbs was developed and IL-2 [15] were
[10]. discovered.

Evidence for tumor-

associated antigens

emerged [5, 6, 7]

Thomas and Burnet

proposed the cancer

theory 1057 (8,5,

10].

Figure 1. Chronological overview of landmark discoveries that shaped modern
immunology and immunotherapy. The upper panels trace the recognition of
infectious diseases and host defence mechanisms—from early variolation and
Jenner’s smallpox vaccination, through the germ theory of disease, discovery of
phagocytosis, antibodies and serum therapy, to the identification of T and B
lymphocytes. The lower panels highlight pivotal advances in cancer immunotherapy,
including observations of infection-induced tumour regression, the therapeutic use of
BCG, the description of tumour-associated antigens and cancer immunosurveillance,
the advent of hybridoma technology and monoclonal antibodies, and the discovery of
TCR, CTLA-4 and key cytokines that enabled modern immune-based therapies. Dates
indicate the approximate time of each discovery; bracketed numbers correspond to the
primary references cited in the Historical Perspective section. Figure created by the
authors from cited sources. Abbreviations: BCG: Bacillus Calmette—Guérin; TCR: T-

cell receptor; CTLA-4: Cytotoxic T-lymphocyte-associated protein 4.

63



Corticosteroids

* Earliest used

immunosuppressants

* Glucocorticoids or

their synthetic analogs

* Downregulate the

expression of pro-
inflammatory genes
and production of

Common Forms of Immunotherapy

Immunosuppressive

T-cell
Inhibitors/Inhibitors
of Cytokine
Production/ Co-
stimulatory signal
blockers

* Block either
calcineurin activity,
m-TOR signaling or
co-stimulation

* Common co-
stimulatory blockers
are CD-28 and CD-80
antagonists

e LowerlL-2
production, T-cell

Anti Proliferative/
Cytotoxic agents

* Target rapidly

proliferating cells by
impairing the
synthesis and
structural stability of
DNA

¢ Primarily used against

cancer, but also used
in treating
autoimmune diseases
and preventing organ

Immunomodulating

Cytokine Therapy

« Signaling proteins

maintaining immune
system homeostasis

* Restoration or

obstruction of
specific cytokines

* Can have immuno-

suppressive or
immunostimulatory

Immunostimulatory

Vaccines

* Oldest and the most

successful form of
immunotherapy

Preparations of an
inactivated form of
the causative
organism or its
product

* Primarily used for

protection against

lymphocytes proliferation and transplant rejection effects depending on exogenous
activation the type of cytokine pathogens
used/targeted

Figure 2. Schematic overview of common forms of basic immunotherapy,
grouped according to their predominant effect on the immune system.
Immunosuppressive approaches include corticosteroids, T-cell inhibitors that block
calcineurin, mTOR signalling or co-stimulation (CD28/CD80 antagonists), and anti-
proliferative/cytotoxic agents used in cancer, autoimmune disease and prevention of
allograft rejection. Immunomodulating approaches comprise cytokine therapy, which
restores or blocks specific signalling proteins to re-establish immune homeostasis, and
allergen immunotherapy, which gradually increases allergen exposure (e.g. via SCIT
or SLIT) to induce long-term tolerance and reduce IgE-mediated hypersensitivity.
Immunostimulatory approaches are exemplified by vaccines, in which inactivated or
attenuated pathogens or their components are administered to elicit durable protective
immunity against subsequent infections. Figure created by the authors from cited
sources. Abbreviations: IgE: Immunoglobulin E; SCIT: Subcutaneous
immunotherapy; SLIT: Sublingual immunotherapy; mTOR: Mechanistic target of

rapamycin.
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CD8+T cells expressing a CAR with Co-stimulatory domains- )
. A Extracellular CD4 replaced with
CD4 as the ext'racellular domain .and Intracellular (;Dzs or CD137 added ScFv of bNAbs from HIV patients
CD3Z as the intracellular domain to the original CAR construct

CD4 serves as a natural co-receptor  Resulted in superior control over HIV.  bNAbs enable targeting multiple HIV RDEEEID MM CmEls e [Hm

display Increased cytotoxicity against

for HIV binding. (r;;)cl)isiit:;n and increased levels of  strains. HIV infected cells [66].
Were observed to be safe in clinical The anti-viral potency varies widely o pii iomifi o
. Were prone to HIV infection and X X xhibit significant reduction in latent
studies. across the different strains [65]. i :
elimination [65, 66, 67]. el viral reservoir [68].

Inability to mediate substantial and
permanent decrease of viral load
[66].

Resistant to HIV infection due to
absent CCR5 [65].

2nd 3rd

qst

Generation Generation

Generation

Figure 3. Evolution of anti-HIV CAR-T cell designs and their clinical
development status. First-generation products comprised CD8" T cells expressing a
CD4-based CAR, in which the CD4 extracellular domain was linked to an
intracellular signalling module derived from the native T-cell receptor complex.
These constructs were safe in early trials but failed to induce substantial, durable
reductions in viral load. Second-generation CAR-T cells incorporated an additional
intracellular co-stimulatory domain (CD28 or CD137) into this backbone, resulting in
superior control of HIV replication and increased cytokine secretion, but the cells
remained susceptible to HIV infection and elimination. Third-generation constructs
replaced extracellular CD4 with single-chain variable fragments from bNAbs,
enabling recognition of multiple HIV strains, although antiviral potency varied
between specific bNADbs. “Next-generation” strategies, currently in pre-clinical and
early clinical evaluation, include trispecific CAR-T cells and CXCR5* CAR-T cells
with CCRS knocked out, designed to recognise multiple epitopes on Env, home to
lymphoid HIV reservoirs, enhance cytotoxicity against infected cells and resist de
novo HIV infection. Figure created by the authors from cited sources. Abbreviations:
CAR-T: Chimeric antigen receptor T cell; HIV: Human immunodeficiency virus;
bNAb: Broadly neutralizing antibody; scFv: Single-chain variable fragment; Env:
Viral envelope glycoprotein; CXCRS: C-X-C chemokine receptor type 5; CCRS: C-C

chemokine receptor type 5.
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