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ABSTRACT

Coronary artery disease (CAD) represents a complex interplay of genetic, environmental,

and lifestyle factors. In this study, we utilized whole-exome sequencing (WES) on 28

patients with obstructive CAD to identify rare variants that may influence clinical

outcomes beyond conventional atherosclerotic risk. We examined 74 genes curated from

the Genomics England PanelApp, focusing on familial hypercholesterolemia (FH),

cardiac arrhythmias (CA), and pulmonary arterial hypertension (PAH), ultimately

detecting 8,251 variants. After applying a stringent filtering process with a population

maximum allele frequency (PopMax AF) threshold of <0.1%, we identified 68 candidate

variants across 23 genes. The majority were associated with CA (47/68, 69%), followed

by PAH (12/68, 18%) and FH (9/68, 13%). Notably, 30 variants (44%) were novel, and

18 were categorized as high-impact frameshift mutations. The highest burden of

candidate variants was found in the sodium voltage-gated channel alpha subunit 10

(SCN10A), followed by the ryanodine receptor 2 (RYR2), mitochondrial seryl-tRNA

synthetase 2 (SARS2), A-kinase anchoring protein 9 (AKAP9), and hyperpolarization-

activated cyclic nucleotide-gated channel 4 (HCN4). Clinical evaluation revealed a

pathogenic variant in the low-density lipoprotein receptor (LDLR) and likely pathogenic

variants in sodium voltage-gated channel alpha subunit 5 (SCN5A) and potassium

voltage-gated channel subfamily Q member 1 (KCNQ1); additionally, nine other variants

were predicted to be deleterious, including five novel SCN10A variants. Functional

annotation using Gene Ontology (GO) and Human Phenotype Ontology (HPO)

highlighted mechanisms impacting cardiac structure, electrical conduction, and lipid

homeostasis.

Keywords: Whole exome sequencing, coronary artery disease, familial
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INTRODUCTION

Cardiovascular diseases (CVDs), particularly coronary artery disease (CAD), remain a

leading cause of global morbidity and mortality, accounting for approximately 17.9

million deaths annually [1]. The pathogenesis of CAD is multifactorial, involving a

complex interplay of genetic predisposition, environmental influences, and lifestyle

factors such as hypertension, hyperlipidemia, obesity, and type 2 diabetes mellitus

(T2DM) [2]. Despite advances in diagnostics and therapeutics, a significant proportion of

CAD cases exhibit unexplained genetic susceptibility, suggesting the involvement of rare

and novel genetic variants that may contribute to disease progression. Recent advances in

next-generation sequencing (NGS), particularly whole-exome sequencing (WES), have

revolutionized the identification of disease-associated genetic variants, enabling a deeper

understanding of molecular mechanisms underlying complex disorders like CAD [3].

WES provides a high-resolution approach to detect coding-region variants, including

pathogenic and likely pathogenic mutations, which may influence disease risk and

progression. Previous studies have implicated genes associated with familial

hypercholesterolemia (FH), cardiac arrhythmias, and pulmonary arterial hypertension

(PAH) in CAD pathogenesis, yet the full spectrum of genetic contributors remains

incompletely characterized [4,5].

Our study aimed to identify rare and novel variants with potential clinical significance

and characterize their functional impact via gene ontology (GO) and human phenotype

ontology (HPO) analyses. We employed whole-exome sequencing in a CAD cohort to

systematically analyze 74 genes across three clinically relevant panels (FH, cardiac

arrhythmias, and PAH). By integrating genomic discovery with phenotypic annotation,

this research study advances the understanding of CAD’s genetic architecture and

provides a framework for translating WES findings into clinical practice.

MATERIALSAND METHODS

CAD patient cohort

The research followed Helsinki declaration guidelines and received ethical approval from

the University of Tabuk Research Ethics committee under the reference number (# UT-



4

91-23-2020). Twenty-eight patients with confirmed CAD participated in this study. Every

participant signed consent papers that were provided to them. We included the patient

from the King Fahad Specialist Hospital, Tabuk, KSA who underwent elective

angiography for diagnosis of the stable angina. Various clinical tests were performed on

the study participants including X-rays as well as exercise stress tests and myocardial

perfusion imaging and ambulatory electrocardiography and Holter monitoring and chest

echocardiogram and computerized tomography coronary angiography and multigated

acquisition scans (MUGA). CAD was defined based on clinical symptoms (stable or

unstable angina) and confirmed by invasive coronary angiography. Inclusion required

macrovascular disease with ≥50% luminal diameter stenosis in at least one of the three

major coronary arteries (LAD, LCx, or RCA). These 28 patients were selected

consecutively from a larger registry to ensure a representative sample of symptomatic

obstructive CAD. Clinical diagnosis of specific arrhythmias, PAH or FH was not an

inclusion criterion, and these phenotypes were not systematically assessed.

Genomic DNA preparation and sequencing

High-quality human genomic DNA served as the source material for this investigation.

Library preparation adhered to the protocol detailed in the Twist Human Core Exome 2.0

Kit instruction manual. Sequencing was performed on the Illumina NovaSeq 6000

platform, following the manufacturer's recommended procedures.

Quality control and preprocessing of sequencing data

The raw sequencing read quality was initially assessed using FastQC (v0.11.9) [6] to

ensure data reliability. Subsequently, TrimGalore (v0.6.6) was employed to remove

sequencing adapters and low-quality bases, yielding high-quality (HQ) reads for

subsequent analyses. Cleaned reads were aligned to the human reference genome

GRCh38 using the Burrows-Wheeler Aligner (BWA-MEM, v0.7.17). Duplicate reads

were marked using Picard Tools (v2.23.8).
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Variant calling and annotation

Variant discovery was performed using the Genome Analysis Toolkit (GATK) v4.3 [7],

which implements the best practice pipeline. Base quality score recalibration (BQSR)

was performed using known indel and SNP sites from the dbSNP and Mills and 1000G

gold standard sets. Variant calling was performed per-sample using GATK

HaplotypeCaller (v4.1.9.0) in gVCF mode. Samples were then jointly genotyped using

GATK GenotypeGVCFs. Initial variant filtering was performed using GATK Variant

Quality Score Recalibration (VQSR), with tranche sensitivity set to 99.5% for SNPs and

99.0% for indels. Hard filtering was applied to variants failing VQSR, using thresholds

such as QD < 2.0, FS > 60.0, and MQ < 40.0 (for SNPs). The final callset exhibited a

Transition-to-Transversion (Ti/Tv) ratio of 1.99 and an average call rate of 99%. Pedigree

checks were performed to ensure no unexpected relatedness, and sex checks confirmed

the reported gender.

The identified variants underwent comprehensive annotation using a variety of databases

and tools to facilitate biological and clinical interpretation. The RefSeq database was

utilized for gene identification and variant characterization. Variant annotation was

performed using the Ensembl Variant Effect Predictor (VEP), providing detailed

information regarding functional and biological consequences [8]. Default VEP

annotations were supplemented with several plugins, including dbNSFP [9], CADD[10],

and Phenotypes [11], to enhance the quality of annotation. Potential disease associations

of variants were investigated using publicly available databases such as OMIM [12],

ClinVar [13], and UniProtVar [14]. Population allele frequency data were obtained from

the 1000 Genomes Project [15] and gnomAD [16] (including both exome and genome

datasets) to effectively distinguish rare variants from common polymorphisms. For

functional prediction of mutations, tools integrated within dbNSFP, such as SIFT [17],

PolyPhen [18], FATHMM [19], MutationTaster [20], MutationAssessor [21], and

PROVEAN [22], were employed. Missense variants were further annotated using CADD

scores. The SIFT-indel tool [23] was applied to evaluate the functional impact of InDels.

Furthermore, only canonical transcript-dependent consequences were retained in the final

VEP-annotated file to ensure consistency and relevance in downstream analyses.
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Filtering and classification of variants

To identify clinically relevant variants associated with cardiovascular disease, genes

linked to "Cardiac arrhythmias," "Familial hypercholesterolaemia," and "Pulmonary

arterial hypertension" were prioritized using the Genomic England Panel App [24]. We

utilized these gene panels typically used for FH, Arrhythmias, and PAH to identify

potential genetic overlap or secondary risk factors in patients presenting primarily with

CAD. Variants within these genes were selected for further investigation.

A multi-step filtering process was implemented to ensure the clinical relevance of the

identified variants. Variants exhibiting a population frequency of 1% or less in databases

such as gnomAD and the 1000 Genomes Project were retained. The analysis was

restricted to protein-coding regions and canonical splice sites, prioritizing variants with

"HIGH" or "MODERATE" VEP impact. Given the exploratory nature of this study,

variants were further filtered using a stringent popmax Allele Frequency (popmax AF)

threshold of < 0.1% across all gnomAD subpopulations to enrich for ultra-rare variants

while accounting for potential under-representation of the Middle Eastern population.

A comprehensive annotation strategy was employed to assess the potential clinical

implications of the filtered variants. Variants were annotated using clinical databases,

including ClinVar and UniProtVar, to leverage existing clinical knowledge. Furthermore,

a combination of standalone and ensemble in silico prediction tools, encompassing SIFT,

PolyPhen-2, FATHMM, MutationTaster, MutationAssessor, CADD, PROVEAN, and

SIFT-Indels, was utilized to predict the impact of nonsynonymous variants, indels, and

frameshift variants.

Based on the combined information derived from clinical databases and in silico

predictions, variants were classified into five categories: Benign, Likely Benign, Variant

of Unknown Significance (VUS), Likely Pathogenic, and Pathogenic. This classification

process prioritized clinical data over in silico predictions. In conflicting clinical

annotations, in silico predictions were consulted to establish a final classification. For

variants absent in clinical databases, stringent criteria based on CADD scores (≥20 for

deleterious) and in silico tool predictions (consensus from at least three tools) were

applied to classify them as predicted deleterious. Variants not meeting these criteria were

classified as VUS.
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Functional annotation of candidate variant genes

To elucidate the functional impact of the identified VUS, pathogenic, and likely

pathogenic variants, the g:Profiler webserver [25] was utilized for enrichment analysis.

This tool facilitates the systematic exploration of gene sets, identifying overrepresented

Gene Ontology (GO) terms. By focusing on Gene Ontology - Biological Process (GO:BP)

terms, Reactome Pathways, and Human Phenotype Ontology, the aim was to uncover the

specific molecular and cellular processes influenced by these variants and their potential

contribution to cardiovascular disease. The g:SCS (Gene set size corrected) method was

used for multiple testing correction. Crucially, we note that the results are presented as

descriptive functional annotation due to the pre-selected nature of the gene panels, and

not as proof of statistical enrichment.

Ethical approval and consent to participate

The study was approved by the institutional ethics committee at the University of Tabuk

(Number # UT-91-23-2020). All the participants provided written informed consent

before their participation in the study.

RESULTS

CAD cohort characteristics

This study enrolled 28 patients diagnosed with coronary artery disease (CAD), providing

a detailed profile of this specific cohort. The median age of participants was 53 years,

with an interquartile range (IQR) of 40-63 years, indicating a relatively wide age

distribution. The study population exhibited a strong male predominance, with 86% of

participants being male. Most participants resided in urban areas (75%) and were

unemployed (54%). Educational data was available for 16 participants, revealing that

25% had received formal education, while 32% were uneducated. Analysis of

cardiovascular risk factors revealed that 57% of participants were non-smokers, while

43% were current smokers. A substantial proportion of patients presented with

established cardiovascular risk factors, including hypertension (54%) and hyperlipidemia

(46%). Furthermore, over half of the participants were classified as overweight or obese

(54%), and a similar proportion had a diagnosis of diabetes (54%). Regarding angina
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presentation, the majority (71%) experienced stable angina, while 29% presented with

unstable angina. A history of myocardial infarction (MI) was reported in 36% of the

participants, with 14% experiencing ST-elevation myocardial infarction (STEMI), 14%

experiencing non-ST-elevation myocardial infarction (NSTEMI), and 3.6% having

previously undergone coronary artery bypass grafting (CABG). A familial history of

cardiovascular disease was present in 36% of the study population.

Laboratory analysis provided a detailed metabolic and hematologic profile of the

coronary artery disease patients. The cohort exhibited a pronounced dyslipidemic pattern

characteristic of elevated cardiovascular risk. Cholesterol levels were suboptimal in a

significant proportion of patients. Nearly half (43%, n=12) presented with high total

cholesterol, with a median level of 215 mg/dl. Only 54% (n=15) maintained levels within

the optimal range, while a single patient (3.6%) was borderline. This pattern was

particularly marked for low-density lipoprotein cholesterol (LDL-C), the primary

atherogenic lipid fraction. The vast majority of patients (89%, n=25) had elevated LDL-C

levels, with a median of 142 mg/dl. Optimal LDL-C was observed in only two patients

(7.1%). High-density lipoprotein cholesterol (HDL-C), the protective lipid fraction,

showed a median level of 45 mg/dl. While half of the cohort (50%, n=14) had optimal

HDL-C, a concerning 29% (n=8) displayed levels below the desired range. Triglyceride

levels were markedly elevated, with a median of 217 mg/dl. The cohort was evenly split,

with precisely 50% of patients exhibiting high triglyceride levels. The C-reactive protein

was positive in 32% (n=9) with a median of 2.23 mg/dl. The median hemoglobin level

was 14.24 g/dL. A comprehensive summary of the patient characteristics of the study

cohort is presented in table 1.

Identified variants in the cohort

Whole-exome sequencing analysis of the study cohort identified variants within 74 genes

that overlapped with the pre-defined GenePanel. This analysis generated a total of 8251

variants across the cohort. When categorized by the associated condition, 1020 variants

were related to gene panel of Familial hypercholesterolemia, 5632 to Cardiac arrhythmias

gene panel, and 1599 to Pulmonary arterial hypertension gene panel.
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Analysis of variant distribution by genomic location revealed that the majority of these

variants were either intronic (37%) or synonymous (20%). Among the remaining variants,

991 were missense variants (12%), 1197 were located in the 3' UTR, 143 in the 5' UTR,

and 18 were frameshift variants. Notably, 180 variants (2%) were classified as novel, as

they had not been previously reported in public databases such as dbSNP or COSMIC.

Variant Effect Predictor (VEP) impact categorization assigned 21 variants as high impact,

2433 as low impact, 1103 as moderate impact, and 4694 as modifier impact. In this initial,

unfiltered variant dataset, the most frequently mutated genes were RYR2, followed by

AKAP9, CACNA1C, LDLR, and PCSK9. The methodology employed in the study to

identify the candidate variants is illustrated in Figure 1. A key summary of the identified

variants within the study cohort is provided in Figure 2.

Candidate variant detection and classification

After applying initial filters based on population frequency and VEP impact, we refined

the dataset further. By using a strict PopMax Allele Frequency (AF) threshold, we

significantly limited the investigation's scope. This approach effectively removed

common variations and noise, resulting in 68 possible rare variants spread across 23

different genes for further analysis. A notable proportion of these candidates, 30 variants

(44%), were novel, meaning they had not been previously documented in public

databases. The predominant variant type was missense (n = 42, 62%), followed by

frameshift mutations (n = 18, 26%). The remaining variants encompassed inframe indels,

stop gain mutations, splice site variants, and other protein-altering variations. To evaluate

the potential clinical relevance of these candidate variants, annotations were generated

using ClinVar, UniProtVar, and a range of in silico prediction tools. This assessment

resulted in the classification of the variants into distinct categories. Variants of unknown

significance (VUS) constituted the largest group (n = 51; 75%), highlighting the need for

further investigation to elucidate their clinical implications. Other classifications included

likely benign (LB, n = 4; 6%), benign (B, n = 1; 1.5%), Predicted deleterious (D, n =9;

13%), likely pathogenic (LP, n = 2; 3%), and a single pathogenic variant (P, n = 1; 1.5%).

The majority of classified variants were associated with the gene panel of Cardiac

arrhythmias (n = 47; 69%), Pulmonary arterial hypertension (n = 12; 18%) and Familial

hypercholesterolaemia (n = 9; 13%). The SCN10A gene (n = 9) harbored the highest
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number of candidate variants, followed by RYR2, SARS2, AKAP9, and HCN4. A

comprehensive overview of the candidate variants identified in each sample is presented

in Figure 3.

Rare and potentially pathogenic variant identification

A detailed analysis of the candidate variants identified 12 variants classified as either

pathogenic (n = 1), likely pathogenic (n = 2) or predicted deleterious (n = 9), suggesting a

potential role in the development of cardiovascular disease. These variants were observed

in 8 individual patients, with each patient carrying at least one such variant. Notably, 11

of these variants were unique to individual patients, while one variant, TRPM4

(ENST00000252826.10:c.247dup), was recurrent, and identified in two separate patients.

In the context of Familial hypercholesterolemia, the LDLR variant (rs879254847;

ENST00000558518.6:c.1255T>G) was classified as pathogenic in one patient. A

comprehensive summary of the unique pathogenic, likely pathogenic and predicted

deleterious variants identified within this cohort is provided in Table 2.

Functional characterization of candidate variants

To further investigate the functional implications of the identified pathogenic, likely

pathogenic, and VUS variants, a comprehensive functional annotation analysis was

conducted using Gene Ontology (GO), Reactome Pathways, and Human Phenotype

Ontology (HPO). The GO:BP analysis highlights a concentration of genes involved in

cardiac muscle cell action potential (p = 1.2 X 10-16) and metal ion transport (p = 4.2 X

10-9), driven by key regulators such as KCNQ1, SCN5A, and KCNH22. Reactome

pathway analysis further supported these findings, demonstrating enrichment in pathways

related to Cardiac Conduction (p = 1.6 × 10-7), Muscle Contraction (p = 3.6 × 10-6), Phase

3 - Rapid Repolarisation (p = 1.6 × 10-7) and LDL Clearance (p = 9.7 × 10-4).

The functional annotation by HPO provided insights into the potential clinical

manifestations associated with these variants. The genes were significantly enriched for

phenotypes related to severe cardiac dysfunction, including Cardiac Arrest (p = 5.7 × 10-

15), Sudden Cardiac Death (p = 3.6 × 10-13), Prolonged QTc Interval (p = 6.9 × 10-13), and

Ventricular Fibrillation (p = 1.2 × 10-12). Functional annotation of the candidate genes

confirmed that the identified variants fall into primary functional categories related to
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cardiac muscle function, ion transport, and lipid metabolism, which is consistent with the

initial selection criteria of the gene panels. Figure 4 provides a visual representation of

the aggregated GO terms, Reactome pathways, and HPO terms, illustrating the functional

impact of the identified variants. Collectively, these annotations, summarized in Table 3,

confirm the high functional relevance of the identified variants in maintaining cardiac

rhythm and their potential contribution to severe arrhythmic phenotypes.

DISCUSSION

The third most common cause of death globally is coronary artery disease. It is reported

that an estimated 17.8 million people die every year from the disease and those with

existing conditions have a poor quality of life. According to global statistics, 315 million

incidence of CAD were reported to exist in 2022 [26,27]. The origin of CAD shows a

complex interweaving of modifiable and non-modifiable risk factors in its multifactorial

etiology. Atherosclerosis often starts in younger individuals and is influenced by a range

of factors, with abnormal lipid metabolism being a primary contributor. As people age,

the severity and prevalence of CAD tend to rise, particularly in those over the age of 75,

who are at a higher risk of experiencing multi-vessel CAD [28]. The median age of the

current cohort was 53 years which represents a CAD burden on a relatively younger

population. However, it is believed that an optimal management of the modifiable risk

factors can mitigate the effects of non-modifiable risk factors in CAD. A preventive

program for individuals at 70 years of age who were at higher risk of CVD, demonstrated

a substantial risk reduction of 13-20% due to improved hypertension and

hypercholesterolemia management [29]. In human biology, variations between sexes

stem from a complex interaction among sex chromosomes, sex hormones, and

environmental influences. These factors can lead to different activation of molecular

mechanisms, ultimately affecting how CAD and atherosclerosis manifest phenotypically.

Considering the physiology of sex hormones, estrogens and androgens (estradiol and

testosterone) both function via estrogen and androgen receptors, which are expressed in

both male and female sex and are typically present in all cardiovascular tissues [30].

Estrogen is believed to have a protective role against atherosclerosis, which is considered

to account for the lower incidence of cardiovascular disease in premenopausal women,
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the risk of which increases after menopause [31]. Further our study shows a higher

incidence of CAD in males than in females, highlighting a natural gender-based

predisposition to the disease. Traditionally, it has been thought that CAD predominantly

impacts men, as both morbidity and mortality rates are higher in men, while women

generally experience lower incidence rates [32]. However, it is understood that since

women are typically diagnosed with CAD 10 years later than men, this could result in a

higher comorbid conditions associated with severity when the disease is diagnosed [33].

Moreover, studies have shown that atherosclerotic plaques in women are typically fibrous

and stable, while those in men are often more atheromatous with higher levels of

inflammatory cells, calcification, lipids, and hemorrhage [34].

The study shows an established pattern of pathological risk factors like hypertension,

hyperlipidemia, obesity, type-2 DM and familial history which were observed in

substantial proportion of the CAD cohort. Elevated blood pressure is a significant

modifiable risk factor for all forms of CAD. Hypertension is considered among the most

critical risk factors in CAD, contributing to 90% of the attributable risk for myocardial

infarction in men and 94% in women [35]. The pathophysiological mechanisms through

which blood pressure is incorporated as a risk factor for CAD are intricate. This

encompass the impact of blood pressure as a physical force that affects the formation of

atherosclerotic plaques, as well as the link between pulsatile hemodynamics, arterial

stiffness, and coronary perfusion [36]. Treating arterial hypertension has been shown to

reduce the risk of coronary events in individuals without CAD [37]. It is believed that the

benefits of lowering the blood pressure in patients with existing CAD are greater than

those of specific medications. Research suggests that the risk of death in CAD from heart

disease caused by narrowed arteries is lower when systolic blood pressure is at 115

mmHg and diastolic blood pressure is at 75 mmHg. Also, lowering systolic blood

pressure by 20 mmHg can reduces the risk of mortality from this disease by 33–50% for

both men and women of all ages between 40 and 89 years [38]. Higher levels of serum

lipids like LDL cholesterol and triglycerides are known to increase the risk of heart

disease caused by plaque accumulation in arteries [39]. Sometimes, hyperlipidemias are

due to lifestyle, but studies have found that genetic variations also exhibit an important

role [40]. About half of people with early-onset CAD have dyslipidemia and a family
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history, mostly with high LDL cholesterol and/or triglycerides [41]. An interesting study

showed that the lipidomic profiles in hyperlipidemias with a family history closely

resembled those found in population-based hyperlipidemias, indicating that the

underlying mechanisms are similar and have significant overlap [42]. The study further

showed that the risks of CAD are remarkably similar, irrespective of whether

hyperlipidemic individuals were sourced from families with a high prevalence of the

same hyperlipidemia or from the general population. The development of coronary heart

disease is independently associated with obesity, and it is understood that reducing

weight improves the risk factors for CHD and is associated with a better prognosis

[43,44]. Interestingly there is evidence in literature that obesity that is metabolically

healthy is defined by the lack of cardiometabolic risk factors, such as insulin resistance,

dyslipidemia, hypertension, and type 2 diabetes. There does not appear to be a higher risk

of atherosclerosis in such a phenotype. However according to some research, people who

are obese but metabolically healthy may later acquire metabolically unhealthy obesity

[45,46]. In addition to diabetes by itself being a significant independent risk factor,

several pathologies commonly linked to type 2 diabetes, such as hypertension and

dyslipidemia, are well-known risk factors for atherosclerotic cardiovascular disease [47].

Through processes like the production of advanced glycation end products and elevated

oxidative stress, hyperglycemia plays a role in the development of cardiovascular disease

[48]. We know that the development of coronary artery disease progressing to heart

failure is significantly influenced by insulin resistance and hyperglycemia [49].

Managing individual cardiovascular risk factors can help prevent or reduce the onset of

CAD in people with diabetes, according to a multitude of evidence [50]. Moreover,

significant advantages are observed with indications of enduring benefits when multiple

cardiovascular risk factors-glycemic control, blood pressure management, and lipid

regulation-are managed simultaneously [51]. A family history of CAD is a well-

recognized cardiovascular risk factor that is gaining importance in the stratification of

patients' cardiovascular risk, moving beyond its traditional role as a modifier of disease

[52]. It is widely recognized that first-degree relatives of individuals affected by CAD,

particularly siblings, have a significantly higher risk of developing the disease at a

younger age [53]. Recent guidelines published by the CCS and ESC now include family
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history of CAD as a relevant criterion for calculating risk factor-weighted clinical

likelihood (RF-CL) during pre-test assessments, highlighting the significance of this

medical history [54].

Genetic variability is recognized to influence cellular mechanisms leading to

susceptibility outcomes that can either elevate or reduce the risk of various complex

diseases such as CAD [55]. Whole-Exome Sequencing, a technique employed for genetic

correlation studies, can assist in detecting molecular abnormalities associated with the

relevant pathology [56]. Next-generation whole exome sequencing in our cohort has

identified a total of 8251 variants in 74 genes across the cohort. These were categorized

within gene panels for familial hypercholesterolaemia, cardiac arrhythmias and

pulmonary arterial hypertension. From these, 180 variants (2%) were classified as novel

and 21 variants were assigned as high impact in VEP. Post filtering variants in genes

associated with Cardiac arrhythmias (n = 47; 69%) accounted for the majority of

identified candidates, followed by those in pulmonary arterial hypertension (n = 12; 18%)

and familial hypercholesterolemia (n = 9; 13%).While our cohort consisted of patients

with primary coronary artery disease, we identified a significant burden of variants in

genes canonically associated with cardiac arrhythmias (e.g., SCN10A, ANK2) and

pulmonary hypertension. It is important to note that the presence of these variants does

not necessarily imply an active clinical diagnosis of arrhythmia or PAH in these patients.

Instead, these findings may represent a latent genetic susceptibility. In the context of

ischemic heart disease, such variants could act as distinct risk modifiers, potentially

lowering the threshold for arrhythmias under ischemic stress or influencing long-term

prognosis. Carrying a hidden 'pro-arrhythmic' genetic burden, such as in SCN5A or

KCNQ1, may lower the threshold for ventricular fibrillation during an ischemic event.

This might help explain the high risk of sudden cardiac death in certain groups of CAD

patients. Likewise, PAH-associated variants may confer a genetic predisposition to

harmful vascular changes. These changes can affect how the coronary vasculature reacts

to long-term ischemia. This highlights the value of multi-panel WES in uncovering

'silent' genetic risks that single-phenotype screening might fail to recognize.

Evidence of molecular etiology have demonstrated that microstructural abnormalities

(e.g., partial or complete lack of structures, fatty and/or fibrous replacement of normal
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tissues, calcification) or functional abnormalities of the action potential may be the

primary cause of arrhythmogenic diseases [57]. Diagnostic tachycardias or bradycardias

may be caused by a genetic predisposition to these pathophysiological alterations. In fact,

after reports of familial clustering of the most prevalent cardiac arrhythmias, genetic

predisposition to cardiac arrhythmias has been confirmed [58]. Serum LDL cholesterol at

an elevated level and a higher risk of coronary artery disease are linked to familial

hypercholesterolemia, which is regarded as a Mendelian disorder [59]. The disease is

caused by pathogenic DNA variations in any of the three associated genes, LDLR, APOB,

or PCSK9. Large-scale population research using gene sequencing have found that

familial hypercholesterolemia mutations are present in 0.2% to 0.5% of the general

population and up to 2% of individuals with early-onset CAD [60]. A pathogenic variant

in LDLR gene has been identified in this study, which is related to familial

hypercholesterolemia. Chronic hypertension can cause myocardial infarction, atrial

fibrillation, congestive heart failure, and left ventricular hypertrophy, among other

detrimental alterations in the anatomy and physiology of the heart [61]. The identification

of many Mendelian types of hypertension has been essential in comprehending the

mechanisms that control blood pressure and increases the risk of coronary artery disease

[62].

Our analysis found APOB gene harboring the highest number of candidate variants,

followed by SCN10A, AKAP9, ANK2, and RYR2. Apolipoprotein B (APOB) is known

to play an important role in lipoprotein assembly and secretion, including VLDL and

LDL [63]. Higher levels of APOB have been linked to an increased risk of CAD [64].

Such high APOB levels imply a greater number of atherogenic particles in circulation, a

known driver of atherosclerosis, consistent with the clinical presentation of our cohort.

Several variants in the APOB gene have been studied for their link to CAD and other risk

factors. These polymorphisms can affect APOB levels, lipid profiles, and CAD risk. For

example, the APOB gene polymorphism c.12669G>A, which results in the amino acid

substitution p.Gln4154Lys, has been studied in various populations [65]. A study in the

Indian population found that the frequency of the R-(mutant) allele was significantly

higher in CAD patients compared to healthy controls [65]. Another study in Mexican

patients with CAD found that the frequency of the X+/X+ genotype in Xba I
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polymorphism of the APOB gene was significantly higher in CAD patients compared to

controls [66]. Also the R3500Q mutation in the APOB gene is responsible for familial

defective apolipoprotein B-100, which is associated with increased LDL-C levels and

coronary artery calcification. A study in the Old Order Amish population found a high

carrier frequency of the R3500Q mutation (12%) and consequently the carriers of the

mutation had significantly higher LDL-C levels and a higher odd of having detectable

and extensive coronary artery calcification [67]. The SCN10A gene encodes a protein

Nav1.8which functions as a voltage-gated sodium channel that regulates nerve and

muscle cell excitability [68]. The protein belongs to the voltage-gated sodium channel

family, which is responsible for the rapid influx of sodium ions into cells during the

rising state of the action potential. Certain common and rare SCN10A variations have

been linked to Brugada Syndrome, a hereditary channelopathy caused by genetically

programmed loss-of-function in the cardiac sodium channel [69]. An allele, rs6795970

(V1073), has been demonstrated to enhance the incidence of the syndrome by causing

electrophysiological abnormalities such as a positive shift in steady-state activation and

slower recovery after inactivation [70]. Interestingly our study has identified five novel

variants in SCN10A which have been classified as predicted deleterious. SCN10A is

functionally related to cardiac arrhythmias. These novel variants warrant further

investigation to understand their role in modulating cardiovascular risk or susceptibility

to arrhythmic events in CAD patients. A-kinase anchoring protein 9 (AKAP9) is a

scaffolding protein involved in cellular signaling particularly with cAMP/PKA pathways

and has been implicated in various diseases, including cardiovascular conditions [71].

These control the intensity, duration, and compartmentalization of nucleotide-dependent

signaling, thereby establishing local cAMP pools [72]. Several members of the AKAP

families are expressed in the cardiovascular system, where they direct important

processes such as endothelial barrier function and excitation-contraction coupling,

maintaining the homeostatic functioning of the heart and vasculature [72]. AKAP9 has

been identified as a candidate gene in arrhythmogenic diseases with certain genetic

variations shown to have potential risk for SCN5A-negative Brugada Syndrome [73] and

dilated cardiomyopathy [74]. The ANK2 gene encodes ankyrin-B protein which

functions as a necessary factor for accurate membrane protein targeting in the cardiac
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tissues [75]. Through its adapter function Ankyrin-B drives proper localization of

essential cardiac cell components including ion channels together with transporters

receptors and signaling molecules thus maintaining normal heart rhythms and

performance [75]. The human ANK2 R990Q, E1425G and V1516D as well as R1788W

variants lead to ankyrin-B loss-of-function which causes 'Ankyrin-B syndrome. The

disorder manifests through bradycardia and heart rate variability combined with

conduction block and atrial fibrillation while also resulting in QT interval prolongation

and potentially lethal catecholaminergic polymorphic ventricular tachycardia and sudden

cardiac death [76]. A predicted deleterious variant was identified in the ANK2 gene, a

well-established susceptibility gene for cardiac arrhythmias. The RYR2 gene encodes the

sarcoplasmatic reticulum cardiac ryanodine receptor/calcium release channel RyR2

which functions to maintain intracellular calcium levels and control cardiac excitation–

contraction coupling [77]. Research shows that pathogenic RYR2 mutations mainly

appear as missense variants (86–92 %) and RyR2 exhibits poor tolerance towards genetic

variants that trigger loss of function defects [78]. The functional characterization of the

identified variants in our study demonstrated various possible impairments that may

affect cardiac structural and functional efficiency. These include aberrant cardiac muscle

cell action potential, actin-mediated cell contraction, cardiac conduction, phase 3 - rapid

repolarization which may predispose individuals to clinical manifestations such as

ventricular fibrillation, arrhythmia, cardiac arrest and sudden cardiac death. Moreover,

likely pathogenic variants have been reported in our cohort for SCN5A and KCNQ1 genes.

The SCN5A gene encodes the principal voltage-gated sodium channel responsible for

cardiac action potential initiation and propagation. Earlier, pathogenic variants in SCN5A

were exclusively linked to primary electrical disorders, or channelopathies.

Contemporary evidence, however, establishes a significant association between SCN5A

dysfunction and the development of structural cardiomyopathies [79]. Furthermore, it

has been reported that characterization of KCNQ1 variants improves the risk

stratification in patients with cardiac arrhythmias [79].
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Limitations

While our study provides valuable insights into the genetic landscape of this CAD cohort,

several limitations must be considered. First, the study cohort was limited to 28 patients.

While this size is sufficient for an exploratory descriptive analysis of rare-variant burden,

it precludes establishing formal genotype-phenotype associations or calculating statistical

significance for disease risk. Furthermore, the absence of a locally sequenced healthy

control group is also a key primary limitation. To mitigate this, we utilized the gnomAD

global database as a reference for population allele frequencies. However, we

acknowledge that gnomAD may not fully represent the specific genetic background of

Middle Eastern populations, potentially influencing our assessment of variant rarity.

Additionally, the variants identified as 'predicted deleterious' or 'VUS' were classified

based on in silico predictions and existing database evidence. In the absence of in vitro

functional assays or segregation analysis within families, the precise biological impact of

these novel variants on protein function remains inferred. Finally, our analysis was

restricted to 74 genes across three specific panels (FH, CA, and PAH). Consequently, we

may have overlooked other relevant genetic factors contributing to CAD that lie outside

these pre-defined pathways.

CONCLUSION

In conclusion, our study utilized Whole Exome Sequencing to uncover a significant

burden of rare genetic variants within a cohort of 28 patients with Coronary Artery

Disease. By applying a stringent population-based filter (PopMax AF < 0.1%), we

identified 68 high-confidence candidate variants across 23 genes associated with lipid

metabolism, cardiac rhythm, and vascular function. The identification of a pathogenic

LDLR variant and likely pathogenic variants in SCN5A and KCNQ1 underscores the

presence of clinically actionable genetic drivers that may exacerbate CAD progression or

increase the risk of secondary complications like arrhythmias. Furthermore, the discovery

of nine predicted deleterious variants, including five novel mutations in the SCN10A gene,

highlights the potential role of latent genetic modifiers in under-represented populations.

These findings demonstrate that genomic screening can reveal underlying predispositions
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that standard clinical assessments may overlook, moving us closer to a more personalized

approach in managing cardiovascular risk.
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TABLESAND FIGURESWITH LEGENDS

Table 1. Clinical characteristics of the study cohort (n =28)

Biomarker n (%) Median [IQR]*

Cholesterol 215.46 [150-280]

(mg/dl)

Borderline 1 (3.6%)

High 12 (43%)

Optimal 15 (54%)

LDL-C 142.32 [110-205]

(mg/dl)

Borderline 1 (3.6%)

High 25 (89%)

Optimal 2 (7.1%)

HDL-C 45.67 [35-62]

(mg/dl)

Abnormal 8 (29%)

Optimal 14 (50%)

Unknown 6 (21%)

Triglycerides 217.21 [120-457]

(mg/dl)

High 14 (50%)

Optimal 14 (50%)

C-reactive protein 2.23 [0.6-4.5]

(mg/dl)

Unknown 7 (25%)

Negative 12 (43%)
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Positive 9 (32%)

Hemoglobin 14.24 [9.5- 17.9]

(g/dl)

Low 1(3.57%)

Optimal 27(96.42%)

*IQR: Interquartile Range of the measured parameter in the cohort.
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Table 2. Key pathogenic, likely pathogenic, and predicted deleterious variants

identified in genes associated with the genomic england genepanelapp for cardiac

arrhythmias, familial hypercholesterolemia, and pulmonary arterial hypertension

Gene Gene

App

Panel
2

Variant ID Variant Varian

t type

ClinVar
1

UniProtV

ar1
In silico

predicti

on1

Interprete

d

classificati

on1

ANK2 CA COSV100003

794

ENST000003

57077.9:c.269

3G>T:p.Ser89

8Ile

Missens

e

Variant

- - D D

KCNQ1 CA rs199472737 ENST000001

55840.12:c.87

7C>T:p.Arg2

93Cys

Missens

e

Variant

US LP/P D LP

LDLR FH rs879254847 ENST000005

58518.6:c.125

5T>G:p.Tyr41

9Asp

Missens

e

Variant

P/LP - D P

SCN10A CA Novel ENST000004

49082.3:c.120

0T>A:p.Tyr40

0Ter

Stop

Gained

- - D D

SCN10A CA Novel ENST000004

49082.3:c.447

3C>G:p.Ile14

91Met

Missens

e

Variant

- - D D

SCN10A CA Novel ENST000004

49082.3:c.446

7C>G:p.Asn1

Missens

e

Variant

- - D D
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489Lys

SCN10A CA Novel ENST000004

49082.3:c.445

8C>G:p.Ile14

86Met

Missens

e

Variant

- - D D

SCN10A CA Novel ENST000004

49082.3:c.445

3C>A:p.Leu1

485Ile

Missens

e

Variant

- - D D

SCN10A CA rs770288343 ENST000004

49082.3:c.533

9C>T:p.Pro17

80Leu

Missens

e

Variant

- - D D

SCN5A CA rs199473124 ENST000004

23572.7:c.170

0T>A:p.Leu5

67Gln

Missens

e

Variant

US LP/P N LP

TRPM4 CA rs754625848 ENST000002

52826.10:c.24

7dup:p.Ala83

GlyfsTer13

Frames

hift

Variant

- - D D

Abbreviations: 1D: Predicted deleterious; N: Neutral; P: Pathogenic; LP: Likely pathogenic; VUS:

Variant of unknown significance; 2CA: Cardiac arrhythmias; FH: Familial hypercholesterolaemia.
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Table 3. Descriptive functional enrichment of candidate genes across GO, reactome,

and HPO databases

Term

category

*

Enriched term Term ID padj
(g:SCS)

Enriched genes

GO:BP cardiac muscle

cell action

potential

GO:0086001 1.2 × 10-

16

KCNQ1,SCN10A,HCN4,SCN5A,KCNE

1,RYR2,ANK2,TRPM4,KCNH2,AKAP9

GO:BP metal ion

transport

GO:0030001 4.2 × 10-

9

KCNQ1,SCN10A,HCN4,SCN5A,KCNE

1,PCSK9,RYR2,ANK2,SLC22A5,TRPM

4,KCNH2,AKAP9

GO:BP response to

purine-containing

compound

GO:0014074 6.3 × 10-

6

KCNQ1,HCN4,KCNE1,RYR2,TRPM4,

AKAP9

GO:BP chemical

homeostasis

GO:0048878 2.9 × 10-

4

KCNQ1,GDF2,LDLR,APOB,PCSK9,RY

R2,ANK2,TRPM4,KCNH2

GO:BP circulatory

system

development

GO:0072359 6.4 × 10-

4

KCNQ1,GDF2,HCN4,LDLR,APOB,SC

N5A,RYR2,ANK2,ENG

REAC Cardiac

conduction

REAC:R-

HSA-

5576891

1.6 × 10-

7

KCNQ1,SCN10A,SCN5A,KCNE1,RYR

2,KCNH2,AKAP9

REAC Phase 3 - rapid

repolarization

REAC:R-

HSA-

5576890

1.6 × 10-

7

KCNQ1,KCNE1,KCNH2,AKAP9

REAC Muscle

contraction

REAC:R-

HSA-

397014

3.6 × 10-

6

KCNQ1,SCN10A,SCN5A,KCNE1,RYR

2,KCNH2,AKAP9

REAC Phase 2 - plateau

phase

REAC:R-

HSA-

4.6 × 10-

4

KCNQ1,KCNE1,AKAP9
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5576893

REAC LDL clearance REAC:R-

HSA-

8964038

9.7 × 10-

4

LDLR,APOB,PCSK9

HP Cardiac arrest HP:0001695 5.7 × 10-

15

KCNQ1,SCN10A,HCN4,LDLR,APOB,S

CN5A,KCNE1,PCSK9,RYR2,ANK2,TR

PM4,KCNH2,AKAP9,TANGO2

HP Sudden cardiac

death

HP:0001645 3.6 × 10-

13

KCNQ1,SCN10A,HCN4,LDLR,APOB,S

CN5A,KCNE1,PCSK9,RYR2,ANK2,KC

NH2,AKAP9

HP Prolonged QTc

interval

HP:0005184 6.9 × 10-

13

KCNQ1,SCN10A,HCN4,SCN5A,KCNE

1,ANK2,KCNH2,AKAP9,TANGO2

HP Ventricular

fibrillation

HP:0001663 1.2 × 10-

12

KCNQ1,SCN10A,HCN4,SCN5A,KCNE

1,RYR2,TRPM4,KCNH2,AKAP9,TAN

GO2

HP Prolonged QT

interval

HP:0001657 2.1 × 10-

12

KCNQ1,SCN10A,HCN4,SCN5A,KCNE

1,ANK2,TRPM4,KCNH2,AKAP9,TAN

GO2

Results are ranked using the g:SCS multiple-testing correction. Abbreviations: *GO: Gene ontology;

BP: Biological process; REAC: Reactome; HP: Human phenotype.
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Figure 1.Workflow illustrating the steps involved in the identification, filtering, and

classification of variants associated with cardiac arrhythmias, familial

hypercholesterolemia, and pulmonary arterial hypertension through whole-exome

sequencing
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Figure 2. Summary of panel-overlapping variants identified by WES in the

obstructive CAD cohort. (A) Top VEP consequence categories across 8,251 variants

within 74 PanelApp-curated genes. (B) VEP impact distribution (modifier, low, moderate,

high). (C) Variant counts by disease panel (CA, PAH, FH). (D) Top frequently mutated

genes in the unfiltered dataset (including RYR2, AKAP9, CACNA1C, LDLR, and

PCSK9). Abbreviations: CA: Cardiac arrhythmias; CAD: Coronary artery disease; FH:

Familial hypercholesterolaemia; PAH: Pulmonary arterial hypertension; PanelApp:

Genomics England PanelApp; VEP: Variant Effect Predictor; WES: Whole-exome

sequencing.
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Figure 3. Candidate variant classification and distribution after rare-variant

filtering. Following PopMax AF <0.1% and VEP impact filtering of PanelApp

FH/CA/PAH genes in WES data from a CAD cohort (n = 28), 68 candidate variants

across 23 genes were retained (30/68 novel). (A) Stacked per-gene counts by final

classification (B, LB, VUS, D, LP, P; overall: VUS 51/68, D 9/68, LB 4/68, B 1/68, LP

2/68, P 1/68) based on ClinVar/UniProtVar evidence and in silico predictions. (B)

Stacked per-gene counts by consequence category, dominated by missense (42/68) and

frameshift (18/68) variants. (C) Candidate variants mapped to PanelApp panels (CA

47/68; PAH 12/68; FH 9/68); genes are ordered by total candidate count (SCN10A

highest). Abbreviations: B: Benign; CA: Cardiac arrhythmias; CAD: Coronary artery

disease; ClinVar: Clinical Variation database; D: Predicted deleterious; FH: Familial

hypercholesterolaemia; LB: Likely benign; LP: Likely pathogenic; P: Pathogenic; PAH:

Pulmonary arterial hypertension; PanelApp: Genomics England PanelApp; PopMax AF:

Population maximum allele frequency; UniProtVar: UniProt variant annotations; VEP:

Variant effect predictor; VUS: Variant of uncertain significance; WES: Whole-exome

sequencing.
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Figure 4. GO/REAC/HP functional annotation of candidate genes. g:Profiler

Manhattan plot showing GO:BP terms (orange), REAC pathways (blue) and HP terms

(purple) for the candidate-gene set, plotted as −log10(padj) (g:SCS). Values >16 are

capped. The numbered points correspond to the top terms listed in the table below,

including GO:BP signals for cardiac muscle cell action potential and metal ion transport;

REAC signals for cardiac conduction, muscle contraction, phase 3—rapid repolarisation

and LDL clearance; and HP signals for cardiac arrest, sudden cardiac death, prolonged

QTc interval and ventricular fibrillation. Abbreviations: GO: Gene Ontology; GO:BP:

Gene Ontology—Biological Process; g:SCS: Gene set size–corrected significance

threshold; HP: Human Phenotype Ontology (g:Profiler source label); HPO: Human

Phenotype Ontology; LDL: Low-density lipoprotein; padj: Adjusted p value; REAC:

Reactome pathways.
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