Biomolecules and Biomedicine

ISSN: 2831-0896 (Print) | ISSN: 2831-090X (Online)

Journal Impact Factor® (2024): 2.2

CiteScore® (2024): 5.2

www.biomolbiomed.com | blog.bjbms.org

The BiomolBiomed publishes an "Advanced Online" manuscript format as a free service to authors in order to expedite the dissemination of scientific findings to the research community as soon as possible after acceptance following peer review and corresponding modification (where appropriate). An "Advanced Online" manuscript is published online prior to copyediting, formatting for publication and author proofreading, but is nonetheless fully citable through its Digital Object Identifier (doi®). Nevertheless, this "Advanced Online" version is NOT the final version of the manuscript. When the final version of this paper is published within a definitive issue of the journal with copyediting, full pagination, etc., the new final version will be accessible through the same doi and this "Advanced Online" version of the paper will disappear.

META-ANALYSIS

Longbatu et al: HbA1c variability and HF risk

HbA1c variability and risk of incident heart failure: A systematic review and meta-analysis

Guo Mujiafu Qiao Longbatu^{1,2}, La Xinamujila³, Bao Burie^{2*}

¹Cardiology Department, International Mongolian Hospital of Inner Mongolia, Hohhot 010020, China;

²College of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China;

³NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Inner Mongolia Minzu University, Tongliao 028000, China.

*Correspondence to Bao Burie: baoburieimu@hotmail.com

DOI: https://doi.org/10.17305/bb.2025.13376

ABSTRACT

Visit-to-visit variability in glycated hemoglobin (HbA1c) reflects long-term instability in glycemic control, potentially contributing to cardiovascular complications. However, the association between HbA1c variability and heart failure (HF) risk remains unclear. This meta-analysis aimed to quantify the relationship between HbA1c variability and the risk of incident HF in adults. A systematic search of PubMed, Embase, and Web of Science was conducted to identify relevant studies. Observational studies and post-hoc analyses of clinical trials evaluating the association between visit-to-visit HbA1c variability and incident HF were included. Random-effects models were employed to pool hazard ratios (HRs) with 95% confidence intervals (CIs), accounting for potential heterogeneity. A total of nine studies (n = 342,123) were included in the analysis. Overall, high HbA1c variability was associated with an increased risk of HF (pooled HR = 1.78, 95% CI: 1.39–2.27, p < 0.001; $I^2 = 87\%$). Sensitivity analyses restricted to patients with type 2 diabetes (HR = 1.73, 95% CI: 1.35–2.22), high-quality studies (HR = 1.82, 95% CI: 1.32–2.50), or studies adjusting for mean HbA1c (HR = 1.68, 95% CI: 1.31-2.16) produced consistent results. Subgroup analyses indicated a stronger association in prospective cohorts (HR = 2.51) compared to retrospective or post-hoc studies (p for subgroup difference < 0.001). Meta-regression analysis revealed no significant modifying effects of age, sex, follow-up duration, or study quality (p all > 0.05). In conclusion, greater visit-to-visit HbA1c variability may be associated with an increased risk of incident HF, underscoring the prognostic importance of maintaining stable long-term glycemic control in patients with type 2 diabetes.

Keywords: Glycated hemoglobin, variability, heart failure, risk factor, meta-analysis.

INTRODUCTION

Heart failure (HF) is a major global health challenge, affecting more than 64 million people worldwide and representing a leading cause of hospitalization and mortality among older adults (1, 2). Despite advances in pharmacologic and device-based therapies, the prognosis of HF remains poor, with 5-year mortality rates approaching 50% (3). Conventional risk factors such as hypertension, diabetes mellitus, obesity, and coronary artery disease only partially explain the occurrence of HF, and a substantial proportion of cases develop in individuals without overt cardiac disease (4). Therefore, identifying novel and modifiable risk factors is essential to improve early prevention and risk stratification. Among these, metabolic dysregulation, particularly abnormal glucose metabolism, has been increasingly recognized as a key contributor to cardiac remodeling, fibrosis, and dysfunction (5). Chronic hyperglycemia is known to increase the risk of HF through mechanisms involving oxidative stress, endothelial injury, and myocardial fibrosis (6). However, recent evidence suggests that glycemic fluctuation may exert additional deleterious cardiovascular effects independent of sustained hyperglycemia, potentially through repetitive activation of oxidative and inflammatory pathways that impair myocardial energetics and vascular integrity (7, 8).

Long-term glucose fluctuations can be objectively assessed using serial measurements of glycated hemoglobin (HbA1c), which reflects average glycemia over the preceding 2 to 3 months (9). The variability of HbA1c across clinical visits—referred to as visitto-visit HbA1c variability—has emerged as a reliable index of long-term glycemic instability (10). Several statistical measures are used to quantify HbA1c variability, including the standard deviation (SD), coefficient of variation (CV), average real variability (ARV), variability independent of the mean (VIM), and adjacent standard deviation (ASV), calculated from at least three separate HbA1c measurements during follow-up (11, 12). Unlike mean HbA1c, which reflects average exposure to hyperglycemia, these indices capture dynamic fluctuations that may better represent the biological stress imposed on the cardiovascular system (13). Although recent studies have reported that greater HbA1c variability is associated with an increased risk of adverse cardiovascular events, including myocardial infarction, stroke, and allcause mortality, findings regarding its relationship with incident HF remain inconsistent (14, 15). Therefore, this meta-analysis was conducted to quantitatively evaluate the association between visit-to-visit HbA1c variability and the risk of incident HF in adults, aiming to clarify the strength and consistency of this relationship and to provide further insights into the prognostic significance of long-term glycemic instability.

MATERIAL AND METHODS

This meta-analysis followed the PRISMA 2020 guidelines (16) and the Cochrane Handbook for Systematic Reviews and Meta-Analyses (17) for protocol design, data extraction, statistical analysis, and results reporting. The study protocol was also registered in PROSPERO under ID CRD420251167937. No methodological deviations occurred during the review process.

Literature search

Relevant studies for this meta-analysis were identified through a comprehensive search in PubMed, Embase, and Web of Science using a broad range of search terms, which included: (1) "glycosylated hemoglobin" OR "HbA1c"; (2) "variability" OR "variation" OR "fluctuation" OR "coefficient of variation" OR "standard deviation"; (3) "heart failure" OR "cardiac failure" OR "cardiac dysfunction"; and (4) "incidence" OR "risk" OR "cohort" OR "longitudinal" OR "prospective" OR "retrospective" OR "prospectively" OR "retrospectively" OR "follow-up". The search was limited to human studies and full-length articles published in English in peer-reviewed journals. Additionally, references from relevant original and review articles were manually screened for further eligible studies. The search spanned from database inception to August 30, 2025. The full search strategy for each database is shown in Supplemental File 1. Grey literature sources were not included because non–peer-reviewed materials may compromise data reliability in observational meta-analyses. Trial registries were not searched because our review focused on published cohort studies and post-hoc analyses rather than randomized trials.

Inclusion and exclusion criteria

The eligibility criteria for studies were established based on the PICOS framework:

P (patients): General adult population (≥18 years) without HF at baseline, both diabetic and non-diabetic population could be included.

I (exposure): Participants with a high visit-to-visit HbA1c variability at baseline, with the parameters and cutoff values for defining a high HbA1c variability consistent with the criteria used in the original studies;

C (comparison): Participants with a low visit-to-visit HbA1c variability at baseline.

O (outcome): Incidence of HF during follow-up, compared between participants with a high vs. a low HbA1c variability at baseline. The methods and criteria for the diagnosis of HF were also consistent with the criteria used in the original studies.

S (study design): Observational studies with longitudinal follow-up, such as cohort studies, nested case-control studies, or post-hoc analyses of clinical trials;

Studies were excluded if they were reviews, editorials, meta-analyses, preclinical research, or including pediatric patients, not involving an exposure of visit-to-visit HbA1c, or did not report the incidence of HF. Studies assessing short-term glycemic fluctuations, such as daily glucose variability not using HbA1c or metrics from continuous glucose monitoring, were also excluded. When population overlap occurred, the study with the largest sample size was selected for inclusion in the meta-analysis.

Study quality assessment and data extraction

Two authors independently conducted the literature search, study selection, quality assessment, and data extraction, resolving discrepancies through discussion with the corresponding author. Formal inter-rater agreement statistics were not recorded. Study quality was evaluated using the Newcastle–Ottawa Scale (NOS) (18), which assesses selection, confounding control, and outcome measurement, with scores ranging from 1 to 9, where 9 represents the highest quality. Studies with NOS scores of 8 or above are considered of high quality. Data extracted for analysis included study characteristics (author, year, country, and study design), participants characteristics (source of the population, number of participants, age, sex, and diabetic status), exposure characteristics (parameters for the evaluation of HbA1c variability, cutoffs, and times of HbA1c measured for evaluating the variability), follow-up durations, outcome characteristics (methods for validating HF outcomes and number of patients with newly developed HF during follow-up), and variables adjusted in estimating the relationship between HbA1c variability and the risk of HF. For each included study,

we extracted only the adjusted hazard ratio (HR) specific to incident HF, as defined in the original article or its supplemental materials. HF endpoints included adjudicated HF events, HF hospitalization, or ICD-based incident HF, depending on each study's protocol. Composite cardiovascular or mortality outcomes were not used. All outcome definitions, adjudication status, and extraction locations (table/figure) were independently cross-checked by two reviewers.

Statistical analyses

The association between HbA1c variability and HF in adults was presented as hazard ratio (HR) and corresponding 95% confidence intervals (CIs), compared between participants with a high versus a low HbA1c variability at baseline. When studies reported more than one validated metric of HbA1c variability, we extracted a single effect estimate per study to maintain statistical independence, following Cochrane recommendations (17). Because no universally accepted primary variability metric exists and different indices (e.g., SD, CV, ARV, VIM, ASV, HVS) reflect complementary aspects of long-term glycemic instability, we did not designate a single preferred metric a priori. Instead, we included one representative adjusted estimate per study and conducted predefined subgroup analyses by variability metric to evaluate consistency across measures. When a study reported multiple HbA1cvariability metrics, we applied a predefined rule: the adjusted HR associated with the largest reported effect size was selected. This rule was specified before data synthesis and applied consistently across all studies. HRs and their standard errors were calculated from 95% CIs or p-values and log-transformed to stabilize variance and normalize distribution (17). To assess heterogeneity, we used the Cochrane Q test and I^2 statistics (19), with $I^2 < 25\%$, $25\sim75\%$, and > 75% indicating mild, moderate, and substantial heterogeneity among the included studies. The primary analysis used the DerSimonian-Laird estimator, and between-study heterogeneity was quantified using the I² statistic and between-study variance (τ^2) (17). To enhance robustness, we additionally performed sensitivity analyses using restricted maximum likelihood (REML) random-effects models with Hartung-Knapp adjustment. Hazard ratios (HRs) were log-transformed prior to pooling (17). For each primary meta-analysis, a 95% prediction interval (PI) was calculated to reflect the expected range of effects in future comparable studies (17). A random-effects model was used to synthesize results while accounting for variability across studies (17). Sensitivity analysis was conducted by

sequentially excluding individual studies to assess the robustness of the findings (20). In addition, sensitivity analyses limited to diabetic patients, high-quality studies (NOS \geq 8), and studies with the adjustment of mean HbA1c were also performed. Moreover, predefined subgroup analyses were also performed to evaluate the study characteristics on the results, such as study design (prospective vs. retrospective or post-hoc analyses), countries (Asian versus Western), different parameters for HbA1c variability, and mean follow-up durations. Subgroups were defined using the median values of continuous variables as cutoff points. Moreover, univariate meta-regression analyses were also performed to evaluate if study characteristics in continuous variables may affect the association between HbA1c variability and HF risk, such as mean ages of the population, proportions of men, mean follow-up durations, and NOS (17). All subgroup analyses and meta-regression models were prespecified but exploratory, performed as univariate analyses only, and no multiplicity correction was applied; therefore, these results should be interpreted cautiously. Publication bias was assessed through funnel plots, visual asymmetry inspection, and Egger's regression test (21). Small-study effects were assessed using Egger's regression test and Duval and Tweedie's trim-and-fill method (22). A p value < 0.05 indicates statistical significance. The statistical analyses were conducted using RevMan (Version 5.3; Cochrane Collaboration, Oxford, UK) and Stata software (version 17.0; Stata Corporation, College Station, TX, USA).

RESULTS

Study identification

Figure 1 outlines the study selection process. Initially, 979 records were identified across three databases, with 311 duplicates removed. After title and abstract screening, 647 articles were excluded for not meeting the meta-analysis criteria. The full texts of the remaining 21 studies were independently reviewed by two authors, leading to the exclusion of 12 for reasons detailed in **Figure 1**. Ultimately, nine studies were included in the quantitative analysis (23-31).

Overview of the study characteristics

Table 1 summarizes the main characteristics of the nine studies included in this metaanalysis, encompassing two prospective cohort studies (27, 30), five retrospective cohort studies (23, 25, 28, 29, 31), and two post-hoc analyses of clinical trials (24, 26). These studies were published between 2018 and 2025 and were conducted across diverse geographic regions, including mainland China, Hong Kong (China), Taiwan (China), Thailand, Sweden, the United Kingdom, and the United States. Eight studies enrolled adult patients with type 2 diabetes (T2D) (23-29, 31), and another study included prediabetic or T2D patients with additional cardiovascular risk factors such as hypertension, obesity, or pre-existing atherosclerotic cardiovascular disease (30). Overall, 342,123 patients were included, with mean ages ranging from 58.4 to 65.3 years and the proportion of men ranging from 37.9% to 61.9%. HbA1c variability was assessed using various indices including SD, CV, VIM, ASV, ARV, and HbA1c variability score (HVS). The exposure contrast between high and low variability was commonly defined by quartiles (24, 29-31) or quintiles (26), though some studies used medians (23) or specific categorical cut-offs (25, 27). The number of HbA1c measurements used to compute variability ranged from at least 3 to a mean of 12.7 per participant, and the mean follow-up duration spanned 4.4 to 11.7 years. HF outcomes were identified through adjudicated clinical review processes (24, 26), validated diagnostic criteria from international guidelines (23), or HF related hospitalization in institutional or national administrative databases (25, 27-31). Across studies, the number of participants developing HF during follow-up ranged from 18 to 7,908. All studies performed multivariable-adjusted analyses, adjusting for key confounders such as age, sex, body mass index, blood pressure, lipid profiles, kidney function, comorbidities, medication use, and mean HbA1c levels, to a varying degree, thereby minimizing residual confounding.

Study quality evaluation

As shown in **Table 2**, the methodological quality of the included studies was assessed using the NOS. NOS scores ranged from 7 to 9, indicating overall high methodological quality. Most studies earned full scores for representativeness of the cohort, ascertainment of exposure, exclusion of baseline HF, and adjustment for major confounders (24-31). Two post-hoc analyses and one retrospective cohort (24, 26, 31) achieved the maximum NOS score of 9, reflecting robust design, standardized laboratory procedures, and adjudicated outcome assessment. Two large population-based registry studies (25, 27) and one single-center tertiary-hospital cohort with claims-based outcome ascertainment (28) scored 8, with minor limitations related to the use of registry-coded rather than clinically confirmed HF diagnoses. One

retrospective study also scored 8 because the possible bias in representativeness of the exposed cohort (23). Another two studies were scored 7 because HF was not diagnosed by clinical evaluation and the follow-up durations were short (< 5 years) (29, 30). Importantly, all studies had adequate follow-up and low attrition risk, supporting the reliability of pooled estimates linking long-term HbA1c variability to HF risk.

Meta-analysis results

Pooled results of nine studies (23-31) showed that overall, a high HbA1c variability was associated with an increased risk of HF during follow-up (HR: 1.78, 95% CI: 1.39 to 2.27, p < 0.001; $I^2 = 87\%$; Figure 2). The between-study variance was $\tau^2 =$ 0.09. The 95% prediction interval ranged from 1.01 to 3.14, indicating that most future studies are expected to show a positive association. Sensitivity analysis using a REML random-effects model with Hartung-Knapp adjustment yielded a similar effect estimate (HR: 1.78, 95% CI: 1.35 to 2.35, p < 0.001; $I^2 = 86\%$; Supplemental Figure 1), confirming the robustness of the findings. Sensitivity analysis, excluding one study at a time, showed no significant impact on the results (HR: 1.57 to 1.90, p all < 0.05). In addition, further sensitivity analyses limited to patients with T2D only (23-29, 31) showed consistent results (HR: 1.73, 95% CI: 1.35 to 2.22, p < 0.001; $I^2 =$ 88%). Similar results were also obtained for sensitivity analyses limited to high quality studies with NOS \geq 8 (23-28, 31) (HR: 1.82, 95% CI: 1.32 to 2.50, p < 0.001; $I^2 = 86\%$) or studies with the adjustment of mean HbA1c (23, 24, 26-31) (HR: 1.68, 95% CI: 1.31 to 2.16, p < 0.001; $I^2 = 87\%$). Interestingly, subgroup analyses showed stronger association between a high HbA1c variability and HF risk in prospective studies as compared to retrospective and post-hoc studies (HR: 2.51 vs. 1.42 and 2.02, p for subgroup difference < 0.001; Figure 3A). Similar results were observed in studies from Asian and Western countries (p for subgroup difference = 0.74; Figure **3B**), in studies with variability of HbA1c measured by SD, CV, and ASV of HbA1c (p for subgroup difference = 0.74; Figure 4A), and in studies with follow-up duration < 6.5 years and ≥ 6.5 years (p for subgroup difference = 0.27; Figure 4B). The results of univariate meta-regression analysis are shown in Table 3. None of the predefined characteristics, including mean ages of the population, proportions of men, mean follow-up durations, or NOS could significantly modify the association between HbA1c variability and HF risk (p all > 0.05).

Publication bias

Figure 5 displays the funnel plots evaluating the publication bias underlying the meta-analysis of the association between HbA1c variability and the risk of HF. The funnel plots are symmetrical on visual inspection, suggesting a low risk of publication bias. The findings are further supported by Egger's regression analysis, which also did not suggest a significant publication bias (p = 0.35). Given the small number of studies (k = 9), Egger's test is underpowered, and the absence of statistical significance should be interpreted cautiously. The trim-and-fill procedure did not impute any additional studies, and the pooled HR remained unchanged, indicating no evidence of small-study effects.

DISCUSSION

This meta-analysis demonstrated that greater visit-to-visit variability in HbA1c may be significantly associated with a higher risk of developing HF, independent of mean HbA1c levels and other conventional risk factors. The findings were consistent across multiple sensitivity analyses restricted to patients with T2D, high-quality studies, and those adjusting for mean HbA1c, suggesting that long-term glycemic instability may have prognostic significance beyond average glycemic exposure. The strength of the association was more pronounced in prospective cohorts compared with retrospective or post-hoc analyses, underscoring the robustness of temporally assessed data. Collectively, these findings support the hypothesis that HbA1c variability reflects an additional dimension of glycemic burden that contributes to cardiovascular risk and highlight its potential role as a novel biomarker for identifying individuals at increased risk of HF.

Only one recent meta-analysis has examined HbA1c variability in relation to HF risk, but it did so as part of a broader synthesis of multiple glycemic risk factors and cardiovascular outcomes (15). Our review differs in that it provides a focused and updated estimate specifically for incident HF, incorporates additional recent cohorts, and applies comprehensive subgroup and REML–Hartung–Knapp sensitivity analyses. Clinically, HbA1c variability may serve as a complementary risk marker alongside mean HbA1c, diabetes duration, and renal function, and may help identify individuals with T2D who warrant closer monitoring, earlier initiation of HF-preventive therapies, or more stable glucose-lowering strategies. Several biological mechanisms may explain the link between long-term HbA1c variability and elevated HF risk. Repeated

oscillations in glucose levels have been shown to induce greater oxidative stress and endothelial dysfunction than sustained hyperglycemia, resulting in impaired nitric oxide bioavailability and microvascular inflammation (32-34). These fluctuations promote maladaptive cardiac remodeling through the accumulation of advanced glycation end-products (AGEs), mitochondrial dysfunction, and activation of profibrotic pathways (35-37). In diabetic cardiomyopathy, intermittent hyperglycemia also triggers sympathetic overactivity and metabolic inflexibility, leading to impaired myocardial energy utilization and left ventricular diastolic dysfunction—key precursors of HF (38). Furthermore, HbA1c variability may reflect fluctuations in treatment adherence or medication responsiveness, which could exacerbate cardiovascular instability (39). Collectively, these mechanisms suggest that maintaining stable long-term glycemic control may be as important as lowering mean HbA1c for the prevention of HF.

The results of subgroup and sensitivity analyses provide additional insights into the robustness and potential heterogeneity of this association. The stronger relationship observed in prospective cohorts likely reflects the more rigorous data collection and outcome validation inherent to such designs, reducing the risk of measurement bias. Studies that adjusted for mean HbA1c retained a significant association, supporting the hypothesis that glycemic fluctuation exerts harmful cardiovascular effects beyond chronic hyperglycemia itself (40). Similarly, the consistent findings across high-quality studies and those with extended follow-up durations reinforce the temporal plausibility of the association. The absence of significant modifiers in the meta-regression analysis—including age, sex, study quality, and follow-up duration—suggests that the detrimental impact of HbA1c variability may be broadly consistent across populations, although subtle interactions may exist that cannot be detected without individual-level data.

From a clinical perspective, these findings emphasize the potential utility of incorporating measures of HbA1c variability into long-term risk assessment frameworks for patients with T2D. Current diabetes management guidelines primarily focus on mean HbA1c targets (41). However, these results indicate that minimizing long-term fluctuations in glycemia may confer additional cardiovascular benefits (41). Regular monitoring of HbA1c variability could help identify high-risk individuals who might benefit from more consistent glycemic control strategies, enhanced medication adherence, or early intervention for cardiovascular risk reduction.

Clinicians should also be aware that treatment regimens with a higher propensity for glycemic oscillation—such as those involving short-acting insulin secretagogues or intermittent insulin dosing—may increase the risk of adverse cardiac outcomes if glycemic variability is not adequately managed (42, 43).

This meta-analysis has several strengths that enhance the credibility of its findings. First, it represents the updated summary of the evidence, including nine longitudinal cohorts with over 340,000 participants and more than 10,000 incident HF events. Second, all included studies employed longitudinal designs with temporally defined exposure and outcome windows, ensuring that HbA1c variability preceded the onset of HF. Third, the analyses were based on multivariable-adjusted risk estimates, minimizing confounding by established cardiovascular risk factors. Furthermore, multiple sensitivity and subgroup analyses confirmed the stability of the results across diverse study settings, designs, and analytic approaches. Nevertheless, several limitations should be acknowledged. The majority of included studies involved patients with T2D, and thus the association between HbA1c variability and HF risk in individuals without diabetes or with type 1 diabetes remains uncertain. Although two post-hoc analyses were derived from randomized clinical trials (24, 26), most studies were observational and the possibility of residual and time-varying confounding cannot be excluded. Considerable heterogeneity was observed among studies, likely attributable to differences in definitions and metrics of HbA1c variability (e.g., SD, CV, ARV, VIM), population characteristics, comorbidity profiles, and concurrent medication use. Because individual participant data were unavailable, the influence of certain confounding variables—particularly antidiabetic treatment type, treatment adherence, and changes in therapy over time—could not be fully examined. In addition, as the included studies were based on observational data, causality cannot be established, and reverse causation remains possible despite efforts to exclude participants with preexisting HF. Moreover, definitions of HF varied across studies, with only a subset using fully adjudicated clinical endpoints while others relied on validated registry or administrative codes; because adjudicated outcomes were available in only a minority of cohorts, we could not perform a sensitivity analysis restricted to adjudicated HF, which should be considered when interpreting the findings. In addition, some studies used registry or administrative data to define HF outcomes, which may have introduced misclassification bias, although sensitivity analyses indicated overall robustness of the findings. Finally, a dose-response metaanalysis could not be performed because most studies reported HbA1c variability in

categorical form (e.g., quartiles or tertiles) without providing continuous effect

estimates per SD or unit increase, limiting our ability to harmonize exposure

thresholds. Accordingly, our clinical interpretation is based on relative hazards and

the prediction interval, underscoring the need for future studies to report standardized

absolute risk measures to facilitate clinical translation.

Given these limitations, the results should be interpreted cautiously. Future research

should aim to validate these findings in non-diabetic and type 1 diabetic population

and to explore the pathophysiological mechanisms underlying the observed

relationship using longitudinal studies with standardized definitions of HbA1c

variability. Individual participant data meta-analyses would allow more refined

analyses adjusting for medication use, comorbidities, and time-dependent changes in

glycemia. Randomized trials testing interventions designed to minimize long-term

glycemic fluctuations may ultimately clarify whether reducing HbA1c variability can

translate into improved cardiovascular outcomes, including the prevention of HF.

CONCLUSION

In conclusion, this meta-analysis suggests that greater visit-to-visit HbA1c variability

may be independently associated with a higher risk of incident HF among adults,

particularly those with T2D. These findings highlight the potential importance of

maintaining stable long-term glycemic control, in addition to achieving optimal mean

HbA1c levels, as part of comprehensive cardiovascular risk management. Given that

all included data derive from observational studies, the overall certainty of evidence

for this association should be regarded as low to moderate, and the findings should be

interpreted accordingly. Further research is warranted to determine whether strategies

aimed at reducing glycemic variability can effectively lower HF risk and improve

long-term outcomes in diabetic populations.

Conflicts of interest: Authors declare no conflicts of interest.

Funding: Authors received no specific funding for this work.

Data availability: All data generated or analyzed during this study are included in

this published article.

Submitted: October 15, 2025

13

Accepted: December 4, 2025

Published online: December 19, 2025

REFERENCES

1. Martin SS, Aday AW, Allen NB, Almarzoog ZI, Anderson CAM, Arora P, et al.

2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the

American Heart Association. Circulation. 2025;151(8):e41–e660.

2. Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global

burden of heart failure: a comprehensive and updated review of epidemiology.

Cardiovasc Res. 2023;118(17):3272-87.

https://doi.org/10.1093/cvr/cvac013

3. Bozkurt B. Concerning Trends of Rising Heart Failure Mortality Rates. JACC Heart

Fail. 2024;12(5):970–2.

https://doi.org/10.1016/j.jchf.2024.04.001

4. Triposkiadis F, Xanthopoulos A, Parissis J, Butler J, Farmakis D. Pathogenesis of

chronic heart failure: cardiovascular aging, risk factors, comorbidities, and disease

modifiers. Heart Fail Rev. 2022;27(1):337-44.

https://doi.org/10.1007/s10741-020-09987-z

5.Xie S, Xu SC, Deng W, Tang Q. Metabolic landscape in cardiac aging: insights into

molecular biology and therapeutic implications. Signal Transduct Target Ther.

2023;8(1):114.

https://doi.org/10.1038/s41392-023-01378-8

6.Park JJ. Epidemiology, Pathophysiology, Diagnosis and Treatment of Heart Failure

in Diabetes. Diabetes Metab J. 2021;45(2):146-57.

https://doi.org/10.4093/dmj.2020.0282

7. Alfieri V, Myasoedova VA, Vinci MC, Rondinelli M, Songia P, Massaiu I, et al.

The Role of Glycemic Variability in Cardiovascular Disorders. Int J Mol Sci.

2021;22(16).

https://doi.org/10.3390/ijms22168393

8.Caturano A, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Di Lorenzo G, et al. Oxidative Stress and Cardiovascular Complications in Type 2 Diabetes: From Pathophysiology to Lifestyle Modifications. Antioxidants (Basel). 2025;14(1). https://doi.org/10.3390/antiox14010072

9.Parrinello CM, Selvin E. Beyond HbA1c and glucose: the role of nontraditional glycemic markers in diabetes diagnosis, prognosis, and management. Curr Diab Rep. 2014;14(11):548.

https://doi.org/10.1007/s11892-014-0548-3

10.Sakamoto M. Type 2 Diabetes and Glycemic Variability: Various Parameters in Clinical Practice. J Clin Med Res. 2018;10(10):737–42.

https://doi.org/10.14740/jocmr3556w

11.Ceriello A, Monnier L, Owens D. Glycaemic variability in diabetes: clinical and therapeutic implications. Lancet Diabetes Endocrinol. 2019;7(3):221–30.

https://doi.org/10.1016/S2213-8587(18)30136-0

12.Umpierrez GE, B PK. Glycemic Variability: How to Measure and Its Clinical Implication for Type 2 Diabetes. Am J Med Sci. 2018;356(6):518–27.

https://doi.org/10.1016/j.amjms.2018.09.010

13.Li F, Zhang L, Shen Y, Liu HH, Zhang ZY, Hu G, et al. Higher glucose fluctuation is associated with a higher risk of cardiovascular disease: Insights from pooled results among patients with diabetes. J Diabetes. 2023;15(5):368–81.

https://doi.org/10.1111/1753-0407.13386

14.Qu F, Shi Q, Wang Y, Shen Y, Zhou K, Pearson ER, et al. Visit-to-visit glycated hemoglobin A1c variability in adults with type 2 diabetes: a systematic review and meta-analysis. Chin Med J (Engl). 2022;135(19):2294–300.

https://doi.org/10.1097/CM9.0000000000002073

15.Tabesh M, Sacre JW, Mehta K, Chen L, Sajjadi SF, Magliano DJ, et al. The association of glycaemic risk factors and diabetes duration with risk of heart failure in people with type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab. 2024;26(12):5690–700.

https://doi.org/10.1111/dom.15938

16.Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

https://doi.org/10.1136/bmj.n71

17. Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. Cochrane Handbook for Systematic Reviews of Interventions version 6.2. The Cochrane Collaboration. 2021.

https://www.training.cochrane.org/handbook

18. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2010.

http://www.ohri.ca/programs/clinical epidemiology/oxford.asp

19. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

https://doi.org/10.1002/sim.1186

20.Marušić MF, Fidahić M, Cepeha CM, Farcaș LG, Tseke A, Puljak L. Methodological tools and sensitivity analysis for assessing quality or risk of bias used in systematic reviews published in the high-impact anesthesiology journals. BMC Medical Research Methodology. 2020;20(1):121.

https://doi.org/10.1186/s12874-020-00966-4

21.Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

https://doi.org/10.1136/bmj.315.7109.629

22.Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63. https://doi.org/10.1111/j.0006-341X.2000.00455.x

23.Guo J, Fan YQ, Zhang JF, Wang CQ. Association of hemoglobin A1c variability and the incidence of heart failure with preserved ejection fraction in patients with type 2 diabetes mellitus and arterial hypertension. Hellenic J Cardiol. 2018;59(2):91–7. https://doi.org/10.1016/j.hjc.2017.08.001

24.Kaze AD, Santhanam P, Erqou S, Ahima RS, Echouffo-Tcheugui JB. Long-term variability of glycemic markers and risk of all-cause mortality in type 2 diabetes: the Look AHEAD study. BMJ Open Diabetes Res Care. 2020;8(2).

https://doi.org/10.1136/bmjdrc-2020-001753

25.Li S, Nemeth I, Donnelly L, Hapca S, Zhou K, Pearson ER. Visit-to-Visit HbA(1c) Variability Is Associated With Cardiovascular Disease and Microvascular Complications in Patients With Newly Diagnosed Type 2 Diabetes. Diabetes Care. 2020;43(2):426–32.

https://doi.org/10.2337/dc19-0823

26.Segar MW, Patel KV, Vaduganathan M, Caughey MC, Butler J, Fonarow GC, et al. Association of Long-term Change and Variability in Glycemia With Risk of Incident Heart Failure Among Patients With Type 2 Diabetes: A Secondary Analysis of the ACCORD Trial. Diabetes Care. 2020;43(8):1920–8.

https://doi.org/10.2337/dc19-2541

27. Wan EYF, Yu EYT, Chin WY, Ng FTY, Chia SMC, Wong ICK, et al. Age-specific associations of glycated haemoglobin variability with cardiovascular disease and mortality in patients with type 2 diabetes mellitus: A 10-year cohort study. Diabetes Obes Metab. 2020;22(8):1316–27.

https://doi.org/10.1111/dom.14034

28.Lin YT, Huang WL, Wu HP, Chang MP, Chen CC. Association of Mean and Variability of HbA1c with Heart Failure in Patients with Type 2 Diabetes. J Clin Med.

2021;10(7).

https://doi.org/10.3390/jcm10071401

29. Ceriello A, Lucisano G, Prattichizzo F, La Grotta R, Franzen S, Svensson AM, et al. HbA1c variability predicts cardiovascular complications in type 2 diabetes regardless of being at glycemic target. Cardiovasc Diabetol. 2022;21(1):13. https://doi.org/10.1186/s12933-022-01445-4

30.Manosroi W, Phimphilai M, Waisayanand N, Buranapin S, Deerochanawong C, Gunaparn S, et al. Glycated hemoglobin variability and the risk of cardiovascular events in patients with prediabetes and type 2 diabetes mellitus: A post-hoc analysis of a prospective and multicenter study. J Diabetes Investig. 2023;14(12):1391–400. https://doi.org/10.1111/jdi.14073

31.Hsiao FC, Lin CP, Hsu TJ, Tung YC, Chan YH, Chen SW, et al. Glycohemoglobin Variations and Long-term Risk of Incident Heart Failure in Patients With Type 2 Diabetes. Mayo Clin Proc. 2025;100(8):1332–44. https://doi.org/10.1016/j.mayocp.2024.12.022

32.Roy B. Pathophysiological Mechanisms of Diabetes-Induced Macrovascular and Microvascular Complications: The Role of Oxidative Stress. Med Sci (Basel). 2025;13(3).

https://doi.org/10.3390/medsci13030087

33.Liu TS, Pei YH, Peng YP, Chen J, Jiang SS, Gong JB. Oscillating high glucose enhances oxidative stress and apoptosis in human coronary artery endothelial cells. J Endocrinol Invest. 2014;37(7):645–51.

https://doi.org/10.1007/s40618-014-0086-5

34.Murata M, Adachi H, Oshima S, Kurabayashi M. Glucose fluctuation and the resultant endothelial injury are correlated with pancreatic β cell dysfunction in patients with coronary artery disease. Diabetes Res Clin Pract. 2017;131:107–15. https://doi.org/10.1016/j.diabres.2017.07.007

35. Watanabe M, Kawai Y, Kitayama M, Akao H, Motoyama A, Wakasa M, et al. Diurnal glycemic fluctuation is associated with severity of coronary artery disease in

prediabetic patients: Possible role of nitrotyrosine and glyceraldehyde-derived advanced glycation end products. J Cardiol. 2017;69(4):625–31.

https://doi.org/10.1016/j.jjcc.2016.07.001

36.Mordel P, Fontaine F, Dupas Q, Joubert M, Allouche S. Glucose fluctuation promotes mitochondrial dysfunctions in the cardiomyocyte cell line HL-1. PLoS One. 2023;18(9):e0289475.

https://doi.org/10.1371/journal.pone.0289475

37.Zhang L, Liu HH, Yang F, Zhang ZY, Zhao XX, Qian LL, et al. Glucose fluctuations aggravate myocardial fibrosis via activating the CaMKII/Stat3 signaling in type 2 diabetes. Diabetol Metab Syndr. 2023;15(1):217.

https://doi.org/10.1186/s13098-023-01197-5

38.Brahma MK, Pepin ME, Wende AR. My Sweetheart Is Broken: Role of Glucose in Diabetic Cardiomyopathy. Diabetes Metab J. 2017;41(1):1–9.

https://doi.org/10.4093/dmj.2017.41.1.1

39. Vural Keskinler M, Takir M, Caklili OT, Oguz A. The Frequency and Determinants of HbA1c Variability in Type 2 Diabetic Patients. Metab Syndr Relat Disord. 2021;19(7):372–7.

https://doi.org/10.1089/met.2020.0131

40.Wu TE, Su YW, Chen HS. Mean HbA1c and HbA1c variability are associated with differing diabetes-related complications in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2022;192:110069.

https://doi.org/10.1016/j.diabres.2022.110069

41.Aroda VR, Eckel RH. Reconsidering the role of glycaemic control in cardiovascular disease risk in type 2 diabetes: A 21st century assessment. Diabetes Obes Metab. 2022;24(12):2297–308.

https://doi.org/10.1111/dom.14830

42. Huang Y, Heng C, Wei J, Jing X, Wang X, Zhao G, et al. Influencing factors of glycemic variability in hospitalized type 2 diabetes patients with insulin therapy: A

43.Zhou Z, Sun B, Huang S, Zhu C, Bian M. Glycemic variability: adverse clinical outcomes and how to improve it? Cardiovasc Diabetol. 2020;19(1):102. https://doi.org/10.1186/s12933-020-01085-6

TABLES AND FIGURES WITH LEGENDS

Table 1. Characteristics of the included studies

Study	Country	Study design	Source of population	No. of participa nts	Mea n age (year s)	Men (%)	Paramete rs for HbA1c variabilit y	Cutoffs of HbA1c variabilit	Times of HbA1c measured for variabilit y	Mean follow-up duration (years)	Methods for validating HF outcome	No. of patients with HF	Variables adjusted
Gu 2018	China	RC	Patients with T2D and hypertensi on from a single institution	201	65.3	59.2	HbA1c-SD* and HbA1c-CV	Medians	Mean: 11.7	7.3	AHA/ACC diagnostic criteria for new-onset symptomati c HFpEF	18	Age, sex, SBP, DBP, HbA1c- mean, eGFR, BMI, duration of T2D and hypertension, AF, medical treatment (Calcium blocker, ACEI/ARB, Beta-

													blockers, Statin, Sulfonylurea, Metformin, α-GI, Thiazolidine dione, Insulin), LAD, LVMI, E/E', and LVEF
Kaze 2020	USA	Post- hoc Analysi s of an RCT	Overweigh t or obese adults with T2D	3560	58.4	37.9	HbA1c-SD*, HbA1c-CV, HbA1c-VIM, and HbA1c-ASV	Q4:Q1	Mean: 4	6.8	Adjudicated incident HF events, as per the predefined process in the Look AHEAD trial	91	Age, sex, race/ethnicity , randomizatio n arm, BMI, current smoking, alcohol drinking, use of antihypertens ive

													medications, average ratio of total to HDL-c, eGFR, duration of diabetes, average SBP, and average HbA1c
Segar 2020	USA	Post- hoc Analysi s of an RCT	Adults withT2D and high cardiovasc ular risk or established CVD	8576	62.4	61.9	HbA1c-SD, HbA1c-CV, and HbA1c-ASV*	Q5:Q1	Median:	6.4	Adjudicated incident HF hospitalizati on or death due to HF by an independent committee	388	Age, sex, race, education, intensive glycemic control treatment group, history of CVD, traditional cardiovascula r risk factors

(systolic BP,
BMI,
cigarette use,
alcohol use,
total
cholesterol,
serum
creatinine,
LDL-c,
HDL-c),
medication
use (ARB,
ACE
inhibitor, β-
blocker, loop
diuretic,
thiazide
diuretic,
calcium
channel
blocker,
insulin,
sulfonylurea,

													biguanide, meglitinide, α- glucosidase inhibitor), and mean HbA1c
Li 2020	UK	RC	Adults with newly diagnosed T2D	19059	63.3	54.6	HVS	HVS 80- 100 vs. 0-20	Median: 12	6.8	Hospitalizat ion or death from HF (as per electronic health records)	853	Age, sex, calendar year, Scottish Index of Multiple Deprivation, smoking, hypertension, BMI, HDL-c, eGFR, antiplatelet therapy, and CCI
Wan 2020	Hongko ng (China)	PC	Hong Kong Hospital	147811	64.2	46.0	HbA1c- SD	≥3.0% vs. 0%- 0.24%	Mean: 3.2	7.4	Hospital Authority electronic	7908	Age, sex, smoking status,

			Authority								health		duration of
			(HA)								records and		diabetes,
			electronic								Death		BMI, systolic
			health								Registry,		and diastolic
			records;								using		BP, LDL-c,
			primary								ICPC-2 and		eGFR, use of
			care								ICD-9/10		metformin,
			patients								codes		sulphonylure
			with T2D										as, other oral
													diabetic
													drugs,
													insulin, anti-
							\						hypertensive
													drugs, lipid-
													lowering
													agents, CCI,
													and mean
													HbA1c
			T2D						At least 3		HF by		Age, sex,
Lin	Taiwan		patients				HbA1c-		measure		National		diabetes
2021	(China)	RC	from	3824	58.5	50.2	SD	T3:T1	ments	11.7	Health	315	duration,
2021	(Cillia)		Diabetes				ررد ا		within a		Insurance		BMI, systolic
			Shared						12-24		claim		BP, total

Care			month	database	cholesterol,
Program at			baseline	using ICD-	triglyceride,
a tertiary			period	9-CM and	HDL-c,
hospital				ICD-10-CM	LDL-c,
(China				codes	eGFR, CAD,
Medical					hypertension,
University					stroke, and
Hospital)					use of
					sulfonylureas
					, metformin,
					thiazolinedio
					nes, insulin,
					statin,
					antiplatelet
					agents,
					warfarin,
					ACEIs,
					ARB, beta-
					blockers,
					ССВ,
					diuretics,
					alpha-
					blockers, and

Manosr oi 2023	Thailand	PC	Thai patients aged >45 years with high atheroscler otic risk (Prediabet es or T2D)	3811	64.7	46.6	HbA1c- SD	Q4:Q1	Median:	4.5	Hospitalizat ion for HF (as part of the 4P- MACE outcome)	109	Age, sex, educational level, BMI, established ASCVD status, systolic BP, smoking status, mean HbA1c, lipid profiles, creatinine level, number of HbA1c measurement s, antihypertens ive medications, diabetes medications, lipid- lowering
-------------------	----------	----	--	------	------	------	--------------	-------	---------	-----	---	-----	--

Hsiao 2025	Taiwan (China)	RC	T2D patients from The Chang Gung Research Database	53748	63.7	50.7	HbA1c- ARV	Q4:Q1	Mean: 12.7	6.2	HF hospitalizati on, defined as a principal discharge diagnosis of HF plus at least one treatment during hospitalizati on (diuretics, nitrites, or inotropic agents)	1995	agents, and antiplatelet/a nticoagulants Age, sex, BMI, smoking, all comorbidities , baseline renal function, all medications, average lipid profiles, average vital signs (systolic/dias tolic BP, heart rate), hypoglycemi a, hyperglycemi a, and the average
---------------	-------------------	----	--	-------	------	------	---------------	-------	------------	-----	--	------	--

	HbA1c level

^{*,} parameter used in the main meta-analysis.

Abbreviations: RC: Retrospective cohort; PC: Prospective cohort; RCT: Randomized controlled trial; T2D: Type 2 diabetes; HbA1c: Glycated hemoglobin; SD: Standard deviation; CV: Coefficient of variation; VIM: Variability independent of the mean; ASV: Adjacent standard deviation; HVS: HbA1c variability score; HF: Heart failure; HFpEF: Heart failure with preserved ejection fraction; AHA/ACC: American Heart Association/American College of Cardiology; eGFR: Estimated glomerular filtration rate; BMI: Body mass index; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; AF: Atrial fibrillation; ACEI: Angiotensin-converting enzyme inhibitor; ARB: Angiotensin II receptor blocker; LAD: Left atrial diameter; LVMI: Left ventricular mass index; LVEF: Left ventricular ejection fraction; HDL-c: High-density lipoprotein cholesterol; LDL-c: Low-density lipoprotein cholesterol; CAD: Coronary artery disease; CVD: Cardiovascular disease; ASCVD: Atherosclerotic cardiovascular disease; CCI: Charlson comorbidity index; CCB: Calcium channel blocker; ICD: International Classification of Diseases; ICPC: International Classification of Primary Care; NR: Not reported.

Table 2. Study quality evaluation via the Newcastle-Ottawa Scale with reasons

Study	Representati	Selecti	Ascertainm	Outcome	Control	Control for other	Assessment	Enoug	Adequacy	Total
	veness of the	on of	ent of	not present	for age	confounding factors	of outcome	h long	of follow-	
	exposed	the	exposure	at baseline	and sex			follow	up of	
	cohort	non-						-up	cohorts	
		expose						durati		
		d						on		
		cohort								
Gu	0 point. The	1 point.	1 point.	1 point.	1 point.	1 point. The study	1 point. The	1	1 point.	8
2018	exposed	The	HbA1c was	Patients	Both age	adjusted for	outcome	point.	The study	
	cohort was	non-	measured	with	and sex	numerous important	(symptomati	The	retrospecti	
	drawn from	expose	using a	symptomat	were	confounders,	c HFpEF)	media	vely	
	a hospital	d	standardize	ic heart	included	including blood	was	n	enrolled	
	medical	cohort	d, DCCT-	failure at	in the	pressure, mean	assessed	follow	patients	
	record	(low	aligned	baseline	initial	HbA1c, renal	using strict,	-up	who had	
	database.	HbA1c	laboratory	were	univariat	function, BMI,	pre-defined,	was	been	
	Unknown if	variabil	method	explicitly	e	comorbidities, and	and	7.3	followed	
	the patients	ity	(high-	excluded.	analysis	medications	accepted	years,	for at least	
	were	group)	performanc		and		(AHA/ACC	which	2 years,	
	consecutivel	was	e liquid		consider) diagnostic	is >5	and	
	y or	drawn	chromatogr		ed for		criteria	years	follow-up	

	randomly	from	aphy)		the		involving	and	informatio	
	enrolled.	the			multivari		both clinical	suffici	n was	
		same			able		and	ent	obtained	
		source			model		echocardiog	for	from a	
		as the					raphic	the	comprehe	
		expose					evidence	outco	nsive	
		d						me to	medical	
		cohort						occur	record	
		(high							database,	
		HbA1c							suggesting	
		variabil							a low loss	
		ity							to follow-	
		group)							up	
Kaze	1 point. The	1 point.	1 point.	1 point.	1 point.	1 point. The model	1 point. The	1	1 point.	9
2020	cohort was	The	HbA1c was	Participant	Both age	adjusted for	outcome	point.	As a post-	
	derived from	non-	measured	s with	and sex	numerous important	(incident	The	hoc	
	a multi-	expose	in a central	prevalent	were	confounders,	HF) was	media	analysis of	
	center,	d	laboratory	HF at	included	including race,	ascertained	n	an RCT	
	randomized	cohort	using a	baseline or	in the	BMI, smoking,	via a	follow	with a	
	controlled	(low	standardize	during the	multivari	blood pressure,	standardized	-up	dedicated	
	trial (Look	HbA1c	d, high-	first 36	able	lipids, renal	and	was	follow-up	

	AHEAD)	variabil	performanc	months	regressio	function, diabetes	adjudicated	6.8	structure,	
	with a well-	ity	e method	(the	n models	duration, and	process	years,	the loss to	
	defined,	groups,	(ion-	exposure		crucially, the mean	within the	which	follow-up	
	prospective	e.g.,	exchange	assessment		HbA1c level	clinical trial,	is >5	is	
	recruitment	Q1)	HPLC),	period)			which is a	years	expected	
	strategy	was	ensuring	were			high-quality	and	to be	
		drawn	reliable	explicitly			method	suffici	minimal	
		from	exposure	excluded				ent		
		the	assessment					for		
		same						the		
		source						outco		
		as the						me to		
		expose						occur		
		d								
		cohort								
		(the								
		trial								
		populat								
		ion)								
Segar	1 point. The	1 point.	1 point.	1 point.	1 point.	1 point. The model	1 point. The	1	1 point.	9
2020	cohort was	The	HbA1c was	Participant	Both age	adjusted for a	outcome	point.	As a post-	

derived from	non-	measured	s with a	and sex	comprehensive set	(incident	The	hoc
a large,	expose	at a central	history of	were	of confounders,	HF) was	media	analysis of
multicenter	d	laboratory	HF or an	included	including	adjudicated	n	an RCT
randomized	cohort	using a	HF event	in the	cardiovascular	by an	follow	with a
controlled	(e.g.,	standardize	within the	multivari	history, risk factors,	independent,	-up	dedicated
trial	lower	d, NGSP-	first 3	able	medications,	blinded	for	follow-up
(ACCORD)	variabil	certified	years of	regressio	baseline HbA1c,	clinical	the	structure,
with a well-	ity	method at	enrollment	n models	and crucially, the	events	outco	the loss to
defined,	groups)	regular	were		mean change in	committee	me	follow-up
prospective	was	intervals,	explicitly		HbA1c and other	using	was	is
recruitment	drawn	ensuring	excluded		time-updated	predefined	6.4	expected
strategy	from	reliable			cardiometabolic	criteria,	years,	to be
	the	exposure			parameters	which is a	which	minimal
	same	assessment				high-quality	is >5	
	source					method	years	
	as the						and	
	expose						suffici	
	d						ent	
	cohort							
	(the							
	trial							

		populat								
		ion)								
Li	1 point.	1 point.	1 point.	1 point.	1 point.	1 point. Adjusted	0 point. HF	1	1 point.	8
2020	Population-	The	HbA1c	Excluded	Both age	for multiple	defined by	point.	Low	
	based from	non-	measured	patients	and sex	confounders	hospitalizati	The	attrition	
	SCI-DC	expose	extracted	with HF	were	(smoking, BMI,	on or death,	media	due to use	
	database,	d	from	within first	included	eGFR, deprivation,	from	n	of national	
	includes all	cohort	electronic	3 years of	in the	etc.)	validated	follow	registry	
	eligible	was	health	diagnosis	multivari		records, not	-up	data	
	newly	drawn	records		able		by clinically	for		
	diagnosed	from			regressio		diagnosed	the		
	T2D patients	the			n models		HF	outco		
		same						me		
		source						was		
		as the						6.8		
		expose						years,		
		d						which		
		cohort						is >5		
								years		
								and		
								suffici		

								ent		
Wan	1 point.	1 point.	1 point.	1 point.	1 point.	1 point.	0 point.	1	1 point.	8
2020	Population-	The	HbA1c	Patients	Both age	Comprehensively	Outcomes	point.	Low risk	
	based, using	non-	measured	with a	and sex	adjusted for	determined	The	of attrition	
	the Hong	expose	from	prior	were	numerous clinical	via linkage	media	due to the	
	Kong HA	d	standardize	diagnosis	included	and treatment-	with robust	n	use of a	
	database	cohort	d	of CVD at	in the	related confounders,	electronic	follow	comprehe	
	which	was	laboratory	baseline	multivari	including mean	health	-up	nsive,	
	covers >90%	drawn	tests within	were	able	HbA1c	records and	for	population	
	of local	from	the HA	explicitly	regressio		the official	the	-wide	
	patients with	the	system	excluded	n models		Death	outco	administra	
	chronic	same				<i></i>	Registry,	me	tive	
	diseases	source					not by	was	database	
		as the					clinically	7.4		
		expose					diagnosed	years,		
		d					HF	which		
		cohort						is >5		
								years		
								and		
								suffici		
								ent		

Lin	1 point.	1 point.	1 point.	1 point.	1 point.	1 point.	0 point.	1	1 point.	8
2021	Consecutivel	The	HbA1c	Patients	Both age	Comprehensively	Outcome	point.	Used a	
	y enrolled	non-	measured	with a	and sex	adjusted for a wide	determined	The	national	
	from the	expose	extracted	history of	were	array of clinical,	via linkage	media	database,	
	hospital's	d	from	HF were	included	laboratory, and	with a	n	suggesting	
	Diabetes	cohort	electronic	excluded,	in the	medication-related	national	follow	minimal	
	Shared Care	was	health	and those	multivari	confounders	claims	-up	loss to	
	Program,	drawn	records	who	able		database,	for	follow-up	
	representing	from		developed	regressio		not by	the		
	a real-world	the		HF within	n models		clinically	outco		
	clinical	same		1 year of			diagnosed	me		
	cohort	source		enrollment			HF	was		
		as the		were also				11.7		
		expose	/	excluded				years,		
		d		to mitigate				which		
		cohort		reverse				is >5		
				causality				years		
								and		
								suffici		
								ent		
Ceriel	1 point.	1 point.	1 point.	1 point.	1 point.	1 point.	0 point.	0	1 point.	7

lo	Population-	The	HbA1c	Patients	Both age	Comprehensively	Outcomes	point.	Low risk	
2022	based, using	non-	measured	with	and sex	adjusted for a very	determined	The	of attrition	
	the Swedish	expose	by standard	prevalent	were	wide range of	via linkage	media	due to the	
	National	d	procedures	macrovasc	included	clinical, laboratory,	with robust	n	use of a	
	Diabetes	cohort	as part of a	ular	in the	and treatment-	national	follow	comprehe	
	Register	was	national	diseases	multivari	related confounders,	registry data	-up	nsive,	
	which	drawn	registry	(including	able	including mean	using	for	national	
	includes	from		HF) at	regressio	HbA1c	standardized	the	registry	
	~90% of all	the		baseline or	n models		ICD codes,	outco		
	patients with	same		during the			not by	me		
	diabetes in	source		exposure			clinically	was		
	Sweden	as the		phase were			diagnosed	4.4		
		expose		excluded			HF	years,		
		d						which		
		cohort						is <5		
								years		
Mano	1 point. The	1 point.	1 point.	1 point.	1 point.	1 point. The model	0 point.	0	1 point.	7
sroi	cohort is a	The	Exposure	The study	Both age	adjusted for	While not	point.	The	
2023	multicenter,	non-	(HbA1c	is a	and sex	numerous important	explicitly	The	descriptio	
	national	expose	variability)	longitudin	were	confounders,	detailed,	media	n states	
	registry	d	was	al analysis	included	including ASCVD	hospitalizati	n	patients	

	(CORE-	cohort	ascertained	of incident	in the	status, BMI,	on for HF	follow	were	
	Thailand)	was	from	events.	multivari	smoking, mean	recorded,	-up	followed	
	designed to	drawn	objective	Patients	able	HbA1c, renal	not by	for	until	
	enroll	from	laboratory	were	regressio	function, lipid	clinically	the	death, lost	
	patients with	the	measureme	followed	n models	levels, and	diagnosed	outco	to follow-	
	high	same	nts (HbA1c	until they		medication use	HF	me	up, or	
	atherosclerot	source	SD) from	developed) `	was	censoring,	
	ic risk	as the	patient	the				4.5	suggesting	
		expose	records	outcome				years,	a	
		d		(HF				which	reasonable	
		cohort		hospitaliza				is <5	follow-up	
				tion), died,		<i>y</i>		years	rate	
				or were						
				censored						
Hsiao	1 point. The	1 point.	1 point.	1 point.	1 point.	1 point. The model	1 point. HF	1	1 point.	9
2025	cohort is a	The	Exposure	The study	Both age	adjusted for a very	was defined	point.	The study	
	large,	"non-	(HbA1c	explicitly	and sex	extensive set of	by a primary	The	used a	
	multicenter,	expose	variability)	excluded	were	confounders,	hospital	media	comprehe	
	nationwide	d"	was	patients	included	including	discharge	n	nsive	
	database	cohort	ascertained	with a	in the	comorbidities, renal	diagnosis	follow	hospital	
	(Chang	(lowest	from	history of	multivari	function,	plus the	-up	database	

Gung	quartile	objective,	HF,	able	medications, lipid	requirement	for	with a
Research	of	serial	myocardial	regressio	profiles, vital signs,	for specific	the	defined
Database)	HbA1c	laboratory	infarction,	n models	hypoglycemia/hyper	HF	outco	end-of-
that	variabil	measureme	or		glycemia events,	treatments,	me	study date
systematicall	ity) was	nts (HbA1c	coronary		and crucially, the	with the	was	(Dec 31,
y collects	drawn	ARV)	interventio		mean HbA1c level	information	6.2	2018),
data from all	from	recorded in	n at			of LVEF	years,	suggesting
treated	the	the medical	baseline,				which	minimal
patients with	same	database	ensuring				is >5	loss to
T2D in that	source		the				years	follow-up
system	populat		outcome					
	ion as		was					
	the		incident					
	expose	-						
	d							
	cohort							

Abbreviations: HbA1c: Glycated hemoglobin; SD: Standard deviation; ARV: Average real variability; T2D: Type 2 diabetes; HF: Heart failure; HFpEF: Heart failure with preserved ejection fraction; AHA: American Heart Association; ACC: American College of Cardiology; HPLC: High-performance liquid chromatography; DCCT: Diabetes Control and Complications Trial; RCT: Randomized controlled trial; Look AHEAD: Action for Health in Diabetes trial; ACCORD: Action to Control Cardiovascular Risk in Diabetes trial;

BMI: Body mass index; eGFR: Estimated glomerular filtration rate; CVD: Cardiovascular disease; ASCVD: Atherosclerotic cardiovascular disease; ICD: International Classification of Diseases; SCI-DC: Scottish Care Information—Diabetes Collaboration; HA: Hospital Authority; BP: Blood pressure; CAD: Coronary artery disease; HDL-c: High-density lipoprotein cholesterol; LDL-c: Lowdensity lipoprotein cholesterol; LVEF: Left ventricular ejection fraction.

Table 3. Results of univariate meta-regression analysis

Variables	ariables HR for the association between HbA1c variability and the risk of heart failure								
	Coefficient	95% CI	p values	Adjusted R ²					
Mean age (years)	0.056	-0.079 to 0.190	0.36	0%					
Men (%)	-0.0026	-0.0532 to 0.0479	0.91	0%					
Follow-up duration	-0.043	-0.195 to 0.109	0.53	0%					
(years)									
NOS	0.17	-0.34 to 0.68	0.46	0%					

Abbreviations: HR: Hazard ratio; HbA1c: Glycated hemoglobin; CI: Confidence interval; NOS: Newcastle-Ottawa Scale.

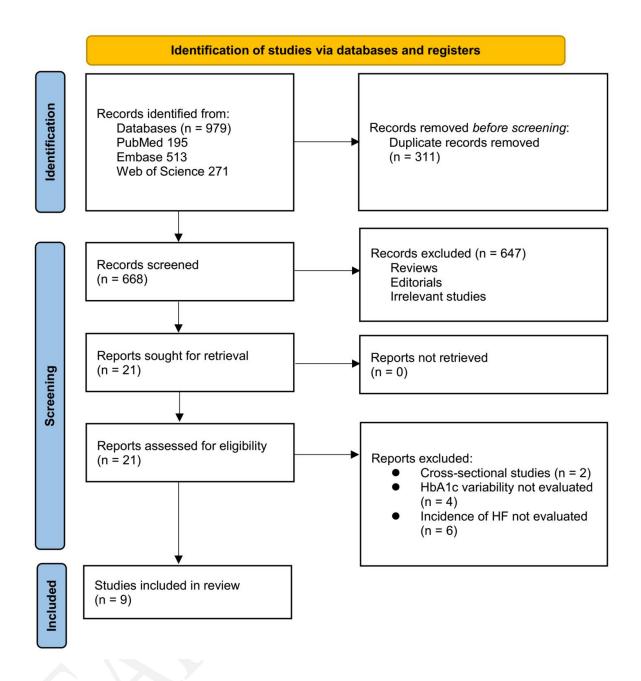


Figure 1. Flowchart of database search and study inclusion

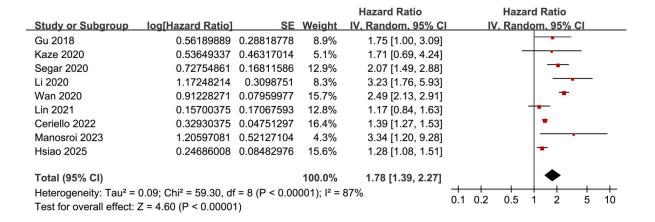
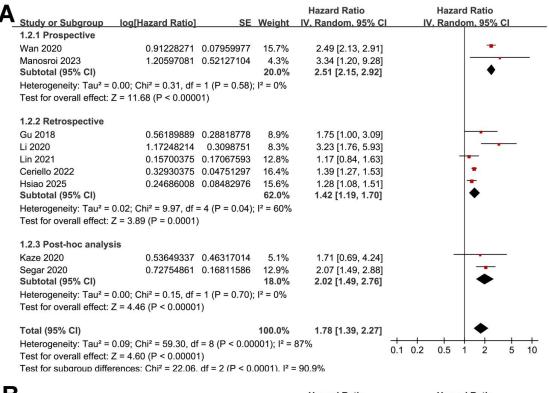



Figure 2. Forest plot illustrating the association between high and low visit-to-visit HbA1c variability and the incidence of HF. The adjusted HRs with 95% CIs from nine longitudinal studies were combined using an inverse-variance random-effects model. Squares denote individual study estimates, with their sizes proportional to study weight, while horizontal lines represent the 95% CIs. The diamond indicates the pooled effect (HR 1.78, 95% CI 1.39–2.27). The vertical line at HR = 1 signifies no association, and there was substantial between-study heterogeneity ($I^2 = 87\%$; $\tau^2 = 0.09$). Abbreviations: HbA1c, glycated hemoglobin; HF, heart failure; HR, hazard ratio; CI, confidence interval.

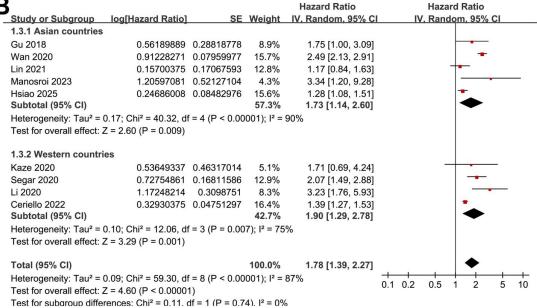


Figure 3. Forest plots illustrating subgroup analyses of the association between HbA1c variability and the risk of HF. (A) Subgroup analysis by study design. (B) Subgroup analysis by study country. Abbreviations: HbA1c, glycated hemoglobin; HF, heart failure.

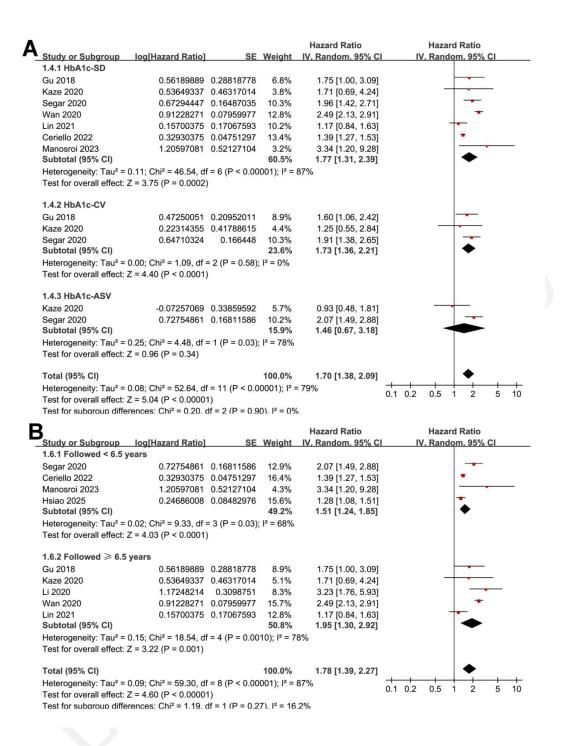


Figure 4. Forest plots of subgroup analyses for the association between HbA1c variability and the risk of HF. (A) Subgroup analysis by HbA1c-variability metric. (B) Subgroup analysis by follow-up duration. Panel A provides an exploratory, descriptive comparison of metric types; each study contributes one estimate within a given metric subgroup, whereas the primary meta-analysis (Figure 2) includes one independent estimate per study. Abbreviations: HbA1c, glycated hemoglobin; HF, heart failure.

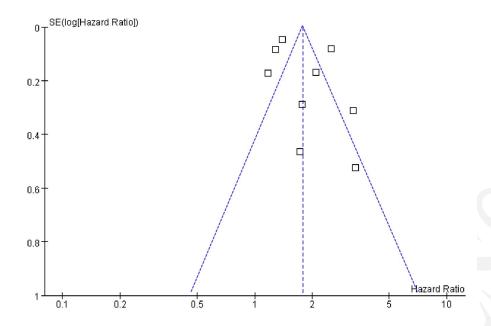


Figure 5. Funnel plots for assessing potential publication bias in meta-analyses of the associations between HbA1c variability and HF risk. Egger's test revealed no evidence of small-study effects; however, given the limited sample of only nine studies, the results should be interpreted with caution. Abbreviations: HbA1c, glycated hemoglobin; HF, heart failure.

SUPPLEMENTAL DATA

Supplemental file 1. Detailed search strategy for each database

PubMed

1. Population/Exposure (HbA1c / glycemic terms)

("Glycated Hemoglobin A"[Mesh] OR "Hemoglobin A, Glycosylated"[tiab] OR "Hemoglobin A1c"[tiab] OR HbA1c[tiab] OR A1c[tiab] OR "glycated hemoglobin"[tiab] OR "glycosylated hemoglobin"[tiab] OR glucose[tiab] OR glycemic[tiab])

2. Variability (visit-to-visit / dispersion metrics)

(variab*[tiab] OR fluctuat*[tiab] OR "visit-to-visit"[tiab] OR "visit to visit"[tiab] OR intervisit[tiab] OR intraindividual[tiab] OR "intra-individual"[tiab] OR "within-person"[tiab] OR "within person"[tiab] OR "coefficient of variation"[tiab] OR CV[tiab] OR "standard deviation"[tiab] OR SD[tiab] OR "average real variability"[tiab] OR ARV[tiab] OR "adjacent standard deviation"[tiab] OR ASV[tiab] OR "variability independent of the mean"[tiab] OR VIM[tiab])

3. Outcome (Heart failure)

("Heart Failure" [Mesh] OR "Ventricular Dysfunction, Left" [Mesh] OR "Heart Failure" [tiab] OR "cardiac failure" [tiab] OR "cardiac dysfunction" [tiab] OR "ventricular dysfunction" [tiab] OR "left ventricular dysfunction" [tiab])

4. Study design / incidence / risk

("Incidence" [Mesh] OR incidence [tiab] OR risk [tiab] OR hazard* [tiab] OR cohort* [tiab] OR longitudinal [tiab] OR prospective [tiab] OR retrospective [tiab] OR "follow-up" [tiab] OR followed [tiab])

5. Combine and date limit

1 AND 2 AND 3 AND 4 AND ("0001/01/01"[Date - Publication]: "2025/08/30"[Date - Publication])

Embase

1. HbA1c / glycemic

'glycated hemoglobin a'/exp OR 'hemoglobin a1c'/exp OR (hba1c OR 'hemoglobin a1c' OR 'glycated hemoglobin' OR 'glycosylated hemoglobin' OR glucose OR glycemic):ti,ab,kw

2. Variability / metrics

(variab* OR fluctuat* OR 'visit-to-visit' OR (visit NEAR/2 visit) OR intervisit OR 'intra-individual' OR intraindividual OR 'within-person' OR 'within person' OR 'coefficient of variation' OR CV OR 'standard deviation' OR SD OR 'average real variability' OR ARV OR 'adjacent standard deviation' OR ASV OR 'variability independent of the mean' OR VIM):ti,ab,kw

3. Heart failure

'heart failure'/exp OR 'left ventricular dysfunction'/exp OR ('cardiac' NEAR/2 (failure OR dysfunction)):ti,ab,kw OR 'ventricular dysfunction'/exp

4. Study design / incidence / risk

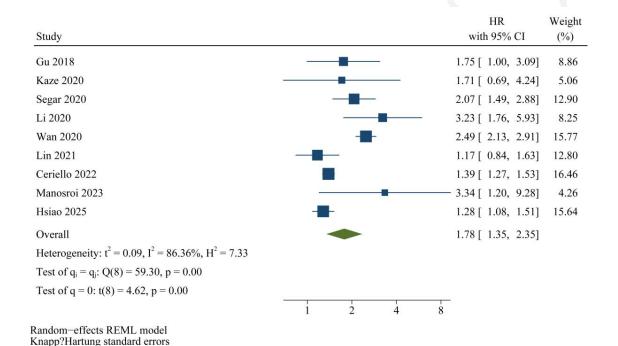
'incidence'/exp OR 'risk'/exp OR 'cohort analysis'/exp OR 'longitudinal study'/exp OR 'prospective study'/exp OR 'retrospective study'/exp OR 'follow up'/exp OR (cohort* OR longitudinal OR prospective OR retrospective OR 'follow-up' OR followed):ti,ab,kw

5. Combine and years

1 AND 2 AND 3 AND 4, from inception to 2025-08-30

Web of Science

TS=(("hemoglobin a1c" OR HbA1c OR A1c OR "glycated hemoglobin" OR "glycosylated hemoglobin" OR glucose OR glycemic) AND (variab* OR fluctuat* OR "visit-to-visit" OR (visit NEAR/2 visit) OR intervisit OR "intra-individual" OR intraindividual OR "within-person" OR "within person" OR "coefficient of variation" OR CV OR "standard deviation" OR SD OR "average real variability" OR ARV OR "adjacent standard deviation" OR ASV OR "variability independent of the mean" OR


VIM) AND ("heart failure" OR ("cardiac" NEAR/2 (failure OR dysfunction)) OR

"ventricular dysfunction" OR "left ventricular dysfunction") AND (incidence OR risk

OR hazard* OR cohort* OR longitudinal OR prospective OR retrospective OR

"follow-up" OR followed))

(Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI; Timespan: 1900–2025; Language: All)

Supplemental figure 1. Sensitivity analysis of the association between high vs. low visit-to-visit HbA1c variability and incident HF using a REML randomeffects model with Hartung–Knapp inference. Pooled estimates are shown as HRs with 95% CIs, demonstrating results consistent with the primary analysis (HR 1.78, 95% CI 1.35–2.35; I² = 86%). Abbreviations: HbA1c, glycated hemoglobin; HF, heart failure; HR, hazard ratio; CI, confidence interval; REML, restricted maximum likelihood.