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Tubular functional capacity and maladaptive parathyroid
hormone response in early-stage chronic kidney disease

Branislava IlinCi¢ ®%2*, Radmila Zeravica ®%2, Romana Mijovi¢ ©2, Esma R. Isenovi¢ 3, Dragan Buri¢ 2, Dragana Zuvi¢ ®1-2,

and Velibor Cabarkapa @12

Clinical data regarding the interaction between tubular functional capacity (TFC) and maladaptive parathyroid gland response in
early-stage chronic kidney disease (CKD) are limited. This study aimed to evaluate the association between parathyroid gland response,
measured as intact parathyroid hormone (iPTH) serum concentration (pg/mL) using chemiluminescent microparticle immunoassay, and
the dissociation between the decline in glomerular filtration rate (GFR) and TFC, assessed through radionuclide clearances. TFC was
evaluated by measuring effective renal plasma flow (mERPF, mL/min/1.73m?) using (1311) Hippurate (131I-H) clearance, while GFR was
measured using (99m) Tc-DTPA (mGFR, mL/min/1.73m?). Consecutive participants with preexisting CKD (N = 111, female 44%, male
56%) were enrolled and stratified into four groups based on CKD stages (1, 2, 3a, and 3b). Median serum iPTH concentrations
significantly differed between Stage 1[23 (20.4-25.5) pg/mL] and Stage 2 [23.6 (20.5-26.8) pg/mL] compared to Stage 3a
[38.1(34.1-41.9) pg/mL] and Stage 3b [45.8 (39.7-51.9) pg/mL] (P = 0.01). In Stage 1, there was a significant positive association
between iPTH and mERPF (P = 0.003). Conversely, in Stage 3b, iPTH was significantly negatively associated with both mGFR and
mERPF (P < 0.05 for both). Regression models that included the interaction between CKD stage and either mGFR or mERPF, alongside
other predictors (age, CKD stage, body mass index, ionized calcium, and 25-hydroxyvitamin D), revealed significant associations with
iPTH (P < 0.05 for all variables). The assessment of TFC using 131I-H plasma clearance does not enhance the detection of maladaptive
parathyroid gland responses compared to evaluating CKD stage and its relationship with declining glomerular and tubular clearances in

early-stage CKD patients.

Keywords: Tubular functional capacity, effective renal plasma flow, glomerular filtration rate, intact parathyroid hormone,

chronic kidney failure.

Introduction
At present, hyperparathyroidism (HPT) is a relatively common
condition, frequently identified through biochemical screen-
ing in the absence of overt clinical signs of parathyroid
gland disease. The clinical profiles of HPT encompass primary
(including asymptomatic, normocalcemic variants and hyper-
calcemic HPT), regulatory, secondary (SHPT), and tertiary
(THPT) forms, all characterized by excessive secretion from the
parathyroid glands and downregulation of the calcium-sensing
receptor (CaSR). These characteristics arise from various etio-
logical factors, including genetic and epigenetic changes [1, 2].
While primary and tertiary HPT have clear etiologies [3-5],
regulatory and secondary HPT are typically consequences
of prolonged hyperphosphatemia and hypocalcemia, result-
ing from multiple metabolic and target organ dysfunctions,
including renal, bone, gastrointestinal, neurological, and hep-
atic diseases [6].

The complexity of evaluating the causes and effects of
chronic kidney disease (CKD), particularly in the elderly,
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presents opportunities for a deeper understanding of the
mechanisms underlying increased maladaptive parathyroid
hormone (PTH) secretion. This understanding broadens the
perspective on the impact of SHPT on bone metabolic abnor-
malities, heterotopic vascular and soft tissue calcifications,
cardiovascular events, and mortality [7]. Regardless of the
underlying cause of CKD, a decline in glomerular filtration rate
(GFR) has numerous consequences and is regarded as a piv-
otal factor driving the maladaptive response of the parathyroid
glands in SHPT. Early-stage CKD, defined as stages 1-3, is often
asymptomatic and frequently undiagnosed [8]. Disruption in
PTH secretion begins in the early stages of CKD, influenced
by the interplay between calcium, phosphate, active vitamin
D, and fibroblast growth factor 23 (FGF23) [9]. After an ini-
tial decrease in FGF23 and impaired feedback mechanisms
in the parathyroid glands, serum PTH concentrations start
to rise when the GFR falls below 60 mL/min/1.73m? [10].
Furthermore, the kidneys and liver play crucial roles in the
impaired renal clearance of PTH, contributing to SHPT in
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CKD [11]. Research on renal extraction of PTH has highlighted
the importance of peritubular clearance, a process that clears
the majority of PTH (1-84) and its fragments from circulation,
independent of GFR [12,13]. Given the theoretical possibility
that renal tubular injury could precede glomerular injury—and
that significant decrements in tubular function can occur even
with “normal” GFR—the characterization of tubular functional
capacity (TFC) may serve as a valuable tool for evaluating PTH
levels in the early stages of CKD [14, 15].

The present study, with its rigorous design, aimed to inves-
tigate the association between parathyroid gland response and
the dissociation between declines in both GFR and TFC, assessed
via radionuclide clearances. Estimating TFC using effective
renal plasma flow (ERPF), a crucial component of renal blood
flow that supplies the kidney’s secretory structures, enhances
the reliability and validity of the findings.

Materials and methods
Study subjects and protocol
An observational, cross-sectional study was conducted at the
University Clinical Center of Vojvodina (UCCV). Consecutive
participants were enrolled and referred to the Department of
Laboratory Diagnostics and Nuclear Medicine at UCCV for kid-
ney function assessment using radionuclide renal clearances.
Patients with previously diagnosed CKD due to chronic tubu-
lointerstitial diseases were evaluated for baseline kidney func-
tion prior to the initiation of potentially nephrotoxic therapies.
A standardized protocol for all patients undergoing radionu-
clide renal clearances included two visits. During the first
visit, radionuclide renal clearance for measuring GFR (mGFR)
and venous blood sampling for laboratory analysis were per-
formed between 7 AM and 9 AM while fasting for 12 h after
the last meal. The second visit, occurring within seven days of
the first (provided there was no change in the patient’s clini-
cal status), involved radionuclide renal clearance for measur-
ing ERPF (mERPF). Anthropometric measurements—including
body height (BH), body weight (BW), and waist circumference
(WC)—were taken at both visits, and body mass index (BMI
= BW/BH?, kg/m?) and body surface area (BSA) were calcu-
lated. Patients provided two urine samples: a 24-h collection
during the first visit and a first-morning sample during the sec-
ond visit. If both results fell within the same albuminuria cate-
gory, the patient data were included in subsequent analyses.
The study included both genders, with female participants
(49/111, 44%) and male participants (62/111, 56%). Patients were
classified into GFR categories G1, G2, G3a, and G3b, with kid-
ney damage indicated by albuminuria in categories Al and
A2 [16]. Patients were stratified into four groups: Stage 1 (mGFR
>90 mL/min/1.73m? with kidney damage, N = 25), Stage 2
(mGFR 60-89 mL/min/1.73m? with kidney damage, N = 30),
Stage 3a (mGFR 45-59 mL/min/1.73m?, N = 26), and Stage 3b
(mGFR 30-44 mL/min/1.73m?, N = 30). Patients with albu-
minuria category A3 (AER>300 mg/24 h) were excluded from
further testing due to methodological constraints and the risk
of overestimating expanded body space in cases of severe albu-
minuria. The study also excluded patients with CKD stages 4
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and 5, diabetes mellitus, liver and gastrointestinal diseases,
inflammatory, autoimmune, and infectious diseases, endocrine
gland dysfunctions, malignancies, individuals exhibiting clin-
ically evident edema or ascites, pregnancy, and those on
routine medications that could affect PTH levels (including
corticosteroids, estrogen replacement, biotin supplementation,
diuretics, sodium-glucose cotransporter-2 inhibitors, lithium,
anticonvulsants such as phenytoin/phenobarbital, bisphos-
phonates, denosumab, romosozumab, calcitonin, and calcium
channel blockers).

Radionuclide renal clearance

Radionuclide renal clearance methods were conducted in accor-
dance with established standard operating procedures [17, 18]
and local protocols. Following hydration with water (5 mL/kg
body mass), plasma clearances were obtained using a sin-
gle injection of a commercially available radiopharmaceutical.
Blood sampling for GFR was scheduled for 180 and 240 min
after the intravenous injection of 30 MBq technetium-99m pen-
tetate (DTPA) (Technescan DTPA, Mallinckrodt Medical B.V.,
Netherlands). ERPF was assessed 20 and 30 min after intra-
venous administration of 1 MBq Hippurate (1311-H) (Institute
for Nuclear Science, Vinca, Serbia). Venous blood samples were
collected from the contralateral limb to minimize contamina-
tion risk. The radioactivity of plasma samples was quantified
using a gamma counter equipped with a NaI(Tl) crystal (Captus
3000 by Capintec, USA), with appropriate energy windows for
technetium-99m and iodine-131. Daily quality control was per-
formed per the manufacturer’s recommendations. Calculations
for mGFR and mERPF were performed using the slope-intercept
method [Captus 3000 Built-in Software, version 1.28 (2013)].
The Brochner-Mortensen correction was applied for mGFR cal-
culations, while mERPF was adjusted by multiplying by 0.8 to
account for a 20% overestimation [19]. Obtained values were
normalized to BSA using the DuBois and DuBois formula [20].
Corrected mGFR and mERPF values were then compared to age-
and sex-specific reference values (ASS GFR and ASS ERPF) [21],
and absolute and relative deviations for age- and sex-specific
GFR (DEV ASS GFR, mL/min/1.73m?, %) as well as absolute and
relative deviations for age- and sex-specific ERPF (DEV ASS
ERPF, mL/min/1.73m?, %) were calculated.

ASS GFR: 144.1 - (0.99 x age) for females; ASS GFR: 160.5
- (1.16 x age) for males
ASS ERPF: 673.3 - (2.92 x age) for females; ASS ERPF: 854.2
- (5.4 x age) for males

Chromatography was performed to ensure the quality con-
trol of radiochemical purity (RCP): paper chromatography
for technetium-99m DTPA with RCP >95%; thin-layer chro-
matography for Hippurate (1311-H) with RCP >96%; and radio-
chemical impurities: % (131I) <2% and 2-iodo (131I) benzoic
acid <2%.

Biochemical analyses

Serum concentrations of glucose, urea, creatinine, uric acid,
total calcium (tCa), ionized calcium (iCa), phosphorus (P), and
magnesium (Mg) were measured using spectrophotometric
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methods on an automated analyzer (Alinity c, Abbott). Serum
iCa was determined using an ion-selective electrode method
on the AVL 9180 analyzer (Roche Diagnostics). Lipid pro-
file parameters, including total cholesterol (tChol), triglyc-
erides (TG), and high-density lipoprotein cholesterol (HDL-C),
were assessed spectrophotometrically using the Alinity ¢ ana-
lyzer. Low-density lipoprotein cholesterol (LDL-C) was calcu-
lated using Friedewald’s formula. Apolipoproteins Apo Al and
Apo B were quantified via immunoturbidimetric assay. Serum
cystatin C (CysC) concentrations were measured using the
nephelometric method on the BN ProSpec System (Siemens).
The albuminuria excretion rate (AER, mg/24 h) was determined
in 24-h urine samples using an immunoturbidimetric method
on the Alinity c analyzer. In spot urine samples, albumin and
creatinine concentrations were measured, and the albumin-to-
creatinine ratio (ACR, mg/mmol) was calculated.

Serum concentrations of insulin, 25-hydroxyvitamin D
[25(0OH)D], and intact PTH (iPTH) were analyzed using chemi-
luminescent microparticle immunoassay (CMIA) on the Alinity
i analyzer (Abbott). Vitamin D deficiency was defined as serum
25(OH)D levels below 50 nmol/L [22]. The insulin resistance
index (Homeostasis Model Assessment - Insulin Resistance,
HOMA-IR) was calculated for all participants [23]. The refer-
ence range for iPTH in adults was 15-68.3 pg/mL. Internal labo-
ratory quality control was conducted to assess the measurement
of iPTH serum concentration. iPTH levels were monitored over
20 days using control levels provided by three manufacturers
(low, medium, and high control; iPTH STAT Protocol, Abbott)
and two different iPTH concentrations in blood samples (pool
serum). Imprecision (CV total) and bias (absolute and rela-
tive) were consistent with the manufacturer’s specifications:
low control 8.3 pg/mL (CV 4.4%, Bias 0.67; Bias % 8.08%);
medium control 54.2 pg/mL (CV 3.9%; Bias 1.85; Bias % 3.41%);
high control 208.3 pg/mL (CV 4.0%, Bias 7.75; Bias % 3.72%);
I pool - 74.8 pg/mL (CV 3.2%, Bias -8.40; Bias % 11.23%); II pool
156.2 pg/mL (CV 4.2%, Bias -22.56; Bias % 14.44%).

Ethical statement

The study was conducted in accordance with the guidelines
of the Declaration of Helsinki and was approved by the Ethics
Committee of UCCV (No. 00-347/2025). All participants pro-
vided written informed consent prior to their involvement in
the study. All methods were executed in compliance with rele-
vant guidelines and regulations.

Statistical analysis

The distribution of variables was evaluated using the
Shapiro-Wilk test. Continuous variables with a normal dis-
tribution are presented as mean + standard deviation, while
non-normally distributed variables are reported as median
with lower and upper quartiles (Q1-Q3). Depending on data
distribution, ANOVA or the Kruskal-Wallis test was employed
for multiple-group comparisons, followed by a Bonferroni
post hoc test. Spearman’s rank correlation coefficient was
calculated to describe monotonic relationships between iPTH
serum concentrations and other continuous variables. Scatter
plots were utilized to visualize relationships between iPTH
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and independent variables (renal clearance measurements:
mGFR and mERPF) within the study group. Univariate linear
regression analyses were initially performed for each stage
1-3b group to explore the relationships between iPTH and
renal clearances. Subsequently, multivariate linear regression
models with interactions were employed to examine the rela-
tionship between iPTH and variables associated with kidney
function. The variables assessed included renal clearance
measurements, CKD stage, and interactions between CKD stage
and mGFR, and mERPF. To mitigate confounding between
mGFR and mERPF, each variable was analyzed in separate
models (GFR model and ERPF model). Finally, multivariate
linear regression models were used to identify predictors
of iPTH serum concentration. CysC and phosphorus serum
concentrations were excluded due to their lack of significant
effects in initial model analyses. Model 1 included CKD stage,
interaction (CKD stage x mGFR), age, BMLI, iCa, and 25(0H)D;
Model 2 included CKD stage, interaction (CKD stage x mERPF),
age, BMI, iCa, and 25(0OH)D. Residuals were analyzed for both
models, and collinearity was assessed using tolerance. Models
were compared using Akaike’s information criterion (AIC).
Statistical significance was setatan alphalevel of 0.05. Analyses
were conducted using statistical software Stata 18 (StataCorp
LLC, 2023) and Statistica 14.0.0.15 (TIBCO Software Inc.).

Results

Table1 presents a comprehensive comparison of clinical,
metabolic, and mineral profiles across various patient groups.
Patients in CKD Stages 3a and 3b exhibited significantly higher
median ages compared to those in Stages 1 and 2 (P < 0.001).
No statistically significant differences were observed in anthro-
pometric measurements (BMI and WC) or blood pressure values
(SP, DP, MAP) among the groups. Analysis of laboratory param-
eters revealed significant differences in medianlevels of glucose
and lipids, including HDL-C, TG, and apo Al (all P < 0.05).
Conversely, no significant differences were detected in the
median serum concentrations of electrolytes (iCa, P, Mg) or
25(0OH)D. Amongall patients, 47% exhibited concurrent vitamin
D deficiency. The median serum concentrations of iPTH in the
Stage 1 and Stage 2 groups (23 [20.4-25.5] vs 23.6 [20.5-26.8]
pg/mL, P > 0.05) were significantly lower (P = 0.01) than those
in the Stage 3a and Stage 3b groups (38.1 [34.1-41.9] vs 45.8
[39.7-51.9] pg/mL, P > 0.05). Renal function profile parameters
demonstrated consistent statistical significance across groups
(Table 2). Median CysC serum concentrations did not differ sig-
nificantly between Stages 1 and 2 but were significantly lower
in Stages 1 and 2 compared to Stages 3a and 3b. Both mGFR and
mERPF values declined significantly with each advancing stage
(P < 0.05 for both). DEV ASS GFR (%) and DEV ASS ERPF (%)
exhibited statistically significant differences across all stages
(P < 0.05 for both).

Spearman correlation analysis (Table 3) revealed statis-
tically significant positive monotonic relationships between
iPTH and age (r = 0.42, P < 0.01), WC (r = 0.22, P = 0.02),
BMI (r = 0.27, P = 0.01), and CysC (r = 0.48, P < 0.01).
Statistically significant negative monotonic relationships were
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Table 1. Clinical, metabolic, and mineral profiles of patients

Variables Stagel Stage 2 Stage 3a Stage 3b P
n=25 n=30 n=26 n=30

Age (years) 412 (18-66) 482 (22-70) 65° (43-82) 65° (22-77) 0.00
Male, N/total 16/25 16/30 10/26 20/30 0.14
BMI (kg/m?) 274435 26.8+5.1 27.6+3.8 28.9+42 0.29
WC (cm) 9754119 91.2+14.7 95.7 +11.2 99.14+12.2 0.12
SP (mm Hg) 125.8 +13.4 130.24+22.9 118.5429.3 139.6 +19.7 0.66
DP (mm Hg) 79.4+79 80.8 £12.1 80.4+7.4 81.14+9.8 0.87
MAP (mm Hg) 94.8+8.8 9734155 9494126 9734123 0.72
Glucose (mmol/L) 5.3% (4.6-5.5) 5.01% (4.7-5.4) 5.42b (4.98-6.1) 5.6° (5.3-6.1) 0.01
Insulin (mIU/L) 19 (9.7-25) 11.8 (8.2-15.5) 11.7 (7.8-17.8) 14.4 (11-32.3) 0.12
HOMA-IR 4.5(2.2-6.2) 2.85(1.8-3.7) 2.65(1.7-4.9) 3.2(2.4-7.8) 0.09
tChol (mmol/L) 5.4 (3.9-5.8) 5.2(4.5-6.3) 5.4 (4.4-5.8) 47(4.2-5.7) 0.18
LDL-C (mmol/L) 3.7(2.3-3.8) 3.2(2.4-4.1) 3.3(2.8-3.6) 2.8(2.3-3.3) 0.12
HDL-C (mmol/L) 1.37 (1.1-1.6) 1.37 (1-1.6) 1.37 (1.2-1.5) 1.2 (0.9-1.4) 0.04
TG (mmol/L) 1.1% (0.9-1.4) 160 (1.1-2.2) 1.5%b (1-1.9) 1.6° (1.1-2) 0.01
Apo Al (mmol/L) 1.42 (1.3-1.6) 15% (1.3-17) 1.5% (1.4-1.7) 1.3% (1.0-1.4) 0.01
Apo B (mmol/L) 11(0.9-1.2) 1(0.8-1.3) 1.1(0.9-1.2) 1(0.9-1.2) 0.66
tCa (mmol/L) 2.4(2.3-2.5) 2.5(2.4-2.5) 2.4(2.3-2.5) 2.4(2.3-2.5) 0.25
iCa (mmol/L) 1.1(1.07-1.1) 11(1.1-1.2) 11(1.1-1.2) 11(1-13) 0.59
P (mmol/L) 1.03(0.9-1.1) 1.1(0.9-1.1) 1.1(0.9-1.1) 1.1(0.8-1.1) 0.74
Mg (mmol/L) 0.8(0.8-0.9) 0.8(0.8-0.9) 0.8(0.7-0.9) 0.8(0.7-0.9) 0.16
iPTH (pg/mL) 232 (20.4-25.5) 23.6% (20.5-26.8) 38.1° (34.1-41.9) 45.8 (39.7-51.9) 0.01
25(0H)D (nmol/L) 51.4 (42.5-60.3) 44.6 (37.9-51.2) 49.7 (40.3-59.1) 53.3(47.3-59.1) 0.36

Groups designated by the same letter (a, b, c) do not exhibit significant differences in the post-hoc testing. Abbreviations:
BMI: Body mass index; WC: Waist circumference; SP: Systolic pressure; DP: Diastolic pressure; MAP: Mean arterial
pressure; HOMA-IR: Homeostasis model assessment of insulin resistance; tChol: Total cholesterol; LDL-C: Low-density
lipoprotein cholesterol; HDL-C: High-density lipoprotein cholesterol; TG: Triglycerides; Apo A-1: Apolipoprotein A-1; Apo B:

Apolipoprotein B; tCa: Total serum calcium concentration; iCa:

lonized serum calcium concentration; P: Serum phosphorus

concentration; Mg: Serum magnesium concentration; iPTH: Intact parathyroid hormone serum concentration; 25(0H)D:

Serum 25-hydroxyvitamin D concentration.

observed between iPTH and 25(0H)D (r = -0.19, P = 0.04),
mGFR (r = -0.66, P < 0.01), and mERPF (r = -0.68, P < 0.01).

In the cohort of 111 patients, a scatter plot with fitted regres-
sion lines and 95% confidence intervals illustrated a linear
relationship between iPTH and mERPF (Figure 1), with the
regression equation iPTH = 60.67-0.08 * mERPF. Figure 2
further demonstrates a linear relationship between iPTH and
mGFR, with the regression equation iPTH = 59.75-0.41 + mGFR.

Table 4 summarizes the univariate linear regression results
examining the relationship between serum iPTH concentra-
tion and renal clearance measurements (mGFR and mERPF)
across Stages 1 to 3b. Group analyses revealed a significant
negative linear association between mGFR and iPTH in Stage 3b
(P = 0.007). Additionally, in CKD Stage 3b, a significant nega-
tive linear association between mERPF and iPTH was observed
(P = 0.001). In Stage 1, mERPF and iPTH showed a significant
positive association (P = 0.003).

Ilinéi¢ et al.
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Table 5 summarizes the relationship between serum iPTH
concentration and variables associated with kidney function.
In the GFR model (R? = 0.68, adjusted R? = 0.46, P < 0.001),
both CKD stage (B = 0.922, P = 0.01) and the interaction term
(CKD stage x mGFR) (8 = -0.297, P = 0.006) were significantly
associated with serum iPTH concentration. In the ERPF model
(R? = 0.72, adjusted R? = 0.52, P < 0.001), CKD stage (p = 1.423,
P < 0.001) and the interaction term (CKD stage x mERPF)
(B =-0.605, P < 0.001) were also significantly associated with
serum iPTH concentration.

The results of the multivariate regression models are pre-
sented in Table 6. In Model 1 (R?> = 0.79, adjusted R?> = 0.63,
P < 0.001; AIC = 814.645), CKD stage (8 = 0.978, P < 0.001), the
interaction term (CKD stage x mGFR) (8 = -0.347, P < 0.001),
age (B = -0.157, P < 0.001), BMI (B = 0.202, P < 0.001), iCa
(B =-0.228, P < 0.001), and 25(0H)D (B = -0.325, P < 0.001)
were each independently and significantly associated with
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Variables Stagel Stage 2 Stage 3a Stage 3b P
n=25 n=30 n=26 n=30

CysC (mg/L) 0.87(0.7-1) 12 (0.9-1.1) 1.3° (1.1-1.5) 1.8°(1.4-1.9) 0.01
Creatinine (wmol/L) 882 (55.7-90.5) 812b (70-104) 100P (87-118) 125b¢ (109-155) 0.01
Urea (mmol/L) 5.23 (4.5-5.4) 5.1%0 (4.6-6.7) 6.7° (5.3-8.1) 8.8°(7.6-10.2) 0.01
Uric acid (wmol/L) 3472 (279-396) 3372 (283-386) 3702b (301-406) 423b (371-462) 0.01
ACR (mg/mmol) 0.7(0.7-1.8) 1.75(1.33-6.2) 1.1(0.8-2.9) 3.2(1-8.6) 0.12
AER (mg/24h) 9.3(7.8-20) 13.9 (6-89) 6.9 (3.2-31) 16 (5-81) 0.18
mGFR (mL/min/1.73m?) 962 (94-98.2) 77° (72-84) 52¢ (48-56) 38.54 (35-41.9) 0.01
ASS-GFR (mL/min/1.73m?) 112.92 (110.3-120.2)  104.8%(90.9-119.9)  84.5>(79.3-99) 85.1° (80.5-95.5)  0.01
DEV ASS GFR (mL/min/1.73m?) 17.9% (14.8-22.9) 29.35 (21-41.1) 320 (29.1-42.2) 49.6¢ (43-55.6) 0.01
DEV ASS GFR (%) 167 (11-21) 26.7° (22.4-33.2) 40° (37-43) 56.79 (52-60) 0.01
mERPF (mL/min/1.73m?) 5202 (510-534) 436 (351-490) 298.5¢ (255-313) 2359 (217-260) 0.01
ASS-ERPF (mL/min/1.73m?) 633% (627-665) 5952 (530-665) 500P (476-568) 503P (482-552) 0.01
DEV ASS ERPF (mL/min/1.73m?) 1352 (30-146) 166° (129-193) 221 (173-276) 279¢ (225-325) 0.01
DEV ASS ERPF (%) 20° (10-23) 26Y (22-31) 46° (36-51) 554 (46-59) 0.01

Groups denoted by the same letter (a, b, ¢, d) do not exhibit significant differences in the post-hoc testing. Abbreviations: Cys C: Cystatin C;
AER: Albumin excretion rate; ACR: Albumin-to-creatinine ratio; mGFR: Measured glomerular filtration rate; ASS-GFR: Age- and sex-specific
glomerular filtration rate; DEV ASS GFR: Deviation for age- and sex-specific glomerular filtration rate; mERPF: Measured effective renal
plasma flow; ASS-ERPF: Age- and sex-specific effective renal plasma flow; DEV ASS ERPF: Deviation for age- and sex-specific effective

renal plasma flow.
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Figure 1. Scatter plot of serum iPTH vs mERPF in patients with early-stage CKD (n = 111). Each point represents an individual participant and is
color-coded by chronic kidney disease stage (1-3b). The solid line shows the fitted values from a linear regression model (iPTH = 60.67 - 0.08 x mERPF),
and the shaded area denotes the 95% confidence interval. Abbreviations: iPTH: Intact parathyroid hormone; mERPF: Measured effective renal plasma flow;

CKD: Chronic kidney disease; CI: Confidence interval.

serum iPTH concentration. In this model, each increase in CKD
stage was associated with a 12.85 pg/mL increase in serum iPTH
concentration.

In Model 2 (R? = 0.80, adjusted R? = 0.65, P < 0.001; AIC
= 807.216), CKD stage (8 = 1.007, P < 0.001), the interac-
tion term (CKD stage x mERPF) (B = -0.398, P < 0.001), age
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(B = -0.169, P < 0.001), BMI (B = 0.203, P = 0.001), iCa
(B =-0.158, P = 0.009), and 25(0H)D (8 = -0.323, P < 0.001)
were independently and significantly associated with serum
iPTH concentration. In Model 2, each increase in CKD stage
was associated with a 13.23 pg/mL increase in serum iPTH
concentration.
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Figure 2. Scatter plot of serum iPTH vs mGFR in patients with early-stage CKD (n = 111). Each point represents an individual participant and is
color-coded by CKD stage (1-3b). The solid line shows fitted values from a linear regression model (iPTH =59.75 - 0.41 x mGFR), and the shaded area denotes
the 95% Cl. Abbreviations: iPTH: Intact parathyroid hormone; mGFR: Measured glomerular filtration rate; CKD: Chronic kidney disease; Cl: Confidence

interval.

Table 3. Correlation between iPTH and variables (n = 111)

Variable r P

Age (years) 0.42 <0.01
WC (cm) 0.22 0.02
BMI (kg/m?) 0.27 0.01
MAP (mm/Hg) 0.14 0.15
Apo B (mmol/L) 0.10 0.26
LDL-C (mmol/L) -0.05 0.59
HOMA IR 0.15 0.10
iCa (mmol/L) -0.04 0.65
P (mmol/L) -0.04 0.41
25 (OH)D (nmol/L) -0.19 0.04
Cys C (mg/L) 0.48 <0.01
mGFR (mL/min/1.73m?) -0.66 <0.01
ASS-GFR (mL/min/1.73m?) -0.43 <0.01
DEV-ASS GFR (%) 0.51 <0.01
mERPF (mL/min/1.73m?) -0.68 <0.01
ASS-ERPF (mL/min/1.73m?) -0.43 <0.01
DEV-ASS ERPF (%) 0.57 <0.01

Abbreviations: WC: Waist circumference; BMI: Body mass index;
MAP: Mean arterial pressure; HOMA-IR: Homeostasis model assessment
of insulin resistance; LDL-C: Low-density lipoprotein cholesterol; Apo B:
Apolipoprotein B; iCa: lonized serum calcium concentration; 25(0OH)D:
Serum 25-hydroxyvitamin D concentration; mGFR: Measured glomerular
filtration rate; ASS-GFR: Age- and sex-estimated glomerular filtration rate;
DEV ASS GFR: Deviation for age- and sex-estimated glomerular filtration
rate; mERPF: Measured effective renal plasma flow; ASS-ERPF: Age- and
sex-specific effective renal plasma flow; DEV ASS ERPF: Deviation for age-
and sex-estimated effective renal plasma flow; r: Spearman correlation
coefficient; P: Level of significance.
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Discussion

This study evaluates indicators of glomerular function and TFC
through radionuclide clearances in patients with CKD, and their
relationship to iPTH levels across early stages. The novelty of
this research lies in the observation of TFC through the mea-
surement of ERPF, which irrigates the secretory-active struc-
tures of the kidney [24, 25].

In summary, this study found a significant negative corre-
lation between mGFR, mERPF, and iPTH in early-stage CKD.
When analyzing CKD stages separately, a significant negative
linear association was detected between iPTH and both mGFR
and mERPF in Stage 3b (GFR 30-44 mL/min/1.73m?). In Stage
1 (mGFR > 90 mL/min/1.73m? with Al or A2 categories), iPTH
exhibited significant positive associations with mERPF. These
findings underscore the role of tubular secretory pathways in
regulating iPTH levels. In addition to measured clearances for
glomerular and tubular function, this study found that TFC,
measured by 131I-H plasma clearance, was not a significant pre-
dictor of iPTH levels in patients with early-stage CKD. Further-
more, a significant association was identified between serum
iPTH concentration and the interaction between CKD stage and
TFC. Similarly, within the model focusing on glomerular func-
tion, CKD stage and the interaction between CKD stage and
GFR were independently and significantly associated with iPTH
levels.

The prevalence of SHPT in CKD patients remains high, irre-
spective of diagnostic criteria. A recent study by Wang et al. [26]
reported a prevalence of 49.5%. Most measured iPTH levels
in our study fell within the reference range (15-68.3 pg/mL).
Median iPTH levels did not significantly differ between Stage 1
and Stage 2; however, levels in Stages 1 and 2 were significantly
lower than in Stages 3a and 3b. Additionally, our results indi-
cated that each increase in CKD stage correlated with a 13 pg/mL
increase in iPTH levels, regardless of whether the predictor
was the interaction between CKD stage and GFR or TFC. These
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Table 4. Univariate linear regression analysis of iPTH serum concentration and renal clearance measurements
(mGFR and mERPF) among groups

iPTH (pg/mL)
Stage 1(mGFR >90 mL/min/1.73m? with kidney damage, n = 25)
Unstandardized 95% Cl
coefficients
mMGFR (mL/min/1.73m?) B SE(B) Lower bound Upper bound P
Slope -0.25 0.45 -1.18 0.69 0.594
Intercept 46.59 43.77 -43.96 137.14 0.298
mMERPF (mL/min/1.73m2) B SE(B) Lower bound Upper bound P
Slope 0.09 0.03 0.03 0.15 0.003
Intercept -26.41 15.12 -57.67 4.88 0.094
Stage 2 (mGFR 60-89 mL/min/1.73m? with kidney damage, n = 30)
Unstandardized 95% Cl
coefficients
mGFR (mL/min/1.73m?) B SE(B) Lower bound Upper bound P
Slope 0.12 0.19 -0.28 0.52 0.549
Intercept 14.44 15.23 -16.76 45.64 0.351
mERPF (mL/min/1.73m?) B SE(B) Lower bound Upper bound
Slope -0.01 0.02 -0.05 0.02 0.469
Intercept 29.61 8.31 12.59 46.63 0.001
Stage 3a (mGFR 45-59 mL/min/1.73m?, n = 26)
Unstandardized 95% Cl
coefficients
mGFR (mL/min/1.73m?) B SE(B) Lower bound Upper bound P
Slope 0.32 0.41 -0.53 118 0.441
Intercept 21.15 21.68 -23.59 65.89 0.34
mMERPF (mL/min/1.73m?) B SE(B) Lower bound Upper bound P
Slope -0.01 0.04 -0.92 0.08 0.918
Intercept 39.38 12.57 13.43 65.32 0.005
Stage 3b (mMGFR 30-44 mL/min/1.73m?, n = 30)
Unstandardized 95% Cl
coefficients
mGFR (mL/min/1.73m?) B SE(B) Lower bound Upper bound P
Slope -1.85 0.64 -3.16 -0.55 0.007
Intercept 116.88 24.58 66.52 167.24 <0.001
mERPF (mL/min/1.73m?) B SE(B) Lower bound Upper bound P
Slope -0.22 0.06 -0.33 -0.11 0.001
Intercept 97.95 13.62 70.1 125.84 <0.001

Abbreviations: IPTH: Intact parathyroid hormone serum concentration (pg/mL); mGFR: Measured glomerular filtration
rate (mL/min/1.73m?); mERPF: Measured effective renal plasma flow (mL/min/1.73m?); B: Unstandardized coefficient:
S.E._B: Standard error of B; P: Level of significance; 95% Cl: 95% confidence interval for the unstandardized coefficient.

findings align with previous studies [7, 27], indicating a poten-  the guidelines also indicate that the optimal PTH level for Stage
tial rise in iPTH levels as GFR declines below 60 mL/min/1.73m2. 3 CKD patients remains undetermined, as does the reference
Current guidelines recommend monitoring iPTH levels in CKD  range adjusted for age and 25(0H) vitamin D levels in this vul-
Stage 3 patients when GFR falls below this threshold. Notably, —nerable population [16].
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Table 5. Linear regression models analyzing the relationship between iPTH and variables related to renal

clearance
iPTH (pg/mL)

Variable Standardized Unstandardized

coefficients coefficients
GFR-model B SE(B) B SE(B) P T
Intercept 20.280 21.839 0.355
CKD stage 0.922 0.354 12.115 4.645 0.01 0.04
Interaction (CKD stage x mGFR) -0.297 0.106 -0.156 0.056 0.006 0.449
mGFR (mL/min/1.73m?) 0.088 0.319 0.057 0.206 0.782 0.050
ERPF-model B SE(B) B SE(B) P T
Intercept -0.481 13.865 0.972
CKD stage 1423 0.298 18.699 3.909 <0.001 0.051
Interaction (CKD stage x mERPF) -0.605 0.146 -0.041 0.010 <0.001 0.212
mMERPF (ml/min/1.73m?) 0.441 0.236 0.052 0.028 0.065 0.081

Abbreviations: iPTH: Intact parathyroid hormone serum concentration (pg/mL); CKD stage: Chronic kidney disease
stage; MGFR: Measured glomerular filtration rate (mL/min/1.73m?); mERPF: Measured effective renal plasma flow
(mL/min/1.73m?2); B: Standardized coefficient; S.E._B: Standard error of B; B: Unstandardized coefficient; S.E._B:

Standard error of B; P: Level of significance; T: Tolerance.

Furthermore, mERPF demonstrated statistically significant
negative linear coefficients concerning iPTH levels in CKD
stage 3b. There is a paucity of published studies exploring the
association between ERPF as a potential indicator of TFC and
iPTH levels. Clinical evaluation of tubular secretion as an early,
independent marker is constrained by the absence of precise
quantification methods, variability in patient hydration, con-
current pharmacotherapies, and the complexities associated
with timed urine collections and fluctuating flow rates [25].
Physiologically, tubular secretion serves as the primary renal
mechanism for eliminating most drugs and their metabolites,
necessitating routine measurement. In humans, 131I-H clear-
ance is approximately 15% lower than para-aminohippuric acid
(PAH) clearance, the gold standard for mERPF [19, 28, 29].

According to Fine et al. [19], the correlation between ERPF
derived from PAH clearance is notably high (r = 0.90, P < 0.01).
However, PAH has not been widely adopted in clinical prac-
tice due to the complexity of its analytical procedures [30].
The pharmacokinetic characteristics of 131I-H closely resem-
ble those of PAH. Following intravenous administration, the
bolus rapidly enters renal circulation and reaches individ-
ual nephrons, where it is eliminated through both glomeru-
lar filtration (approximately 20%) and active tubular secretion
(approximately 80%). Consequently, the excretion of 131I-H
is directly proportional to the filtered plasma fraction. 131I-H
enters Bowman'’s space as primary urine, while the remaining
plasma (approximately four-fifths) exits the glomeruli via effer-
ent arterioles and enters the peritubular capillaries. Proximal
tubule cells then actively uptake, transport, and secrete the
residual 131I-H into the urine through energy-dependent mech-
anisms. As a result, nearly the entire quantity of 131I-H present
in each blood volume is removed and excreted in urine during
a single renal passage [29, 31]. A small fraction of renal blood
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flow, slightly exceeding 10%, supplies the medullary struc-
tures, hilus, and capsule of the kidney, which lack a transport
system for the extraction of organic anions, including 131I-
H. Smith et al. introduced the term ERPF to describe the por-
tion of renal plasma flow that supplies the kidney’s secretory
structures [28]. Extraction efficiency for 131I-H in the kidneys,
according to various authors, ranges from 0.84-0.94 [29]. Addi-
tionally, 99mTc-ethylene dicysteine (99mTc-EC) is a significant
agent for estimating renal tubular function. In both healthy
individuals and patients, the plasma clearance of 99mTec-
EC closely correlates with the clearance of 131I-H, averaging
approximately 75% of 1311-H values. The renal extraction ratio
for 99mTc-EC is 0.70 [32].

Diverse etiologies of CKD may influence the dissociation
between the decline in GFR and TFC differently. Therefore, a
widely available evaluation of GFR is insufficient for gaining
deeper insights into early abnormalities. Tubular dysfunction
often remains under-recognized and under-diagnosed in the
earlier stages of CKD. In this study, ASS ERPF and ASS GFR
values further refine result interpretation. Monitoring tubular
function, in conjunction with GFR, in patients susceptible to
SHPT, as well as elderly and vitamin D-deficient patients with
CKD-related comorbidities (e.g., hypertension and diabetes),
could delay the progression of SHPT and mitigate resistance to
dietary, dialytic, or pharmacological therapies. These findings
suggest that a comprehensive approach to CKD management,
incorporating TFC monitoring, may be beneficial.

In our study, iCa levels emerged as a significant nega-
tive predictor of iPTH levels. Patients exhibited no abnor-
mal changes in mineral profiles, including serum phosphate
retention or hypocalcemia. These electrolyte imbalances are
primary contributors to SHPT, characterized by a GFR below
60 mL/min per 1.73m?. Impairment in renal clearance of PTH
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Table 6. Multiple linear regression models analyzing the relationship between iPTH and predictor variables

Model 1
AIC = 814.645 iPTH (pg/mL)

Standardized Unstandardized

coefficients coefficients
Predictor variable ] SE(B) B SE(B) t-score P T
Intercept 76.374 16.264 4.696 <0.001
CKD stage 0.978 0.092 12.847 1.213 10.591 <0.001 0.419
Interaction (CKD stage x mGFR) -0.347 0.083 -0.182 0.043 -4.184 <0.001 0.520
Age (years) -0.157 0.074 -0.145 0.068 -2.127 <0.001 0.659
BMI (kg/m?) 0.202 0.063 0.698 0.217 3.218 <0.001 0.907
iCa (mmol/L) -0.228 0.062 -44.917 12.142 -3.699 <0.001 0.945
25(OH)D (nmol/L) -0.325 0.062 -0.244 0.046 -5.259 <0.001 0.934
Model 2
N =111
AIC = 807.216 iPTH (pg/mL)

Standardized Unstandardized

coefficients coefficients
Predictor variable B SE(B) B SE(B) t-score [ T
Intercept 56.777 14.112 4.023 <0.001
CKD stage 1.007 0.088 13.232 1.154 11.466 <0.001 0.433
Interaction (CKD stage x mERPF) -0.398 0.078 -0.027 0.005 -5.091 <0.001 0.546
Age (years) -0.169 0.071 -0.156 0.066 -2.376 <0.001 0.660
BMI (kg/mz) 0.203 0.060 0.702 0.209 3.364 0.001 0.917
iCa (mmol/L) -0.158 0.059 -31.242 11.697 -2.671 0.009 0.952
25(0H)D (nmol/L) -0.323 0.059 -0.242 0.045 -5.432 <0.001 0.946

Abbreviations: iPTH: Intact parathyroid hormone serum concentration (pg/mL); AIC: Akaike’s information criterion; CKD
stage: Chronic kidney disease stage; mGFR: Measured glomerular filtration rate (mL/min/1.73m?); mERPF: Measured effec-
tive renal plasma flow (mL/min/1.73m?); BMI: Body mass index; iCa: lonized serum calcium concentration; 25(OH)D: Serum
25-hydroxyvitamin D concentration; B: Standardized coefficient; S.E._B: Standard error of B; B: Unstandardized coefficient; S.E._B:

Standard error of B; P: Level of significance; T: Tolerance.

during early CKD stages, attributable to decreased TFC (where
renal peritubular uptake predominantly facilitates PTH 1-84
clearance from circulation), as evaluated through mERPF in this
study, may represent one mechanism driving elevated iPTH
levels [33]. Furthermore, the significant age-related functional
declines in target organs (kidney, bone, intestine) coupled with
dysregulated mineral homeostasis contribute to the develop-
ment of SHPT [34]. Our findings corroborate previous research
indicating that a decrease in mGFR and mERPF corresponds
with a significant increase in serum iPTH concentrations in
CKD stage 1-3b patients. Evidence suggests that maintaining
phosphate and PTH levels within normal ranges is critical
for preventing further deterioration of kidney function and
cardiovascular incidence [9]. The multifactorial vulnerability
of CKD patients with SHPT may elevate cardiovascular dis-
ease (CVD) mortality and morbidity by facilitating vascular
calcification and promoting PTH 1 receptor (PTHIR) expression
within the cardiovascular system [35]. Our study demonstrates
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that these patients exhibit elevated levels of proatherogenic
lipid particles, reduced HDL-C, and increased TG levels as CKD
stage advances.

We identified a statistically significant association between
iPTH levels and biological determinants such as age, BMI,
and 25(0H)D levels. Previous studies have highlighted bio-
logical factors influencing PTH levels; in addition to age, sex,
and lifestyle factors (e.g., consumption of plant-based foods),
genetic variants related to vitamin D metabolism, calcium, and
renal phosphate transport account for 60% of variations in
PTH levels 36, 37]. In our study, age and 25(OH)D levels were
independently and significantly associated with iPTH levels in
CKD patients, aligning with similar findings [37] and underscor-
ing the relevance of these factors in interpreting results. Pul-
satile fluctuations and circadian rhythms influence circulating
PTH level variations, potentially impacting the accuracy of
measured PTH concentrations. To address variability in iPTH
levels resulting from intrinsic and extrinsic factors [38, 39], we
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analyzed laboratory parameters, implemented quality control
measures, and assessed biological activity in vivo. Due to lim-
ited availability of EDTA plasma, iPTH was measured in serum
samples, which may yield slightly lower iPTH concentrations
than EDTA plasma due to peptide degradation during clotting,
potentially introducing matrix-related bias.

The study is limited by a relatively small patient cohort, a
restricted range of CKD etiologies focused on chronic tubu-
lointerstitial diseases, and a reduced sample size due to time
constraints. Additionally, incorporating measurements of other
urinary biomarkers of renal tubular damage, such as kidney
injury molecule-1 (KIM-1) and N-acetyl-R-glucosaminidase
(NAG) [40], may enhance the specificity of the observed associ-
ation between TFC and iPTH levels. While radionuclide plasma
clearance is utilized in this study to measure GFR and ERPF, all
clearance methods are susceptible to systematic and random
errors, which may lead to discrepancies between measured
and actual renal function. Furthermore, biological conditions
and analytical factors can fluctuate over time, contributing
to variability in the measured parameters [40]. Notably, this
study is the first to demonstrate a relationship between iPTH
levels and mERPF in patients with early-stage CKD. Future
investigations should concurrently assess both clearances,
preferably employing clinically available, non-radioactive
substances.

Conclusion

The findings from this study suggest that evaluating TFC
through 131I-H plasma clearance may aid in identifying declines
in TFC in patients with early-stage CKD. However, assessing
TFC via 1311-H plasma clearance does not enhance the detection
of maladaptive parathyroid gland responses compared to eval-
uating CKD stage and its association with declining glomerular
and tubular clearances in early-stage CKD patients.
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