

Biomolecules and Biomedicine ISSN: 2831-0896 (Print) | ISSN: 2831-090X (Online) Journal Impact Factor® (2024): 2.2

CiteScore® (2024): 5.2

www.biomolbiomed.com | blog.bjbms.org

The BiomolBiomed publishes an "Advanced Online" manuscript format as a free service to authors in order to expedite the dissemination of scientific findings to the research community as soon as possible after acceptance following peer review and corresponding modification (where appropriate). An "Advanced Online" manuscript is published online prior to copyediting, formatting for publication and author proofreading, but is nonetheless fully citable through its Digital Object Identifier (doi®). Nevertheless, this "Advanced Online" version is NOT the final version of the manuscript. When the final version of this paper is published within a definitive issue of the journal with copyediting, full pagination, etc., the new final version will be accessible through the same doi and this "Advanced Online" version of the paper will disappear.

CASE REPORT

Harrison et al: RYR1/BCHE variants and succinylcholine
Succinylcholine-induced rhabdomyolysis in a patient with
RYR1 and BCHE variants: A case report

Tracy E. Harrison, Toby N. Weingarten, Juraj Sprung*

Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.

*Correspondence to Juraj Sprung: sprung.juraj@mayo.edu.

DOI: https://doi.org/10.17305/bb.2025.13435

ABSTRACT

Masseter muscle spasm after succinvlcholine can herald malignant hyperthermia (MH) in genetically susceptible individuals. We aimed to describe the perioperative course and genetic findings in a patient who developed transient masseter spasm and postoperative rhabdomyolysis after general anesthesia. This single-patient case report draws on perioperative observations, laboratory testing, and whole-genome sequencing. Immediately after induction with propofol and succinylcholine, the patient experienced transient masseter spasm; anesthesia was then maintained with total intravenous anesthesia (propofol and remifentanil). Postoperatively, laboratory studies showed severe rhabdomyolysis with mild pigment nephropathy; the patient received intravenous hydration, laboratory values normalized by postoperative day 4, and discharge occurred in good condition. Whole-genome sequencing identified heterozygous ryanodine receptor 1 (RYR1) c.1840C>T (p.Arg614Cys)—a known MH-susceptibility variant in the skeletalmuscle ryanodine receptor—and butyrylcholinesterase (BCHE) c.293A>G (p.Asp98Gly), which reduces butyrylcholinesterase activity and delays succinylcholine hydrolysis. The coexistence of these variants likely synergistically increased sarcoplasmic reticulum Ca²⁺ release and prolonged succinylcholine effect, precipitating rhabdomyolysis; to our knowledge, this appears to be the first reported case linking concurrent RYR1 and BCHE variants to rhabdomyolysis following general anesthesia.

Keywords: Butyrylcholinesterase deficiency, rhabdomyolysis, ryanodine receptor variant, skeletal muscle.

INTRODUCTION

Ryanodine receptor 1 (RYR1) is a large calcium-release channel located on the sarcoplasmic reticulum membrane of striated skeletal muscle. The controlling core of muscle excitation-contraction coupling is the calcium channel protein complex, which is composed of RYR1 and the dihydropyridine receptor (DHPR), an L-type voltage-gated calcium channel located on the T-tubular sarcolemmal membrane. In response to depolarization of the muscle membrane induced by acetylcholine or succinylcholine, DHPR undergoes a conformational change that activates the RYR1, resulting in calcium release from the sarcoplasmic reticulum. Genetic variants of the RYR1 protein may result in excessive cytosolic calcium after depolarization, thereby leading to oxidative overload, myopathy, and skeletal muscle breakdown.

Variants of RYR1 are known to cause a wide spectrum of inherited muscle disorders, including malignant hyperthermia (MH) [1, 2]. MH is a pharmacogenetic life-threatening hypermetabolic reaction triggered by exposure to halogenated anesthetics and succinylcholine [3, 4]. Halogenated agents directly interact with the RYR1 channel, whereas succinylcholine acts indirectly by binding to nicotinic acetylcholine receptors, inducing membrane depolarization, which in turn triggers calcium release from the sarcoplasmic reticulum via RYR1.

In patients carrying a pathogenic *RYR1* variant, calcium efflux into the cytosol following succinylcholine administration can become excessive, leading to sustained muscle contraction, myofibrillar disruption, and rhabdomyolysis [1]. We report a patient who experienced mild masseter spasm following succinylcholine during anesthetic induction, subsequently developing severe rhabdomyolysis in the postanesthesia care unit (PACU), suggestive of an underlying *RYR1*-related disorder. Whole-genome sequencing later identified two variants that likely acted synergistically to produce this severe clinical presentation.

CASE REPORT

According to institutional policy at Mayo Clinic, IRB review is not required for a single-patient case report. A 48-year-old otherwise healthy man with hearing loss secondary to medial canal fibrosis underwent hearing aid insertion under general anesthesia.

Anesthesia was induced with intravenous propofol and succinylcholine. Mild masseter muscle spasm was observed following induction; however, after administration of additional propofol, mouth opening improved, allowing for successful tracheal intubation. The presence of masseter spasm raised concern for MH susceptibility. Consequently, anesthesia was maintained using total intravenous anesthesia with propofol and remifentanil. Throughout the procedure, core temperature, end-tidal carbon dioxide, and heart rate were closely monitored and remained within normal limits. At the conclusion of the two-hour surgery, the patient's trachea was extubated, and he was transferred to the PACU. Initial recovery was unremarkable, with discharge criteria met within 60 minutes.

Immediately before discharge, the patient reported passing "black-colored urine," raising concern for rhabdomyolysis. Laboratory tests performed 6 hours after succinylcholine administration revealed a serum potassium of 4.6 mmol/L (reference, 3.6-5.2 mmol/L), serum creatine kinase (CK) of 14,143 U/L (reference, 39-308 U/L), and urine myoglobin $>5,000 \mu g/L$ (reference, $\le 65 \mu g/L$). Given the presence of rhabdomyolysis with myoglobinuria, the patient was admitted for vigorous intravenous hydration and observation. At 14 hours after succinylcholine administration, the patient's creatine kinase (CK) level had risen to 49,884 U/L, peaking at 74,320 U/L at 24 hours (Figure 1A). To assess potential kidney injury, serum creatinine and cystatin C levels were serially monitored. Serum creatinine remained stable (0.94-1.16 mg/dL), whereas serum cystatin C, a non-glycosylated protein used to estimate glomerular filtration rate (GFR), increased from 0.91 mg/L on postoperative day 1 to 1.20 mg/L on day 2 (reference range: 0.63-1.03 mg/L) (Figure 1B). This corresponded to a decline in estimated GFR from 92 to 64 mL/min/1.73 m², consistent with mild pigment nephropathy. Serum alanine aminotransferase level was 63 U/L in the PACU and transiently increased to 228 U/L at postoperative day 2 (reference, 7-55 U/L). Serum aspartate aminotransferase level was 144 U/L in the PACU and transiently increased to 818 U/L on postoperative day 2 (reference, 8-48 U/L). His preoperative platelet count was 264 × 10^9 /L, which decreased to 75×10^9 /L on postoperative day 1 and rebounded to 275×10^9 /L on postoperative day 2 (reference, $135-317 \times 10^9$ /L). His white blood cell count was 17.2×10^9 /L on postoperative day 1 (reference, $3.4-9.6 \times 10^9$ /L). Hepatitis panels (A, B,

and C) were all negative. He was discharged on postoperative day 4, with all laboratory test values in the normal range.

Genetic counseling and testing

Given the suspicion for MHS, the patient was referred for genetic evaluation. A clinical genomics consultant performed a comprehensive assessment and obtained additional details of the patient's medical history that had not been documented prior to the procedure. During directed questioning, the patient reported experiencing intermittent muscle spasms and pain following physical exertion, particularly when performed in warm environments. These episodes were most often localized to the abdominal muscles but occasionally involved more generalized muscle cramping affecting multiple muscle groups. The patient described the spasms as transient and self-limited, occurring primarily after strenuous activity, with no associated weakness, or other systemic symptoms reported. No prior formal evaluation for these symptoms had been undertaken. The patient further reported a history of two prior surgical procedures performed under general anesthesia in his hometown, but information regarding the specific anesthetic agents used was unavailable. The first procedure, an appendectomy at age 18, was reportedly uncomplicated. Following the second procedure, an ambulatory otologic surgery performed at 39 years of age, the patient reported the onset of dark urine, myalgia, and abdominal muscle cramps within 24 hours post-discharge. All manifestations resolved spontaneously within one day, and the patient therefore did not seek medical evaluation or inform the treating physician at that time. Additionally, the patient noted a family history of similar, though milder, symptoms: his father and two older brothers occasionally experience muscle cramping, particularly after physical exertion.

In view of this clinical history, rapid whole-genome sequencing was performed at the Rady Children's Institute for Genomic Medicine Clinical Laboratory (Clinical Genome Center) San Diego, California, USA, as this testing is not available at the Mayo Clinic. Whole-genome sequencing identified two heterozygous gene variants. First, we identified a c.1840C>T variant in the *RYR1* gene, resulting in a missense mutation that substitutes arginine with cysteine at position 614 (p.Arg614Cys). This substitution is consistent with *RYR1* receptor-related disorders and is strongly associated

with MHS [1, 2]. Second, we identified a 293A>G variant in the gene encoding *BCHE*, which results in an aspartic acid to glycine substitution at position 98 of *BCHE* (c.293A>G; p.Asp98Gly). This substitution causes *BCHE* deficiency which slows the hydrolysis of choline esters (eg, succinylcholine) and thereby leads to protracted succinylcholine-induced muscle cell membrane depolarization. The specific genetic constellation of these two variants most likely contributed to the phenotypic presentation in our patient. Specifically, the pathogenic effects of the *RYR1* variant on skeletal muscle breakdown were most likely potentiated by sustained cell membrane depolarization caused by delayed succinylcholine degradation due to *BCHE* deficiency. Comprehensive genetic counseling was provided, emphasizing preventive measures to reduce the risk of recurrent rhabdomyolysis and advising the patient to wear a MH susceptibility alert bracelet.

Ethical statement

Written informed consent has been obtained from the patient to publish this report. The principles outlined in Declaration of Helsinki were followed.

DISCUSSION

This case report describes the simultaneous presence of pathogenic variants in the *RYR1* and *BCHE* genes in a patient who developed mild masseter spasm after receiving succinylcholine, followed by severe rhabdomyolysis, and mild pigment nephropathy. We propose that the coexistence of *BCHE* deficiency and a pathogenic *RYR1* variant synergistically contributed to the severity of rhabdomyolysis. Specifically, impaired succinylcholine hydrolysis resulting from *BCHE* deficiency likely prolonged muscle membrane depolarization, permitting sustained calcium release from the sarcoplasmic reticulum into the cytosol. This prolonged calcium efflux may have triggered persistent muscle contraction and extensive myofibrillar breakdown. Figure 2 illustrates the proposed pathophysiologic pathway underlying the rhabdomyolysis observed in this patient, and animations of the mechanism are provided in the Electronic Supplementary Material.

Biochemical abnormalities in our patient with rhabdomyolysis

Our patient demonstrated several biochemical abnormalities, most notably a transient rise in serum transaminases. The increased transaminase levels were most likely due to muscle breakdown [5] rather than damage to the hepatic parenchyma, which was further evidenced by negative hepatitis panels. Another abnormal finding was thrombocytopenia. While this can arise from various causes, including hemodilution due to overhydration, the most plausible explanation in this case is related to rhabdomyolysis. During rhabdomyolysis, myoglobin-derived heme released from damaged muscle tissue is converted to hemin in the bloodstream [6]. Hemin has been shown to induce platelet activation and subsequent consumption, leading to a reduction in platelet count [7, 8]. The patient also had leukocytosis, a response related to inflammatory stress (release of epinephrine, norepinephrine, and/or inflammatory cytokines such as IL-6 and TNF-alpha) associated with muscle tissue content release into the bloodstream [9], however other etiologies such as volume depletion with hemoconcentration may also be contributory.

Prevalence of RYR1 and BCHE genetic variants in the general population

The prevalence of pathogenic *RYR1* variants in the general population is estimated at 1 in approximately 300 individuals [10]. The *RYR1* c.1840C>T (p.Arg614Cys) variant, specifically associated with MHS, has an allele frequency of about 1 in 5,000 [11]. Because many RYR1 variants show incomplete penetrance, and clinical manifestations generally require exposures to triggering agent (e.g., volatile anesthetics or succinylcholine), the reported incidence of MH is substantially lower, ranging from ~1 in 10,000 to 1 in 30,000 anesthetics in children [12] and ~1 in 50,000 to ~1 in 100,000 in adults [13, 14]. Heterozygous *BCHE* deficiency occurs in approximately 1 in 25 to 1 in 50 individuals [15]. Because these two gene variants represent independent pathophysiologic processes, the probability of both occurring in the same individual can be estimated by multiplying their respective frequencies. Based on published allele frequency data, the estimated prevalence of coexisting *RYR1* c.1840C>T (p.Arg614Cys) and heterozygous *BCHE* c.293A>G (p.Asp98Gly) variants in a single individual ranges from approximately 1 in 125,000 to 1 in 250,000. To the best of our knowledge, this is

the first reported case of a patient harboring both variants and presenting with rhabdomyolysis following exposure to a triggering anesthetic agent.

The pathogenic *RYR1* variant in our patient has been reported in patients with MH and other *RYR1*-related myopathies [16-19]. Although many single-nucleotide variants in genes related to skeletal muscle calcium release have been described [16, 20, 21], the only variants positively associated with MHS are located in the *RYR1* (19q13.2), *CACNAIS* (1q32.1), and *STAC3* (12q13.3) genes.

Genotype-phenotype correlations in individuals with RYR1 variants

The severity of clinical presentation of an RYR1-related myopathy depends on the genetic variant (variant site and homozygous vs heterozygous trait) [22, 23]. Because of the close association between genotype and phenotype [21, 24, 25], patients with heterozygous RYR1 variants have a less severe clinical picture than those with homozygous variants [26]. This association between genotype and phenotype was reported in an analysis of a German family affected by MHS [16]. A patient (son) had an MH crisis during anesthesia, and a homozygous variant in RYR1 associated with MH was identified [16]. The patient's sister also had a homozygous variant, and the parents (mother and father) each had heterozygous variants. Consequently, MHS was diagnosed with the in vitro caffeinehalothane contracture test (ie, the standard for MH and MHS diagnoses) for the parents [16]. The son and sister with homozygous variants had greater contracture responses to both halothane and caffeine than did their heterozygous parents, suggesting that genotype (homozygous vs heterozygous) is an important contributor to the MH phenotype. However, the interpretation of genetic tests may be complex, and most patients with MH have a heterozygous RYR1 variant [16, 23]. Homozygosity has been reported for only two patients with the Cys35Arg substitution and for one patient with the Arg614Cys substitution [16, 24, 27]. Therefore, individuals carrying MH-associated RYR1 variants, even in the heterozygous state, should be considered at risk for malignant hyperthermia.

Anesthetic agents implicated in triggering MH

Halogenated anesthetics are the principal (direct) triggers of the biochemical disturbances associated with MH in patients carrying *RYR1* variants, with succinylcholine acting as an independent (indirect) contributory factor [28]. Notably, succinylcholine alone has been

reported to trigger MH in approximately 15.5% of susceptible individuals [28]. This may be attributed to its indirect effect on *RYR1*, as succinylcholine induces sustained muscle action potentials, whereas volatile anesthetic agents exert continuous stimulation throughout the duration of anesthesia.

Masseter muscle rigidity as a sign of MHS

Masseter muscle spasm following succinylcholine administration is a concerning clinical sign that may indicate MHS or an underlying myopathy [4]. A patient with marked rigidity of the jaw muscles should be observed overnight, and should be observed for at least 12 hours [12]. Because the probability for MH development after isolated use of succinylcholine appears to be low, continuing anesthesia with intravenous agents is perhaps preferred to the more conservative approach compared to abandoning the surgical procedure [4].

CONCLUSION

We report a patient harboring two genetic variants that contributed to succinylcholine-induced masseter spasm and severe rhabdomyolysis. One variant is associated with *RYR1*-related myopathy, while the other prolongs recovery after succinylcholine due to *BCHE* deficiency. Although these variants have distinct clinical effects, their coexistence may produce a synergistic interaction. Specifically, the *RYR1*-related susceptibility was likely exacerbated by prolonged skeletal muscle membrane depolarization resulting from delayed succinylcholine hydrolysis.

ACKNOWLEDGMENTS

Nisha Badders, PhD, ELS, Mayo Clinic, provided editorial support.

We thank Jason T. Robinson, medical illustrator, for assistance with the medical illustrations and videos.

Conflicts of interest: T.N.W. has received consulting fees from Merck & Co, Takeda Pharmaceuticals, and Trevena, Inc. The other authors have no competing interests to declare.

Funding: Authors received no specific funding for this work.

Submitted: October 24, 2025 **Accepted:** November 6, 2025

Published online: November 10, 2025

REFERENCES

- 1. Alvarellos ML, Krauss RM, Wilke RA, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for RYR1. Pharmacogenet Genomics. 2016;26(3):138-44. 10.1097/FPC.0000000000000198
- 2. McCarthy TV, Healy JM, Heffron JJ, Lehane M, Deufel T, Lehmann-Horn F, et al. Localization of the malignant hyperthermia susceptibility locus to human chromosome 19q12-13.2. Nature. 1990;343(6258):562-4. 10.1038/343562a0
- 3. Antognini JF. Creatine kinase alterations after acute malignant hyperthermia episodes and common surgical procedures. Anesth Analg. 1995;81(5):1039-42. 10.1097/00000539-199511000-00025
- 4. Hopkins PM. Malignant hyperthermia: pharmacology of triggering. Br J Anaesth. 2011;107(1):48-56. 10.1093/bja/aer132
- 5. Lim AK. Abnormal liver function tests associated with severe rhabdomyolysis. World J Gastroenterol. 2020;26(10):1020-8. 10.3748/wjg.v26.i10.1020
- 6. Cannon JB, Yunker MH, Luoma N. The effect of aggregation inhibitors and antioxidants on the stability of hemin solutions. PDA J Pharm Sci Technol. 1995;49(2):77-82. PMID: 7780749.
- 7. Kamura Y, Terao T, Akao S, Kono Y, Honma K, Matsue K. Fatal thrombotic microangiopathy with rhabdomyolysis as an initial symptom after the first dose of mRNA-1273 vaccine: A case report. Int J Infect Dis. 2022;117:322-5. 10.1016/j.ijid.2022.02.031
- 8. Oishi S, Tsukiji N, Otake S, Oishi N, Sasaki T, Shirai T, et al. Heme activates platelets and exacerbates rhabdomyolysis-induced acute kidney injury via CLEC-2 and GPVI/FcRgamma. Blood Adv. 2021;5(7):2017-26. 10.1182/bloodadvances.2020001698
- 9. Tossige-Gomes R, Ottone VO, Oliveira PN, Viana DJ, Araujo TL, Gripp FJ, et al. Leukocytosis, muscle damage and increased lymphocyte proliferative response after an adventure sprint race. Braz J Med Biol Res. 2014;47(6):492-8. 10.1590/1414-431x20143187
- 10. Johnston JJ, Dirksen RT, Girard T, Hopkins PM, Kraeva N, Ognoon M, et al. Updated variant curation expert panel criteria and pathogenicity classifications for 251

- variants for RYR1-related malignant hyperthermia susceptibility. Hum Mol Genet. 2022;31(23):4087-93. 10.1093/hmg/ddac145
- 11. Variant: NM_000540.3(RYR1):c.1840C>T (p.Arg614Cys). Clinical Genome Resource [Internet]. 2021 Accessed October 28, 2025. Available from: https://erepo.clinicalgenome.org/evrepo/ui/classification/db1e9a13-5143-462b-8d02-86b85ab5b1c4?version=1.0&utm_source=chatgpt.com.
- 12. Malignant Hyperthermia Society of the United States. 2025 [cited March, 2025]. Available from:

https://www.mhaus.org/?_gl=1*1f0fl8v*_ga*Nzk1MTcwNzYzLjE3NDMwMzA3NTc.*_ga 3CVGH6DE2S*MTc0MzAzMDkwOC4xLjEuMTc0MzAzMDkyNi4wLjAuMA.

- 13. Rosero EB, Adesanya AO, Timaran CH, Joshi GP. Trends and outcomes of malignant hyperthermia in the United States, 2000 to 2005. Anesthesiology. 2009;110(1):89-94. 10.1097/ALN.0b013e318190bb08
- 14. Brady JE, Sun LS, Rosenberg H, Li G. Prevalence of malignant hyperthermia due to anesthesia in New York State, 2001-2005. Anesth Analg. 2009;109(4):1162-6. 10.1213/ane.0b013e3181ac1548
- 15. Lee S, Han JW, Kim ES. Butyrylcholinesterase deficiency identified by preoperative patient interview. Korean J Anesthesiol. 2013;65(6 Suppl):S1-3. 10.4097/kjae.2013.65.6S.S1
- 16. Rueffert H, Olthoff D, Deutrich C, Thamm B, Froster UG. Homozygous and heterozygous Arg614Cys mutations (1840C-->T) in the ryanodine receptor gene cosegregate with malignant hyperthermia susceptibility in a German family. Br J Anaesth. 2001;87(2):240-5. 10.1093/bja/87.2.240
- 17. Fusto A, Cassandrini D, Fiorillo C, Codemo V, Astrea G, D'Amico A, et al. Expanding the clinical-pathological and genetic spectrum of RYR1-related congenital myopathies with cores and minicores: an Italian population study. Acta Neuropathol Commun. 2022;10(1):54. 10.1186/s40478-022-01357-0
- 18. Snoeck M, van Engelen BG, Kusters B, Lammens M, Meijer R, Molenaar JP, et al. RYR1-related myopathies: a wide spectrum of phenotypes throughout life. Eur J Neurol. 2015;22(7):1094-112. 10.1111/ene.12713

- 19. Knuiman GJ, Kusters B, Eshuis L, Snoeck M, Lammens M, Heytens L, et al. The histopathological spectrum of malignant hyperthermia and rhabdomyolysis due to RYR1 mutations. J Neurol. 2019;266(4):876-87. 10.1007/s00415-019-09209-z
- 20. Sudbrak R, Procaccio V, Klausnitzer M, Curran JL, Monsieurs K, van Broeckhoven C, et al. Mapping of a further malignant hyperthermia susceptibility locus to chromosome 3q13.1. Am J Hum Genet. 1995;56(3):684-91. PMCID: PMC1801161
- 21. Iles DE, Lehmann-Horn F, Scherer SW, Tsui LC, Olde Weghuis D, Suijkerbuijk RF, et al. Localization of the gene encoding the alpha 2/delta-subunits of the L-type voltage-dependent calcium channel to chromosome 7q and analysis of the segregation of flanking markers in malignant hyperthermia susceptible families. Hum Mol Genet. 1994;3(6):969-75. 10.1093/hmg/3.6.969
- 22. Gillard EF, Otsu K, Fujii J, Khanna VK, de Leon S, Derdemezi J, et al. A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics. 1991;11(3):751-5. 10.1016/0888-7543(91)90084-r
- 23. McCarthy TV, Quane KA, Lynch PJ. Ryanodine receptor mutations in malignant hyperthermia and central core disease. Hum Mutat. 2000;15(5):410-7. 10.1002/(SICI)1098-1004(200005)15:5<410::AID-HUMU2>3.0.CO;2-D
- 24. Deufel T, Sudbrak R, Feist Y, Rubsam B, Du Chesne I, Schafer KL, et al. Discordance, in a malignant hyperthermia pedigree, between in vitro contracture-test phenotypes and haplotypes for the MHS1 region on chromosome 19q12-13.2, comprising the C1840T transition in the RYR1 gene. Am J Hum Genet. 1995;56(6):1334-42. PMCID: PMC1801094
- 25. Serfas KD, Bose D, Patel L, Wrogemann K, Phillips MS, MacLennan DH, et al. Comparison of the segregation of the RYR1 C1840T mutation with segregation of the caffeine/halothane contracture test results for malignant hyperthermia susceptibility in a large Manitoba Mennonite family. Anesthesiology. 1996;84(2):322-9. 10.1097/00000542-199602000-00009
- 26. Pandey R, Chandratre S, Roberts A, Dwyer JS, Sewry C, Quinlivan R. Central core myopathy with RYR1 mutation masks 5q spinal muscular atrophy. Eur J Paediatr Neurol. 2011;15(1):70-3. 10.1016/j.ejpn.2010.04.003

- 27. Lynch PJ, Krivosic-Horber R, Reyford H, Monnier N, Quane K, Adnet P, et al. Identification of heterozygous and homozygous individuals with the novel RYR1 mutation Cys35Arg in a large kindred. Anesthesiology. 1997;86(3):620-6. 10.1097/00000542-199703000-00014
- 28. Riazi S, Larach MG, Hu C, Wijeysundera D, Massey C, Kraeva N. Malignant hyperthermia in Canada: characteristics of index anesthetics in 129 malignant hyperthermia susceptible probands. Anesth Analg. 2014;118(2):381-7. 10.1213/ANE.0b013e3182937d8b

FIGURES WITH LEGENDS

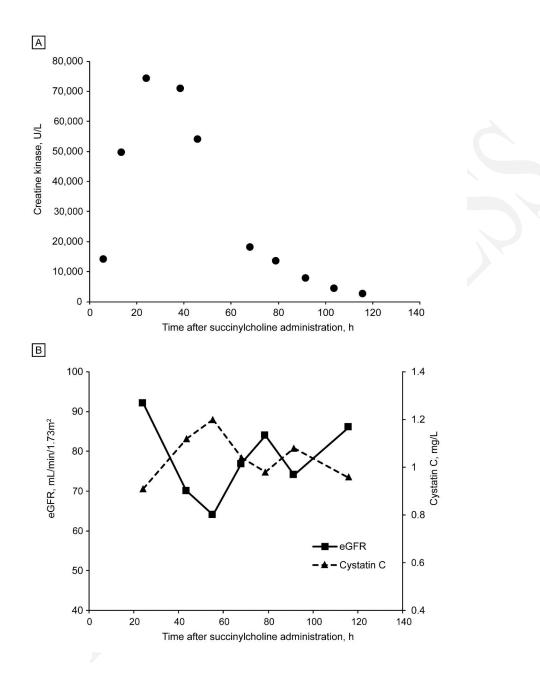


Figure 1. Biomarkers of rhabdomyolysis following succinylcholine administration in a patient with *BCHE* and *RYR1* variants. (A) Serum creatine kinase levels. (B) Serum cystatin C levels and cystatin C—estimated glomerular filtration rate (eGFR).

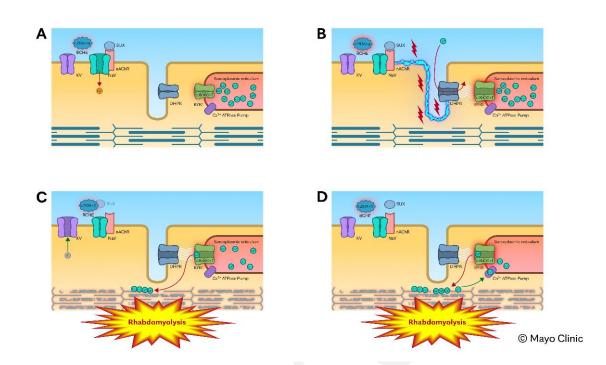
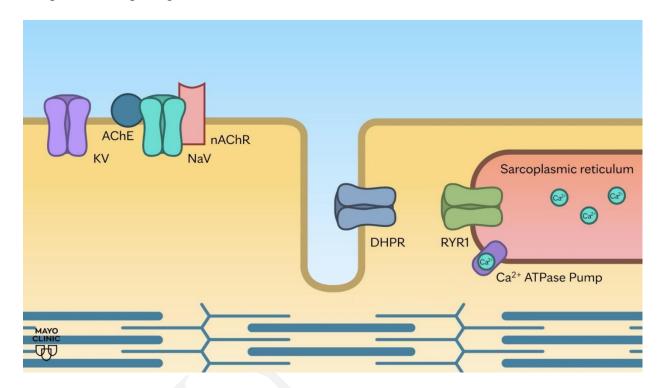
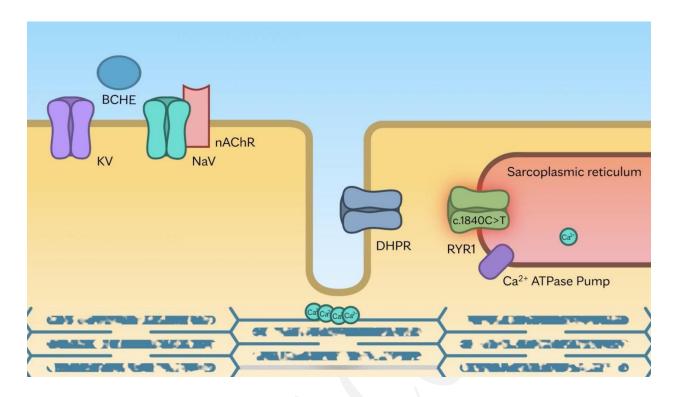
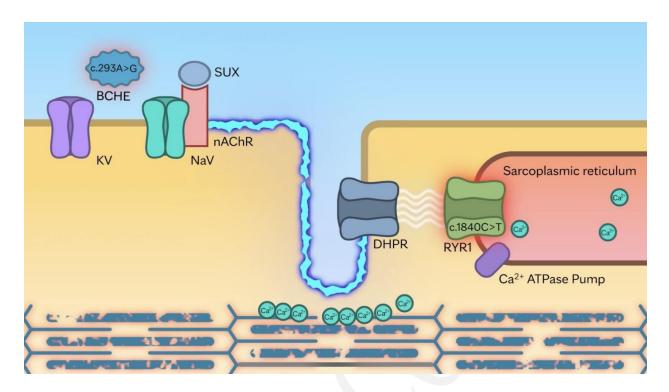



Figure 2. Proposed mechanism of severe rhabdomyolysis in a patient with BCHE deficiency and an RYR1 pathogenic variant. (A) Key components involved in skeletal muscle contraction are illustrated. (B) Succinylcholine (SUX) binds to nicotinic acetylcholine receptors (nAChRs), triggering the opening of voltage-gated sodium channels (NaV) and initiating skeletal muscle membrane depolarization (blue serrated line). This depolarization activates the dihydropyridine receptor (DHPR), which subsequently opens the ryanodine receptor 1 (RYR1) calcium channel on the sarcoplasmic reticulum membrane. In normal muscle, RYR1 opens briefly to release calcium into the cytosol, then closes to allow relaxation. However, in the presence of an RYRI pathogenic variant [c.1840C>T (p.Arg614Cys)], the channel remains abnormally open, leading to excessive and prolonged calcium release, sustained muscle contraction, and eventual rhabdomyolysis. (C, D) In a patient with butyrylcholinesterase (BCHE) deficiency [c.293A>G (p.Asp98Gly)], the metabolism of SUX is impaired, leading to delayed breakdown. This prolongs depolarization of the muscle membrane, which in turn causes sustained activation of the RYR1. This further enhances calcium leakage into the cytosol, perpetuating sustained myofibrillar contraction and contributing to severe muscle damage with rhabdomyolysis.


SUPPLEMENTAL DATA

We provide simplified animations that illustrate the sequence of cellular mechanisms involved in physiologic muscle contraction and pathogenic muscle contraction observed in a patient with pathogenic variants in *RYR1* and *BCHE*.


Animation File 1. Scenario 1: Development of a normal action potential and the sequence of cellular events associated with muscle contraction and relaxation (YouTube: https://www.youtube.com/watch?v=55HEWeyNBck).

(Used with permission of Mayo Foundation for Medical Education and Research.)

Animation File 2. Scenario 2: Use of succinylcholine in patient with a pathogenic *RYR1* variant triggers prolonged myofilament stimulation resulting in myofibrillar disruption (YouTube: https://www.youtube.com/watch?v=worhWZhCsY4).

(Used with permission of Mayo Foundation for Medical Education and Research.)

Animation File 3. Scenario 3: Use of succinylcholine in a patient with butyrylcholinesterase deficiency and the pathogenic *RYR1* variant induces sustained depolarization, further extending myofilament stimulation and resulting in severe myofibrillar disruption with rhabdomyolysis (YouTube: https://www.youtube.com/watch?v=k-bY2cIRal0).

(Used with permission of Mayo Foundation for Medical Education and Research.)