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ABSTRACT

Inherited retinal diseases (IRDs) represent a genetically diverse group of disorders
that result in the progressive degeneration of photoreceptors and/or retinal pigment
epithelium (RPE), ultimately leading to significant vision loss and diminished quality
of life. Symptoms vary widely, encompassing night blindness, peripheral vision loss,
central vision impairment, and total blindness, with disease progression influenced by
the specific genetic mutation and inheritance pattern. This narrative review
synthesizes recent findings on the pathogenesis of IRDs and examines stem cell-based
interventions across preclinical models and early clinical trials." Mutations in genes
such as RPE65, ABCA4, and USH2A disrupt critical retinal pathways, contributing to
oxidative stress, inflammation, and apoptosis. Stem cell strategies, including
pluripotent stem cell-derived RPE/photoreceptor precursors, mesenchymal stem cells,
and retinal progenitor cells, offer potential” mechanisms for limited cellular
replacement and synaptic integration, as well as paracrine neuroprotection and
immunomodulation. Current research indicates feasible delivery methods (intravitreal,
subretinal, or suprachoroidal) with generally acceptable safety profiles; however,
functional improvements in vision are often inconsistent and temporary, and durable
vision restoration remains unproven. Significant challenges persist, including immune
rejection, tumorigenicity risks, weak engraftment, technical complexity, and
regulatory barriers. These issues underscore the necessity for standardized
manufacturing processes and well<controlled, long-term clinical trials to advance the

field of IRD treatment.
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INTRODUCTION

Inherited retinal diseases (IRDs) cause progressive degeneration of photoreceptors or
retinal pigment epithelium (RPE), leading to loss of vision. They affect approximately
I in 4,000 individuals worldwide, with retinitis pigmentosa (RP) being the most
common subtype [1, 2]. There are approximately 300 associated genes identified for
IRDs and this represents a genetically diverse group of disorders. This has a severe
impact on the quality of life (QoL) of an individual leading to progressive loss of
vision with social, psychological, and financial limitations [1]..These cause
impairment in the independence, work opportunities, and routine lives-of an
individual. It is documented that more than 270 genes are associated with the
pathophysiology of IRDs. These have led to structural and functional alterations in the
retina that complicate disease progression [2]. The inheritance patterns of TRDs (X-
linked, autosomal dominant, or autosomal recessive) have specific implications for
family planning, genetic counseling, and diagnosis [2, 3]. Accurate diagnosis and
customized treatment plans are especially difficult due to genetic diversity and
individual differences in the onset. The degradation of rod photoreceptor leads to RP
with impairment of night vision ‘and peripheral vision initially, followed by central
vision loss and blindness [1]. A severe IRD known as Leber congenital amaurosis
(LCA) first appears in infancy and causes blindness or early-onset visual impairment.
Stargardt disease (STGD) primarily affeets the macula and leads to a gradual loss of
central vision {1, 2]. The present review elucidates the most recent studies and
evidence on stem cell-based interventions in IRDs and describes their pathogenesis,

disease progression, therapeutic mechanisms, and investigational protocols.

Molecular pathogenesis of IRDs

The molecular pathogenesis of IRDs involves a wide spectrum of gene mutations that
disrupt retinal cell function and survival. Mutations in genes like RPE65, ABCA4,
and USH2A impair vital biological pathways such as the visual cycle, photoreceptor
renewal, and cellular structure maintenance [1, 2]. RPE65 mutations disrupt the
conversion of all-trans-retinyl esters to 1l-cis-retinol, a major step in
phototransduction, leading to photoreceptor cell death [1, 4]. ABCA4 mutations
hinder the clearance of toxic bisretinoids in the RPE, resulting in oxidative stress and
lipofuscin accumulation (Figure 1) [2, 5, 6]. These molecular insults drive

inflammation, mitochondrial dysfunction, and apoptotic cascades, particularly in the



RPE and photoreceptors [3, 7, 8]. USH2A mutations are associated with Usher
syndrome, where defective extracellular matrix (ECM) proteins contribute to dual
sensory loss involving the retina and cochlea [2, 7, 9]. Disrupted proteostasis,
impaired autophagy, and glial activation further cause retinal degeneration [4, 10].
Optical coherence tomography (OCT) often shows thinning of the outer nuclear layer
and RPE, aligning with disease progression [4]. A comprehensive understanding of
these mechanisms is vital for tailoring gene and cell-based interventions, leading to

more accurate, mutation-specific therapeutic strategies [6, 8, 11].

Clinical progression and manifestations of IRDs

IRDs show different visual symptoms, ranging from mild night blindness to complete
vision loss with their severity and progression depending-on genetic mutations. Early
signs typically include nyctalopia, slow dark adaptation, and peripheral field defects
affecting vision[8]. Patients may experience tunnel vision, loss of color discrimination,
and primary vision loss with the progression of the disease, thus affecting the daily
functioning and quality of life [12]. Some of the classic ophthalmoscopic features of
RP are bone spicule pigmentation, attenuation of retinal vessels, and waxy pallor of
the optic disc [13]. The rate of degeneration varies, even within families, emphasizing
the genetic heterogeneity and phenotypic variability of IRDs [8]. Some subtypes, like
Usher syndrome, involve syndromic features like sensorineural hearing loss, which
complicates the diagnosis and management [12]. Thus, proper diagnosis and disease
staging using multimodal imaging and genetic testing are essential to decide the
prognosis and therapeutic approaches, particularly with emerging gene and cell-based

interventions [8, 12, 13].

Stem cells in retinal therapy

Stem cell-based treatments target degenerative retinal disorders, including RP, and
other IRDs. Studies have examined embryonic, induced pluripotent, mesenchymal,
and retinal progenitor cells (RPCs) for their capability to restore retinal structure and

function.

Embryonic stem cells (ESCs)

The inner cell mass of the blastocyst produces pluripotent embryonic stem cells

(ESCs), which can differentiate into photoreceptors and RPE cells. Several methods



have been developed to direct ESCs toward RPE differentiation which are essential
for maintaining retinal homeostasis and supporting photoreceptor survival, thus
making them a primary source for retinal regeneration [6, 14, 15]. ESC-derived RPE
cells have shown structural integration and sustained survival with enhanced visual
acuity in various studies and trials. However, challenges including tumorigenicity,
ethical concerns over embryo use, and the risk of immunological rejection often
necessitate specific immunosuppressive treatments. Thus, this limits the extensive

application of ESC-derived therapies [6] [9] [16, 17].

Induced pluripotent stem cells (iPSCs)

Adult somatic cells, like skin fibroblasts, can be reprogrammed into a pluripotent state
to produce iPSCs. This method lowers the likelihood of immunological rejection and
steers clear of moral dilemmas associated with embryonic sources [6, 18, 19]. The
ability of iPSCs to develop into photoreceptors, RPE. cells, and other retinal cells
supports their application in tissue engineering, drug screening, and disease modelling
[6, 14, 16, 18]. The feasibility and preliminary safety of clinical studies employing
iPSC-derived RPE sheets for RP have been established [6, 12, 19].

Mesenchymal stem cells (MSCs)

Mesenchymal stem cells (MSCs), derived from bone marrow, adipose tissue, and the
umbilical cord, have paracrine and immunomodulatory qualities that help preserve the
retina. Several neurotrophic factors are produced that promote tissue repair, reduce
inflammation, and increase the survival of retinal cells [20-24]. Numerous early-phase
clinical trials'in RP and optic neuropathies have validated MSCs' safety and showed
modest improvement in.visual function, even though they do not develop into retinal-
specific cells [21, 23, 25]. However, their low structural integration and restricted
specificity. for retinal lineages suggest that their therapeutic function is mainly

mediated through trophic support rather than direct cellular replacement [16, 20, 21].

Retinal progenitor cells (RPCs)

Retinal progenitor cells, arising during retinal development, differentiate into retinal
neurons such as photoreceptors and interneurons [7, 9, 16, 24, 26]. Due to their
developmental commitment to retinal lineages, RPCs offer a more targeted approach

for retinal cell replacement, with a lower risk of tumor formation compared to



pluripotent stem cells. Preclinical studies and early human trials have shown that
transplanted RPCs can survive, migrate, and integrate into the degenerating retina,
partially restoring visual function. These cells have been studied in clinical trials for
inherited retinal dystrophies [7, 13, 16, 26]. ESC- and iPSC-derived RPE cells have
shown sustained survival and functional improvement in these models [6, 15, 19].
MSCs exhibit neuroprotective effects in RP and diabetic retinopathy via anti-
inflammatory and paracrine actions [21, 23, 27]. RPCs and neural stem cells
demonstrate potential in photoreceptor rescue and visual function restoration in both
preclinical and clinical cases [7, 13, 26]. Emerging strategies, including stem cell-
derived secretomes, biodegradable scaffolds, and gene correction technologies, aim to
enhance therapeutic outcomes [27-30], therefore facilitating better clinical application.
Intravitreal injection of autologous bone marrow or mesenchymal stem. cells‘has been
investigated in RP and IRDs. However, variable outcomes and complications like
epiretinal membrane formation have been observed {31-36]. Transplantation of stem
cell-derived RPE sheets, using scaffolds or as monolayers, has shown promising
results in STGD, with improved survival and partial vision restoration [17, 19, 25].
The combination of gene correction with stem cell therapy, especially using iPSCs,
provides a targeted approach for genetic retinal diseases such as RP, choroideremia,
and Stargardt disease [12, 13,719, 28]. The advances in delivery systems and
biomaterials are have improved the cell survival, integration, and therapeutic efficacy

in retinal regenerative medicine.

Current management challenges and the promise of stem cell therapies for IRDs

There are currently few therapeutic alternatives available for IRDs, and no widely
accepted curative therapies exist. Though they are frequently mutation-specific and
only work in the early stages, gene therapy and retinal prosthesis can restore some
vision or delay the course of illness. Photoreceptors and RPE cells typically suffer
from substantial irreparable damage by the time of diagnosis. This leads to difficulty
in the treatment procedure and thus reduces therapeutic efficacy [13]. It has been
observed that although there are advanced assistive technologies, there is functional
blindness, particularly with respect to central and night vision, in many cases [10].
Therefore, stem-cell-based therapy has strong potential to restrict the disease

progression, replace lost retinal cells, and differentiate into RPE, and ganglion cells [8,



9]. Some advanced technologies like gene editing and personalized medicine have
improved the therapeutic potential of stem cell modalities [11]. There are customized
treatments which can target specific genetic mutations and improves the efficiency
and reduce risks, although certain limitations with respect to safety and accessibility
persist [5, 6]. Newer innovations, including paracrine and secretome-based therapies,
delivers neuroprotective and anti-inflammatory benefits in conditions like RP and
glaucoma [27, 29, 33]. Multiple phase I/II trials have reported preliminary safety and
efficacy results [11, 37-39], but challenges like immune rejection, tumorigenicity, and

regulatory complexities restrict the extensive usage [16, 37, 40-42].

Scaffold-based approaches for retinal cell transplantation

One of the major drawbacks in stem cell therapy for IRDsis the limited survival and
irregular incorporation of transplanted cells when they are delivered.as suspensions.
Biodegradable scaffolds that are constructed to mimic Bruch’s membrane provide a
stable surface for organized RPE monolayers and improve the graft retention and
directional trophic support after subretinal placement [17]: Parylene and gelatin-based
matrices produce better photoreceptor preservation than delivering cells as a free
suspension [6]. The use of scaffold has increased the surgical demands and could
trigger inflammatory reactions owing to the breakdown of the material [17]. Cell
suspensions allow less mvasive delivery through intravitreal or suprachoroidal routes
but often lead to poor engraftment, cell clustering, and inadequate functional recovery
[6]. Hence, the scaffold=supported delivery provides a more organized possibility for

retinal repait.

Mechanisms of'stem cell action in retinal diseases

Stem cell-based therapies function through multiple interconnected mechanisms,
primarily involving cell replacement, paracrine signaling, immunomodulation, and
restoration of synaptic connectivity (Figure 2). These mechanisms help to slow the
progression of the disease and may restore visual function in patients with retinal
degeneration. In retinal stem cell therapy, transplanted stem cells replace the lost
photoreceptors and RPE cells by engrafting into degenerated retinal layers. Preclinical
and early-phase clinical studies have shown that hESC-derived RPE cells can survive,

migrate, and integrate into the subretinal space, representing native RPE cells, both



morphologically and functionally [31, 40, 43]. Photoreceptor precursors from iPSCs
or RPCs incorporated into the outer nuclear layer and expressed mature photoreceptor
markers [20, 34]. These findings show the capacity of stem cell therapy to restore

retinal structure and function in dystrophies.

Stem cells also provide paracrine and trophic support by releasing neuroprotective
factors that promote retinal cell survival and slow degeneration. MSCs secrete major
cytokines and growth factors, like brain-derived neurotrophic factor (BDNF), ciliary
neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), and
pigment epithelium-derived factor (PEDF) [5, 6, 26]. These molecules help. to
maintain retinal structure, protect host photoreceptors, and regulate the surrounding
microenvironment. In retinal degeneration models, these paracrine- effects have
correlated with delayed photoreceptor loss and improved retinal function, as can be

observed in enhanced electroretinogram (ERG) responses [32, 44].

Stem cells, like MSCs, have immunomodulatory properties which are essential in
retinal therapies. They help to suppress chronic retinal inflammation (a common
feature in degenerative and autoimmune  retinal ~diseases). MSCs secrete anti-
inflammatory cytokines such as ‘interleukin-10 (IL-10) and transforming growth
factor-beta (TGF-f3), which inhibit pro-inflammatory responses and promote immune
tolerance [15, 26]. Moreover, stem cells reduce microglial activation and inhibit the
infiltration of immune cells into retinal tissue, thereby preventing further immune-
mediated neuronal damage [45]. This aspect is particularly relevant in autoimmune

uveitis and RP, where inflammation exacerbates photoreceptor loss.

The restoration of synaptic connectivity is another important mechanism. Grafted
cells must survive, integrate, and form appropriate synaptic connections with existing
retinal neurons to make stem cell therapies functionally effective. Experimental
models have demonstrated that transplanted photoreceptors can form synaptic
structures with host bipolar and horizontal cells, suggesting the possibility of re-
establishing disrupted visual circuits [20, 43]. Complete functional restoration is still a
challenge, but ongoing advances in stem cell differentiation protocols and
transplantation techniques have improved the efficacy of synaptic integration. Hence,
future success depends on refining these mechanisms, ensuring safety, and improving

the delivery prospect to achieve effective clinical translation and vision restoration.



Routes of stem cell delivery in retinal diseases

Various delivery techniques have been studied depending on the target retinal layer
and disease pathology. These techniques have specific advantages and disadvantages
with relation to cell survival, integration, surgical feasibility, and possible
complications. Table 1 provides a comparative overview of the primary delivery

approaches used in clinical and preclinical settings.

Preclinical studies and animal models

Preclinical animal studies evaluate the safety and efficacy of retinal cell
transplantation for IRDs. Rodent models, like rd1 and rd10 mice, along with non-
human primates, effectively replicate degenerative retinal.changes in IRDs [14, 22, 39,
47, 48]. These models help to study the donor cell behavior, including survival,
migration, and integration into the host retina. Genetically engineered models
replicating specific mutations in human IRDs improve the translation of preclinical
findings and strengthen the development of targeted therapeutic approaches[14, 22, 24,
49]. Transplantation studies in these animal models have shown positive results like
restoration of visual acuity and functional improvements [22, 39, 48, 50]. Donor cell
survival, migration, and partial synaptic integration with host retinal circuits have
been demonstrated by histological and molecular analyses thus proving the functional
integration [13,-39, 48]. A number of preclinical studies used well-differentiated
human pluripotent stem cell-derived retinal cells, such as hESC- or iPSC-RPE or
photoreceptor. precursors, transplanted into immunodeficient or immunosuppressed
rodent ‘models (rd1 or rd10 mice) to evaluate safety and survival, with follow-up
periods of 6 ‘to 12 months [14, 39, 49]. The grafts required systemic
immunosuppression, for example with tacrolimus or cyclosporine, to prevent rejection,
and no teratoma formation was observed [14, 49]. A separate approach with
mesenchymal stem cells in immunocompetent models showed minimal immune
response and no need for immunosuppression due to their low MHC class II
expression and immunomodulatory properties [20, 23]. These results support short- to
medium-term graft viability, though challenges such as immune compatibility, retinal
remodeling, and incomplete disease modeling remain [12, 24, 39]. Refinement of
models, graft preparation, delivery, and immunomodulation is needed for clinical use

[14, 49].



Clinical trials and translational progress

Clinical translation of retinal cell therapies for IRDs has advanced notably, with key
trials confirming safety and potential efficacy. Human embryonic stem cell-derived
RPE (hESC-RPE) and induced pluripotent stem cell-derived RPE (iPSC-RPE) studies
show promising outcomes (Table 2). U.S.-based Advanced Cell Technology (now
Ocata Therapeutics) and Japan’s RIKEN Center focused on STGD, demonstrating
that subretinal RPE cell delivery is feasible, well-tolerated, and achieves encouraging
anatomical improvements, supporting further clinical development [7, 22, 33, 39].
Moreover, MSC-based therapies have been evaluated for RP and STGD, with
intravitreal, subtenon, and suprachoroidal injections showingpositive results [33,.39].
The source of MSCs and delivery route, particularly, suprachoroidal injection of
umbilical cord-derived MSCs, were key factors in therapeutic efficacy [38,40].
Adverse events were mainly localized ocular issues with minimal systemic effects,

supporting the safety of these approaches [22, 30, 33].

Regulatory, ethical, and technical challenges

The U.S. Food and Drug Administration (FDA), European Medicines Agency (EMA),
Central Drugs Standard Control Organization (CDSCO), and Pharmaceuticals and
Medical Devices Agency (PMDA) are among the organizations that help to monitor
the treatments for IRDs. They require thorough clinical trials, Good Manufacturing
Practices (GMP), and full cell traceability to guarantee safety and effectiveness [5, 11,
46]. Among the ethical issues surrounding embryonic stem cells (ESCs) are worries
about.informed . consent, - particularly for disadvantaged groups, and the risks
associated with unlicensed stem cell clinics providing risky therapies [8, 9]. Access is
further restricted by high expenses associated with stem cell manufacture, storage,
and testing, especially in low-income areas, which exacerbates healthcare inequities
[6, 46]. There are still unresolved technical issues with graft rejection, immunological
incompatibility, post-transplant cell survival, large-scale multiplication, and cell
purification [2, 5, 8]. Moreover, logistical obstacles and the lack of standardized
surgical techniques prevent widespread clinical use. However, there may be answers
in novel ways, such as CRISPR/Cas9 gene editing, 3D bioprinting for retinal

restoration, and Al-driven therapeutic optimization. Genetic profiling-based
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personalized treatment may further improve therapeutic effectiveness and equality in

IRD care.

Future directions and barriers to clinical adoption

Stem cell therapy for IRDs have certain challenges prior to routine clinical use. Few
of them are the high manufacturing costs and the absence of unified protocols for cell
differentiation, preparation, and delivery. The risk of immune rejection and the huge
variation in regulatory requirements across regions is also a major concern. There is
an increasing number of unregulated clinics which are providing unproven
interventions, thus causing deleterious effects to the patient confidence, and
eventually reduces the responsible progress. Progress in-this field depends on
appropriate  GMP-level manufacturing, constant functional evaluations, =patient-
reported measures, and better coordination between regulatory systems. The ongoing
research is concentrating on allogeneic iPSC-RPE and MSC preparations and
approaches that use biomaterials to support graft survival, and methods which pair
gene repair with cell-based replacement. Hence, the realization of the therapeutic
prospects of stem cell-based approaches will depend on controlled clinical validation,

standardized procedures, and proper patient-centered results.

CONCLUSION

IRDs lead to progressive, permanent vision loss, and no curative treatment is widely
available. Early human studies using MSCs, RPCs, or pluripotent-derived RPE cells
show that. these therapies:.can be delivered safely via intravitreal, subretinal, or
suprachoroidal routes, even in advanced disease. Some participants have shown
temporary improvements in visual function, measured by BCVA, visual fields, or
electrophysiology, but these effects are uncertain, varying, and not reproducible. Most
evidence are-derived from small, early-phase trials without any control group and
with variability in cell sources, preparation, delivery, and outcomes which restricts the
interpretation. The proposed mechanisms including paracrine signaling,
immunomodulation, or limited cell integration, could lead to neuroprotection;
however, permanent retinal cell replacement or functional restoration has not been
attained. Therefore, large, well-controlled trials with prolonged follow-up are

necessary to determine the therapeutic potential in IRDs.
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TABLES AND FIGURES WITH LEGENDS

Table 1. Routes of stem cell delivery for retinal regeneration: Key features,

advantages, challenges, and current status

Routes Chief Advantages | Challenges Current status
features

Intravitreal Cells injected | Minimally Limited cell | Widely wused in

injection into the | invasive, migration to | trials; focus on
vitreous repeatable, outer retina; [‘neuroprotection
cavity. safe risk of [ [13,27,40].
Targets technique inflammatio
ganglion cell | [27, 46]. n/ or ERM
layer and [35].
inner retina.

Subretinal Cells Precise Technically | Most effective for
injection delivered delivery; demanding; | vision restoration
between promotes retinal in

neurosensory | photorecepto- | detachment | RPE/photorecepto
retina and | r integration | risk; limited | r loss [6, 7].
RPE. Directly | [6, 9, 16] spread [16].
targets
photoreceptor
s and RPE.
Suprachoroida | Injection into | Less invasive | Limited Promising
l injection the potential | than human data; | preclinical and

space between | subretinal; cell homing | early clinical data

sclera and | wide to retina | [42].

choroid. diffusion [8, | uncertain[16,

Targets 22]. 22].

choroid/RPE

interface.
Subtenon and | Subtenon: Experimental | Inconsistent | Preclinical; not yet
epiretinal under Tenon’s | routes; targeting; standard;  being

20




capsule; potential limited cell | explored in select
Epiretinal: on | slow-release | integration; studies [18, 35,
retinal surface | delivery [18] | under 47].
(ILM side). evaluation

[18, 35].

Abbreviations: BCVA: Best-corrected visual acuity; ERM: Epiretinal membrane;

ILM: Internal limiting membrane; RPE: Retinal pigment epithelium:.
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Table 2. Summary of clinical trials on stem cell-based therapies for IRDs

Author / year Disease | Stem cell Delivery Registry / phase | Sample Key outcomes Safety
type and (treated)
dose
Zhao et al. (2020) | RP UC-MSCs; | IV ChiCTR-ONC- 32 pts Best-Corrected Visual | No serious adverse
[48] 1x108 cells 16008839; I/IT (64 eyes) | Acuity (BCVA) gain effects (SAEs); no

was defined as >5
letters. At 12 months,
81.3% of patients
maintained or
improved BCVA.
National Eye Institute
Visual Function
Questionnaire-25 (NEI-
VFQ25) scores rose at
3 months. Visual field
sensitivity and Flash

Visual Evoked

tumorigenesis,
rejection, or vascular

leakage.
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Potential (FVEP)

showed no change.

Weiss et al. (2018) | RP Autologous | Retrobulbar + | NCT01920867/ | 17 pts Improvement was No reported surgical
(SCOTS/SCOTS2) BMSC Subtenon + NCTO03011541 (33 eyes) | defined as a >1-line or inflammatory
[36] (~1.2B Intravitreal + Snellen gain. Overall, complications.
Total v 45.5% of eyes
nucleated improved, 45.5%
cells) remained stable, and
9% worsened. Mean
gain was 7.9 Snellen
lines, with a 31%
LogMAR improvement
(P=0.016).
Mehat et al. (2018) | STGD | hESC-RPE | Subretinal NCT01469832; 12 pts All participants showed | No cell-related SAEs;
[25] (MAO09- /1 (12 eyes) | hyperpigmentation, procedure-linked
hRPE) indicating graft events: retinal dialysis
50k—200k survival. No one (1), subretinal
cells achieved functional hemorrhage (2),

improvement: BCVA

pigment dispersion
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changed <5 Early (4);
Treatment Diabetic Immunosuppression
Retinopathy Study AEsin 5.
(ETDRYS) letters, and
microperimetry
sensitivity showed no
significant gains at 12
months. One high-dose
case had localized
retinal thinning with
reduced sensitivity.
Tuekprakhon et al. Autologous | Intravitreal NCTO01531348; 14 pts BCVA showed Mild transient
(2021) [51] BM-MSCs Phase I transient significant inflammation;
(1x10¢/ gains (—0.18 logMAR | transient Intraocular
5%10¢/ in 1x10° group at Pressure (IOP) spikes;
1x107) months 7-8, p < 0.05) | single cases:

but returned to baseline
by 12 months. No

participants

synechiae, Cystoid
Macular Edema

(CME), choroidal
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consistently met the >5
ETDRS letter
threshold. VF and CST

remained stable.

detachment; long-
term: 1 vitreous
hemorrhage with

osseous metaplasia

Patient-reported (resolved).
outcomes: 50% stable
vision, 35.7%
improved dim-light
tasks
Kahraman et al. UC-MSCs; | Suprachoroidal | Turkish MoH 124 eyes | Mean BCVA improved | No major
(2020) [52] M (Limoli) 56733164/203; /82 pts | 0.27 logMAR (1.36 — | ocular/systemic
cells/eye Phase 11 1.09). Visual Field issues; 1 transient

Mean Deviation (VF
MD )improved 28.12
— 24.19 dB (P < 0.05),
and central mfERG P1
amplitudes increased.
Based on BCVA
changes, 46%

vision loss episode;
temporary VF defect

resolved.
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improved, 42% stable,

12% worsened.

Oner et al. (2025) UC-MSCs; | Suprachoroidal | Turkish MoH 669 eyes | BCVA improved 0.30 | No therapy-related
[53] M 56733164/203; /429 pts | logMAR at 2 years and | SAEs; common:
cells/eye Phase III (long- remained +0.17 conjunctival
term) logMAR at 4 years. VF | hyperemia (67%),
MD increased +1.36 light sensitivity
dB at 2 years (P < (18%). 2 myopic RD
0.05). Central mfERG | cases (not linked).
P1 amplitudes rose
significantly and
persisted to 4 years.
FST thresholds
improved at 1 year
(white stimulus +9.7
dB).
Ozmert et al. WIJ-MSCs | Sub-Tenon SHGM56733164; | 32 pts BCVA improved 10.1 No SAEs; no
(2020) [54] 2—6M cells; | (deep) Phase I1I (34 eyes) | ETDRS letters (70.5 — | inflammation, IOP

80.6, p=0.01). VF MD

rise, rejection, RD; 1
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GMP P3

improved 2.6 dB (27.3
— 24.7,p=0.01).
Outer retinal thickness
increased 100 — 119
pum (p = 0.01). Central
Multifocal
Electroretinography
(mfERG) P1 amplitude
and implicit time
improved (p <0.02);
peripheral unchanged.
Flicker ERG amplitude
increased and implicit
times decreased (p =

0.01).

transient nystagmus

increase.

Liu et al. (2017)
[55]

Human
fetal-
derived

RPCs;

Subretinal

ChiCTR-TNRC-
08000193; Phase
I

8 pts

BCVA improved 10.1
ETDRS letters (70.5 —
80.6, p=0.01). VF MD
increased 2.6 dB (27.3

No rejection, tumors,
RD, endophthalmitis,
CME. One ERM at 12

mo. Imaging stable.
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1x10° cells —24.7, p=10.01).
Outer retinal thickness
rose 100 — 119 pum (p
=0.01). Central
mfERG P1 amplitude
and implicit time
improved (p <0.02);
peripheral unchanged.
Flicker
Electroretinography
(ERG) amplitude
increased, implicit
times decreased (p =

0.01).

Abbreviations: BCVA: Best-corrected visual acuity; VF: Visual field; FVEP: Flash visual evoked potential; NEI-VFQ25: National Eye Institute
Visual Function Questionnaire-25; BMSC: Bone marrow—derived stem cells; hRESC-RPE: Human embryonic stem cell-derived retinal pigment

epithelium; CST: Central subfield thickness; mfERG: Multifocal electroretinography; FST: Full-field stimulus threshold; WJ-MSC: Wharton’s
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jelly—derived mesenchymal stem cells; ETDRS: Early Treatment Diabetic Retinopathy Study; RD: Retinal detachment; CME: Cystoid macular

edema; RPCs: Retinal progenitor cells; SAEs: Serious adverse events; IOP: Intraocular pressure.
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Pathological mechanisms underlying inherited retinal diseases
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Figure 1. Pathophysiology of IRDs. Schematic overview of the disease cascade in
IRDs. Primary genetic mutations impair photoreceptor and/or RPE function,
promoting the accumulation of toxic by-products. These disturbances trigger OS and
activation of inflammatory cells, which amplify tissue injury through a self-
propagating feedback loop. The resulting milieu accelerates progressive photoreceptor
loss, degeneration of retinal layers, and ultimately visual impairment. Abbreviations:
IRDs: Inherited retinal diseases; RPE: Retinal pigment epithelium; OS: Oxidative

stress.
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Key mechanisms of stem cell therapy in inherited retinal diseases
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Figure 2. Mechanisms of stem cell action in IRDs. Schematic representation of the
principal, interconnected pathways through which SC therapies may promote retinal
repair in IRDs. (1) Cell replacement: transplanted SCs engraft within degenerated
retinal layers and differentiate into retinal lineages—most notably PRs and/or RPE—
to replenish lost cells. (2) Paracrine signalling: SCs release neurotrophic and
cytoprotective mediators (e.g., BDNF, CNTF, GDNF, PEDF) that enhance host-cell
survival, stabilize the retinal microenvironment, and attenuate OS. (3)
Immunomodulation: SCs reduce chronic retinal inflammation by suppressing pro-
inflammatory pathways, limiting microglial activation, and promoting anti-
inflammatory cytokine signalling (e.g., IL-10, TGF-f). (4) Synaptic connectivity
restoration: graft-derived PRs mature and establish synaptic contacts with host bipolar
and horizontal cells, supporting reconstitution of disrupted retinal circuitry. The
relative contribution of these mechanisms depends on the SC source (e.g., hESC-
/iPSC-derived retinal cells, MSCs, RPCs), disease stage, and delivery context.
Abbreviations: IRDs: Inherited retinal diseases; SC: Stem cell; PRs: Photoreceptors;
RPE: Retinal pigment epithelium; BDNF: Brain-derived neurotrophic factor; CNTF:
Ciliary neurotrophic factor; GDNF: Glial cell line-derived neurotrophic factor; PEDF:
Pigment epithelium-derived factor; OS: Oxidative stress; IL-10: Interleukin-10; TGF-
B: Transforming growth factor-beta; hESC: Human embryonic stem cell; iPSC:
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Induced pluripotent stem cell; MSCs: Mesenchymal stem cells; RPCs: Retinal

progenitor cells.
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