

The BiomolBiomed publishes an "Advanced Online" manuscript format as a free service to authors in order to expedite the dissemination of scientific findings to the research community as soon as possible after acceptance following peer review and corresponding modification (where appropriate). An "Advanced Online" manuscript is published online prior to copyediting, formatting for publication and author proofreading, but is nonetheless fully citable through its Digital Object Identifier (doi®). Nevertheless, this "Advanced Online" version is NOT the final version of the manuscript. When the final version of this paper is published within a definitive issue of the journal with copyediting, full pagination, etc., the new final version will be accessible through the same doi and this "Advanced Online" version of the paper will disappear.

META-ANALYSIS

Fang et al: Prediabetes and incident CKD risk

Prediabetes and the risk of incident chronic kidney disease in adults: A systematic review and meta-analysis

Sitian Fang¹, Jinjing Huang^{2*}, Yanxia Chen^{2*}

¹Huankui Academy, Nanchang University, Nanchang, China;

²Department of Nephrology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

*Correspondence to Jinjing Huang: 445922212@qq.com and Yanxia Chen: chenyanxiaopq@163.com

DOI: <https://doi.org/10.17305/bb.2026.13524>

ABSTRACT

The relationship between prediabetes and chronic kidney disease (CKD) remains ambiguous, with varying results across cohort studies. This meta-analysis aimed to assess whether prediabetes is linked to an increased risk of developing incident CKD in the general adult population. A comprehensive search was conducted in PubMed, Embase, and Web of Science from inception to September 28, 2025, for longitudinal observational studies that evaluated CKD risk in individuals with prediabetes compared to those with normoglycemia. Prediabetes was defined by impaired fasting glucose (IFG), impaired glucose tolerance (IGT), elevated glycated hemoglobin (HbA1c), or a combination of these criteria. Pooled risk ratios (RRs) with 95% confidence intervals (CIs) were calculated using a random-effects model. Fifteen cohorts comprising 2,854,724 participants were included in the analysis. The results indicated that prediabetes was significantly associated with an increased risk of incident CKD (RR: 1.21, 95% CI: 1.12–1.31; $I^2 = 90\%$). Subgroup analyses revealed that the association was not significantly influenced by the definitions of prediabetes, study design, demographic characteristics of the population, follow-up duration, or study quality scores (p for subgroup difference all > 0.05). Meta-regression analysis suggested that a higher mean age of the population was inversely correlated with the observed effect size for the relationship between prediabetes and CKD risk (coefficient = -0.030, $p = 0.004$; adjusted $R^2 = 67\%$). In conclusion, prediabetes is associated with a modestly elevated risk of developing CKD in the general population, with a potentially stronger correlation observed in younger individuals. These findings indicate an association rather than causality and suggest that early glycemic dysregulation may be linked to subsequent renal risk prior to the onset of overt diabetes.

Keywords: Prediabetes, chronic kidney disease, risk factor, incidence, meta-analysis.

INTRODUCTION

Chronic kidney disease (CKD) is a major global health burden affecting approximately 10% of the adult population and is associated with substantial morbidity, mortality, and healthcare costs (1, 2). The progression of CKD to end-stage renal disease often leads to dialysis or kidney transplantation and increases the risk of cardiovascular complications (3). Despite advances in treatment, such as renin-angiotensin-aldosterone system inhibition and glycemic or blood pressure control, the long-term prognosis for CKD remains poor (4). Early identification and prevention of modifiable risk factors are therefore crucial to curbing disease progression and its associated complications. Among these risk factors, hyperglycemia has long been recognized as a leading cause of diabetic kidney disease, accounting for roughly one-third of CKD cases worldwide (5). However, whether milder degrees of dysglycemia below the diabetic threshold contribute to early kidney injury remains less well understood.

Prediabetes, an intermediate metabolic state between normoglycemia and diabetes mellitus, has gained recognition as a high-risk condition for future diabetes and cardiovascular disease (6, 7). It is typically defined by impaired fasting glucose (IFG), impaired glucose tolerance (IGT), or elevated glycated hemoglobin (HbA1c) levels, reflecting subtle disturbances in insulin secretion and resistance (6). Emerging evidence suggests that prediabetes may already exert deleterious effects on renal microvasculature through mechanisms such as low-grade inflammation, endothelial dysfunction, oxidative stress, and glomerular hyperfiltration (8, 9). These processes may initiate subclinical kidney injury even before overt diabetes develops, thereby bridging the continuum between metabolic dysregulation and CKD (8, 9). A prior meta-analysis in 2016 reported a modest but significant association between prediabetes and increased CKD risk (10). However, many included studies were primarily designed to examine metabolic syndrome, introducing possible confounding from obesity, hypertension, and dyslipidemia (10). Since then, several large-scale cohort studies with improved diagnostic precision and longer follow-up have been published, warranting an updated synthesis (11-21). Therefore, the present systematic review and meta-analysis aimed to provide a comprehensive and contemporary assessment of the association between prediabetes and the risk of incident CKD in the

general adult population, with additional subgroup and meta-regression analyses to explore potential sources of heterogeneity and population-specific effects.

MATERIAL AND METHODS

The conduct of this meta-analysis adhered to the PRISMA 2020 statement (22) and the Cochrane Handbook for Systematic Reviews and Meta-Analyses (22), covering protocol development, data collection, statistical procedures, and reporting. The protocol was prospectively registered in PROSPERO (ID: CRD420251180619).

Literature search

We conducted a comprehensive search of PubMed, Embase, and Web of Science to identify eligible studies. The search strategy combined the following term groups: (1) "prediabetes" OR "pre-diabetes" OR "prediabetic" OR "pre-diabetic" OR "prediabetic state" OR "borderline diabetes" OR "impaired fasting glucose" OR "impaired glucose tolerance" OR "IFG" OR "IGT"; (2) "chronic kidney disease" OR "CKD" OR "glomerular filtration rate" OR "renal function" OR "chronic renal failure"; (3) "cohort" OR "prospective" OR "retrospective" OR "prospectively" OR "retrospectively" OR "follow" OR "followed" OR "follow-up" OR "longitudinal" OR "risk" OR "incidence". Only full-text, peer-reviewed articles in English and conducted in humans were eligible. We also manually checked the references of relevant reviews and original reports for additional studies. The search covered all records from database inception to September 28, 2025. The detailed search strategy for each database is shown in **Supplemental File 1**.

Inclusion and exclusion criteria

The selection of studies was guided by the PICOS framework:

Population (P): Adults (≥ 18 years) from the general population without baseline CKD, confirmed by clinical or laboratory assessment.

Intervention/Exposure (I): Prediabetes, defined according to established diagnostic thresholds for IFG, IGT, mildly elevated HbA1c, or their combination. Given the absence of a universally accepted hierarchy demonstrating the superiority of any single definition for predicting CKD risk, all validated prediabetes definitions were considered eligible for the primary analysis.

Comparison (C): Participants with normoglycemia serve as the reference group.

Outcomes (O): Incident CKD diagnosed consistent with the criteria of the original studies, which generally defined as a decline in estimated glomerular filtration rate (eGFR) to < 60 mL/min/1.73 m² and/or the presence of albuminuria, with a minimum follow-up duration of 1 year. Definitions of albuminuria were study-specific and generally corresponded to moderately increased albuminuria (A2) or higher, although precise thresholds were not consistently reported across cohorts.

Study Design (S): Longitudinal follow-up studies, including prospective or retrospective cohort studies, nested case-control studies, and post-hoc analyses of randomized controlled trials (RCTs) that provide baseline glycemic classification and subsequent CKD outcomes.

Exclusion criteria were as follows: reviews, meta-analyses, editorials, preclinical work, studies involving pediatric populations, cross-sectional studies, those that did not include general population, did not examine prediabetes, lacking controls of normoglycemia, or those failing to report CKD incidence. In addition, studies based on metabolic syndrome were excluded because their “hyperglycemia” component does not consistently distinguish prediabetes from undiagnosed diabetes and reflects multiple metabolic factors, making it difficult to isolate the independent effect of prediabetic glycemia on CKD risk. In cases of overlapping populations, the analysis incorporated the study with the largest sample size.

Study quality evaluation and data collection

Two investigators independently performed the literature search, screening, quality evaluation, and data extraction, with disagreements resolved through consultation with the corresponding author. Study quality was judged using the Newcastle-Ottawa Scale (NOS) (23), which evaluates cohort selection, control of confounding, and outcome ascertainment. The NOS assigns scores from 1 to 9, with higher values indicating better quality; studies scoring ≥ 7 were regarded as high quality. Extracted data included study details (first author, year, design, country), participant information (population source, sample size, age, sex, mean body mass index [BMI] at baseline), exposure measures (diagnostic criteria for prediabetes and the number of patients with prediabetes at baseline), follow-up duration, outcome definitions (criteria for CKD

diagnosis and number of patients with newly developed CKD during follow-up), and covariates considered in the adjusted analyses of prediabetes and CKD risk.

Statistics

We evaluated the association between prediabetes and incident CKD in the general adult population by pooling risk ratios (RRs) with corresponding 95% confidence intervals (CIs) comparing participants with prediabetes to those with normoglycemia at baseline. Effect estimates reported as hazard ratios were considered equivalent to RRs. Where the odds ratios (ORs) were presented, data were converted to relative risks (RRs) for the meta-analysis ($RR=OR/([1-p_{Ref}]+[p_{Ref}\times OR])$), where p_{Ref} is the prevalence of the outcome in the reference group (normoglycemia group) (24). For each study, the most fully adjusted model was preferentially extracted to minimize confounding. If a study reported multiple definitions of prediabetes within the same population (e.g., IFG, IGT, or mildly elevated HbA1c), only one effect estimate was selected to avoid duplication of participants and violation of statistical independence (22). As no definitive evidence supports the superiority of any single prediabetes definition in predicting CKD risk, all definitions were considered clinically valid. In such cases, the RR with the largest effect size was selected to represent the maximum reported risk signal for that cohort. The robustness of this choice was further examined through prespecified subgroup analyses stratified by prediabetes definition. RRs and their standard errors were derived from reported 95% CIs or p -values and then log-transformed to stabilize variance and normalize the distribution (22). Between-study heterogeneity was assessed using the Cochrane Q test, the I^2 statistic, and the between-study variance (τ^2). Thresholds of $< 25\%$, $25\text{--}75\%$, and $> 75\%$ for I^2 were used to indicate low, moderate, and high heterogeneity, respectively (25). Pooled effect estimates were calculated using a random-effects model, which incorporates τ^2 to account for between-study variability (22). To aid interpretation in the presence of substantial heterogeneity, a 95% prediction interval (PI) was additionally calculated for the primary analysis, reflecting the expected range of true effects in future comparable populations (22). To test robustness, sensitivity analyses were conducted by sequentially omitting individual studies (26). Prespecified subgroup analyses further examined whether study-level characteristics influenced the findings, including definition of prediabetes, study design (prospective vs. retrospective), mean ages of the patients, proportions of men, follow-up durations,

diagnostic criteria of CKD, and study quality scores in NOS. Median values of continuous variables were used to define subgroup cutoffs. In addition, univariate meta-regression analyses were applied to explore whether continuous variables (e.g., mean age, proportion of men, mean BMI at baseline, follow-up length, and NOS score) modified the association (22). Subgroup analyses, together with univariate meta-regression based on study-level characteristics, were conducted in an exploratory manner to generate hypotheses regarding potential effect modifiers. Potential publication bias was evaluated by visual inspection of funnel plots and Egger's regression test (27). A *p*-value < 0.05 was considered statistically significant. All analyses were conducted using RevMan (version 5.3, Cochrane Collaboration, Oxford, UK) and Stata (version 17.0, StataCorp, College Station, TX, USA).

RESULTS

Study inclusion

The study selection process is shown in **Figure 1**. A total of 2,533 records were retrieved from the three databases, and 791 duplicates were removed. Following screening of titles and abstracts, 1,703 articles were excluded for not fulfilling the eligibility criteria. The remaining 39 full-text papers were assessed independently by two reviewers, resulting in the exclusion of 24 studies as detailed in **Figure 1**. Consequently, 15 studies were finally included in the quantitative synthesis (11-21, 28-31).

Summarized study characteristics

Table 1 summarizes the main characteristics of the included studies. A total of 15 cohort studies published between 2005 and 2025 were included, comprising 9 prospective cohorts (14, 15, 17, 18, 21, 28-31) and 6 retrospective cohorts (11-13, 16, 19, 20). These studies were conducted across diverse regions, including the United States, United Kingdom, Germany, Norway, Japan, China, South Korea, and Spain. The study populations were primarily drawn from community-based or general adult populations without CKD at baseline. Overall, 2,854,724 adults were included in this meta-analysis. The mean age of participants ranged from 33.8 to 61.0 years, and the proportion of men varied between 32.9% and 100%. The mean BMI of the included subjects varied from 22.5 to 28.9 kg/m². Prediabetes was defined using one or more standard diagnostic criteria, including IFG, IGT, mildly elevated HbA1c, or their

combinations across all studies. Accordingly, 734,770 (25.7%) of the included subjects were with prediabetes at baseline. The average follow-up duration ranged from 1.7 to 15.0 years, during which CKD outcomes were ascertained primarily through $eGFR < 60 \text{ mL/min/1.73 m}^2$ in 10 studies (14, 15, 18-21, 28-31), $eGFR < 60 \text{ mL/min/1.73 m}^2$ and/or proteinuria in 4 studies (11-13, 16), and the International Classification of Disease codes in another study (17). A total of 63,055 (2.2%) participants had new-onset CKD during follow-up. Multivariate analyses were used in all of the included when the association between prediabetes and CKD risk was evaluated, adjusted for key confounders such as age, sex, BMI, baseline $eGFR$, blood pressure, lipid levels, and smoking status, medication use, comorbidities, and lifestyle factors to a varying degree.

Study quality evaluation

The quality of the included studies was evaluated with NOS, which is summarized in **Table 2**. The total NOS scores ranged from 8 to 9, indicating overall high methodological rigor among the included studies. Five studies (14, 18, 21, 28, 30) achieved the maximum score of 9, reflecting excellent design and follow-up. Ten studies scored 8, primarily due to poor representativeness of the exposed cohort (11, 13, 19, 20), less optimal assessment of outcome (17), inadequate length of follow-up duration (12, 15, 16, 31), and slightly limited follow-up adequacy (29). Overall, all included studies were deemed to be of good quality, with low risk of selection and attrition bias, supporting the reliability and validity of the pooled findings regarding the association between prediabetes and CKD risk.

Meta-analysis results

Across 15 cohorts (11-21, 28-31), combined results demonstrated that prediabetes was associated with an increased risk of CKD in the general population as compared to subjects with normoglycemia (RR: 1.21, 95% CI: 1.12–1.31; $p < 0.001$) with substantial between-study heterogeneity ($I^2 = 90\%$; $\tau^2 = 0.01$; **Figure 2A**). The corresponding 95% PI ranged from 1.01 to 1.47, indicating considerable variability in the magnitude of the association across different populations. Sequential exclusion of individual studies did not materially change the findings, with pooled RRs spanning 1.16–1.25 (all $p < 0.05$).

Subgroup analysis

Subgroup analyses yielded largely consistent findings. No significant difference was observed for the association between prediabetes and CKD risk among studies with different definitions of prediabetes, including IFG, IGT, mildly elevated HbA1c, and their combinations (p for subgroup difference = 0.34; **Figure 2B**). However, the result was significant only for the subgroup of studies with prediabetes defined by mildly elevated HbA1c (RR: 1.17, 95% CI: 1.03–1.33; p = 0.02; I^2 = 88%; **Figure 2B**). In addition, consistent results were observed for prospective and retrospective studies (RR 1.16 vs. 1.28, p for subgroup difference = 0.25; **Figure 3A**), for studies with mean ages < 57 and \geq 57 years (RR 1.35 vs. 1.15, p for subgroup difference = 0.11; **Figure 3B**), in studies with the proportion of men < 47% and \geq 47% (RR 1.22 vs. 1.19, p for subgroup difference = 0.82; **Figure 4A**), and in studies with the mean follow-up duration < 6 years and \geq 6 years (RR 1.38 vs. 1.14, p for subgroup difference = 0.16; **Figure 4B**). The association between prediabetes and CKD risk seemed to be stronger in studies with CKD defined as eGFR < 60 mL/min/1.73 m² and/or proteinuria than those with CKD defined as eGFR < 60 mL/min/1.73 m² alone (RR: 1.61 vs. 1.15), although the between subgroup difference was not statistically significant (p for subgroup difference = 0.06; **Figure 5A**). Similar results were observed for studies with the NOS of 8 and 9 (RR 1.21 vs. 1.23, p for subgroup difference = 0.82; **Figure 5B**).

Meta-regression analysis

Table 3 presents the univariate meta-regression results. Results showed that Mean age was inversely associated with the strength of the association between prediabetes and CKD risk (coefficient = -0.030, p = 0.004), which largely explained the between-study heterogeneity (adjusted R^2 = 67%). None of the other examined factors, including proportion of men, mean BMI at baseline, follow-up length, or NOS score, were shown to significantly influence the association between prediabetes and the risk of CKD (all p > 0.05).

Publication bias

As illustrated in **Figure 6**, the funnel plots assessing the association between prediabetes and the risk of CKD in the general population were largely symmetrical,

suggesting little publication bias. Egger's test supported this observation, with no statistically significant bias detected ($p = 0.35$).

DISCUSSION

This meta-analysis summarizes available observational evidence indicating an association between prediabetes and a modestly increased risk of incident CKD in the general adult population. Across more than 2.8 million participants and 15 longitudinal cohorts, individuals with prediabetes had an approximately 20% higher risk of incident CKD compared with those with normoglycemia. Although subgroup and meta-regression analyses did not identify statistically significant effect modification by prediabetes definition, study design, follow-up duration, or methodological quality, substantial residual heterogeneity persisted across studies. Meta-regression analysis identified a significant inverse association between mean study age and the strength of the relationship between prediabetes and CKD risk, suggesting that cohorts with younger average ages tended to exhibit stronger associations. However, the age-stratified subgroup analysis (<57 vs ≥ 57 years) did not demonstrate a statistically significant between-group difference. This discrepancy likely reflects methodological differences between the two approaches. Meta-regression treats age as a continuous study-level variable and is therefore more sensitive to detecting linear trends across cohorts, whereas subgroup analysis relies on dichotomization using a median-based cutoff, which reduces statistical power and may obscure gradual age-related gradients. Collectively, these findings indicate that even mild glycemic dysregulation, below the diagnostic threshold for diabetes, may have clinically meaningful renal consequences, emphasizing the importance of early recognition and prevention.

Several biological mechanisms may explain the observed link between prediabetes and CKD development. Prediabetes is characterized by insulin resistance and low-grade hyperglycemia, both of which can induce glomerular and tubular injury through multiple metabolic and hemodynamic pathways (32, 33). Chronic mild hyperglycemia increases oxidative stress and activates inflammatory cytokines such as interleukin-6 and tumor necrosis factor- α , leading to endothelial dysfunction and microvascular damage (34, 35). Additionally, insulin resistance and early dysglycemia may induce intraglomerular hemodynamic changes, characterized by afferent arteriolar dilation and glomerular hyperfiltration, which represent early functional alterations that may

precede structural injury and subsequent GFR decline (36). Although hyperfiltration can be partially corrected by renin–angiotensin system blockade or SGLT2 inhibition, the present meta-analysis focused on incident CKD defined by reduced eGFR and/or albuminuria and does not directly address treatment effects or longitudinal GFR dynamics (36). These mechanisms include advanced glycation end-product accumulation (37), activation of the renin–angiotensin–aldosterone system (38), and lipid metabolism disturbances (39), all of which can promote structural and functional renal decline. These processes collectively create a pro-inflammatory and pro-fibrotic milieu that predisposes the kidney to early injury, even before overt diabetes develops (8). The findings of this meta-analysis support the notion that CKD and diabetic kidney disease exist on a continuum beginning with prediabetic metabolic alterations. Notably, emerging evidence suggests that CKD risk associated with prediabetes may not be fully mediated by progression to overt diabetes. Large cohorts (20, 21) have demonstrated an increased incidence of CKD among individuals with prediabetes even in the absence of diabetes progression. This observation implies that renal impairment arising in prediabetes may, at least in part, reflect pathophysiological pathways distinct from classical diabetic nephropathy, potentially involving early microvascular dysfunction, low-grade inflammation, or metabolic stress independent of sustained hyperglycemia.

Taken together, these analyses suggest a generally consistent direction of association, while the PI highlights that the strength of the relationship between prediabetes and CKD risk is heterogeneous and may not be uniformly applicable to all populations. Subgroup analyses suggested a broadly consistent direction of association across different prediabetes definitions, but the magnitude and statistical significance of effects varied. Notably, several high-quality cohorts—particularly those defining prediabetes exclusively by mildly elevated HbA1c—reported weaker or null associations with CKD, contributing to substantial between-study heterogeneity. This variability may reflect differences in glycemic exposure captured by fasting, post-load, and HbA1c-based definitions, as well as variation in baseline kidney function, follow-up duration, and residual confounding across cohorts. Consequently, the pooled estimate should be interpreted as an average association rather than a uniformly applicable risk, and clinical implications should be considered cautiously. The lack of significant subgroup differences by study design or population characteristics also supports the generalizability of the findings across demographic and geographic

contexts. The inverse relationship between mean age and the effect size observed in the meta-regression may reflect a survivor or competing risk phenomenon, where older individuals have accumulated multiple comorbidities that dilute the relative contribution of mild hyperglycemia to kidney risk (40). Alternatively, younger adults with prediabetes may experience a longer duration of exposure to dysglycemia, thereby amplifying its long-term impact on renal structure and function. However, these findings should be interpreted cautiously, as both the meta-regression and subgroup analyses are based on study-level mean age rather than individual participant data. Consequently, the observed age-related pattern reflects between-study differences and should be considered exploratory. Age-specific pooled RRs from subgroup analyses are provided to illustrate this potential gradient, but they do not imply a definitive age threshold or causal modification effect.

The current analysis has several methodological strengths that enhance its reliability. First, the literature search was comprehensive and up to date, encompassing studies from multiple continents and capturing recently published large-scale population-based cohorts. Second, all included studies employed longitudinal designs, allowing assessment of temporal relationships between prediabetes and subsequent CKD development, thereby minimizing reverse causality. Third, all analyses were adjusted for key confounders, including age, sex, BMI, blood pressure, and baseline kidney function etc., and the pooled estimates were derived exclusively from multivariable models. These strengths collectively provide strong support for the validity of the observed association. Nevertheless, several limitations should be acknowledged when interpreting the findings. First, despite the predominance of prospective cohorts, some included studies had retrospective designs, which may introduce recall or selection bias. Second, substantial heterogeneity was observed across studies, likely reflecting differences in diagnostic criteria for prediabetes and CKD, population characteristics, follow-up duration, and residual confounding. Although meta-regression analyses identified mean age as a potential contributor, other sources of heterogeneity could not be fully explored due to limited reporting. In addition, CKD definitions across studies were based on estimated GFR thresholds using different creatinine- or cystatin C-based equations, which may not reflect identical levels of true measured GFR across regions or age groups. This variation could contribute to outcome misclassification and residual heterogeneity, particularly at younger and older ages. Besides, in older populations, age-related declines in muscle mass and greater

variability in body composition may reduce the accuracy of creatinine-based eGFR estimates (41), potentially contributing to outcome misclassification and attenuated associations in cohorts with higher mean age. Third, individual participant data were not available, precluding harmonized reclassification of prediabetes subtypes, stratification by ethnicity, or adjustment for medication use, lifestyle factors, or comorbidities. Fourth, although most studies adjusted for major confounders, residual confounding by unmeasured variables such as dietary habits, socioeconomic status, or family history cannot be excluded (42). Fifth, the analysis is observational in nature and cannot establish a causal relationship between prediabetes and CKD. It remains possible that prediabetes serves as a marker of broader metabolic dysfunction rather than a direct cause of renal decline. Moreover, although the pooled RR was statistically significant, its clinical impact is modest, and translation into absolute risk differences was not attempted due to substantial heterogeneity in baseline CKD risk across populations. Lastly, although funnel plots and Egger's test did not suggest significant publication bias, these methods have limited power in the presence of substantial heterogeneity and a modest number of studies; therefore, small-study effects and selective reporting cannot be excluded and these assessments should be regarded as exploratory.

The clinical implications of these findings are notable. Prediabetes is highly prevalent worldwide, affecting approximately one-third of adults, and is increasingly recognized as a stage at which vascular and microvascular complications may begin (43). The observed 20% increased risk of CKD underscores the need for clinicians to regard prediabetes not only as a precursor to diabetes but also as a condition with independent renal implications. Early identification of individuals with prediabetes provides an opportunity for lifestyle modification, weight control, blood pressure management, and optimization of lipid and glycemic profiles—all measures known to mitigate microvascular injury (44). While interventional evidence is lacking, the observed association may be considered hypothesis-generating and consistent with existing guideline-based risk assessment practices, rather than implying new monitoring recommendations derived from this analysis. At a population level, these results reinforce the importance of integrating kidney health into broader chronic disease prevention frameworks targeting metabolic risk. Future research should focus on elucidating the causal pathways linking prediabetes to renal injury using individual-level pooled data and longitudinal trajectory analyses. Standardized

diagnostic criteria for both prediabetes and CKD would improve comparability across studies, while mechanistic studies could clarify the relative contributions of hyperglycemia, insulin resistance, and other metabolic abnormalities to kidney dysfunction. Intervention trials assessing whether intensive lifestyle modification or pharmacologic therapy in prediabetic individuals can prevent CKD onset are also warranted. Such evidence would help determine whether early management of dysglycemia confers renal protection beyond its established cardiovascular benefits. These findings of the meta-analysis suggest that early stages of glycemic dysregulation may be associated with increased renal risk. However, interventional evidence for CKD prevention in prediabetes remains limited, and clinical decisions should consider the modest magnitude of risk, individual patient context, and existing guideline recommendations.

CONCLUSION

In conclusion, this meta-analysis indicates that prediabetes is associated with a modestly increased risk of CKD in the general population, with a potentially stronger association observed in younger cohorts. These findings reflect an association rather than causality and should be interpreted cautiously given the observational design and substantial heterogeneity. Overall, the results suggest a possible link between early dysglycemia and subsequent kidney risk, warranting further investigation in well-designed prospective studies and randomized interventional trials.

Conflicts of interest: Authors declare no conflicts of interest.

Funding: This study was supported by National Natural Science Foundation of China (No. 82260152).

Data availability: All data generated or analyzed during this study are included in this published article.

Submitted: November 13, 2025

Accepted: December 21, 2025

Published online: January 23, 2026

REFERENCES

1. Francis A, Harhay MN, Ong ACM, Tummalapalli SL, Ortiz A, Fogo AB, et al. Chronic kidney disease and the global public health agenda: an international consensus. *Nat Rev Nephrol.* 2024;20(7):473–85.
<https://doi.org/10.1038/s41581-024-00820-6>
2. Shao Y, Fan Y, Gao J, Meng H, Wang M, Shi Q, et al. Prevalence, awareness, and treatment of chronic kidney disease among adults in Yunnan Province, China: findings from the 2023 chronic disease and risk factors surveillance. *Front Public Health.* 2025;13:1685691.
<https://doi.org/10.3389/fpubh.2025.1685691>
3. Zoccali C, Mallamaci F, Adamczak M, de Oliveira RB, Massy ZA, Sarafidis P, et al. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. *Cardiovasc Res.* 2023;119(11):2017–32.
<https://doi.org/10.1093/cvr/cvad083>
4. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. *Kidney Int.* 2011;80(1):17–28.
<https://doi.org/10.1038/ki.2010.483>
5. Gembillo G, Ingrasciotta Y, Crisafulli S, Luxi N, Siligato R, Santoro D, et al. Kidney Disease in Diabetic Patients: From Pathophysiology to Pharmacological Aspects with a Focus on Therapeutic Inertia. *Int J Mol Sci.* 2021;22(9):4824.
<https://doi.org/10.3390/ijms22094824>
6. Echouffo-Tcheugui JB, Perreault L, Ji L, Dagogo-Jack S. Diagnosis and Management of Prediabetes: A Review. *JAMA.* 2023;329(14):1206–16.
<https://doi.org/10.1001/jama.2023.4063>
7. Davidson MB. Historical review of the diagnosis of prediabetes/intermediate hyperglycemia: Case for the international criteria. *Diabetes Res Clin Pract.* 2022;185:109219.
<https://doi.org/10.1016/j.diabres.2022.109219>
8. Rico Fontalvo J, Soler MJ, Daza Arnedo R, Navarro-Blackaller G, Medina-González R, Rodríguez Yáñez T, et al. Prediabetes and CKD: Does a causal

relationship exist. *Nefrologia (Engl Ed)*. 2024;44(5):628–38.
<https://doi.org/10.1016/j.nefroe.2024.11.005>

9. Jadhakhan F, Marshall T, Gill P. A systematic review investigating the cumulative incidence of chronic kidney disease in young adults with impaired glucose tolerance. *Syst Rev*. 2015;4:69.
<https://doi.org/10.1186/s13643-015-0059-6>

10. Echouffo-Tcheugui JB, Narayan KM, Weisman D, Golden SH, Jaar BG. Association between prediabetes and risk of chronic kidney disease: a systematic review and meta-analysis. *Diabet Med*. 2016;33(12):1615–24.
<https://doi.org/10.1111/dme.13113>

11. Michishita R, Matsuda T, Kawakami S, Tanaka S, Kiyonaga A, Tanaka H, et al. Hypertension and hyperglycemia and the combination thereof enhances the incidence of chronic kidney disease (CKD) in middle-aged and older males. *Clin Exp Hypertens*. 2017;39(7):645–54.
<https://doi.org/10.1080/10641963.2017.1306541>

12. Jadhakhan F, Marshall T, Ryan R, Gill P. Risk of chronic kidney disease in young adults with impaired glucose tolerance/impaired fasting glucose: a retrospective cohort study using electronic primary care records. *BMC Nephrol*. 2018;19(1):42.
<https://doi.org/10.1186/s12882-018-0834-4>

13. Koshi T, Sagesaka H, Sato Y, Hirabayashi K, Koike H, Yamauchi K, et al. Elevated haemoglobin A1c but not fasting plasma glucose conveys risk of chronic kidney disease in non-diabetic individuals. *Diabetes Res Clin Pract*. 2018;146:233–9.
<https://doi.org/10.1016/j.diabres.2018.10.026>

14. Kim GS, Oh HH, Kim SH, Kim BO, Byun YS. Association between prediabetes (defined by HbA1(C), fasting plasma glucose, and impaired glucose tolerance) and the development of chronic kidney disease: a 9-year prospective cohort study. *BMC Nephrol*. 2019;20(1):130.
<https://doi.org/10.1186/s12882-019-1307-0>

15. Chen C, Liu G, Yu X, Yu Y. Association between Prediabetes and Renal Dysfunction from a Community-based Prospective Study. *Int J Med Sci*. 2020;17(11):1515–21.
<https://doi.org/10.7150/ijms.46477>

16. Furukawa M, Onoue T, Kato K, Wada T, Shinohara Y, Kinoshita F, et al. Prediabetes is associated with proteinuria development but not with glomerular filtration rate decline: A longitudinal observational study. *Diabet Med.* 2021;38(8):e14607.
<https://doi.org/10.1111/dme.14607>
17. Honigberg MC, Zekavat SM, Pirruccello JP, Natarajan P, Vaduganathan M. Cardiovascular and Kidney Outcomes Across the Glycemic Spectrum: Insights From the UK Biobank. *J Am Coll Cardiol.* 2021;78(5):453–64.
<https://doi.org/10.1016/j.jacc.2021.05.004>
18. Manouchehri M, Cea-Soriano L, Franch-Nadal J, Ruiz A, Goday A, Villanueva R, et al. Heterogeneity in the association between prediabetes categories and reduction on glomerular filtration rate in a 5-year follow-up. *Sci Rep.* 2022;12(1):7373.
<https://doi.org/10.1038/s41598-022-11392-5>
19. Okawa Y, Suzuki E, Mitsuhashi T, Tsuda T, Yorifuji T. A population-based longitudinal study on glycated hemoglobin levels and new-onset chronic kidney disease among non-diabetic Japanese adults. *Sci Rep.* 2023;13(1):13770.
<https://doi.org/10.1038/s41598-023-40300-8>
20. Zhang X, Wu H, Fan B, Shi M, Lau ESH, Yang A, et al. The role of age on the risk relationship between prediabetes and major morbidities and mortality: Analysis of the Hong Kong diabetes surveillance database of 2 million Chinese adults. *Lancet Reg Health West Pac.* 2023;30:100599.
<https://doi.org/10.1016/j.lanwpc.2022.100599>
21. Rooney MR, Wallace AS, Echouffo Tcheugui JB, Fang M, Hu J, Lutsey PL, et al. Prediabetes is associated with elevated risk of clinical outcomes even without progression to diabetes. *Diabetologia.* 2025;68(2):357–66.
<https://doi.org/10.1007/s00125-024-06315-0>
22. Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. Cochrane Handbook for Systematic Reviews of Interventions version 6.2. The Cochrane Collaboration. 2021.
www.training.cochrane.org/handbook
23. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised

studies in meta-analyses. 2010.

http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

24. Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. *JAMA*. 1998;280(19):1690–1.
<https://doi.org/10.1001/jama.280.19.1690>
25. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med*. 2002;21(11):1539–58.
<https://doi.org/10.1002/sim.1186>
26. Marušić MF, Fidahić M, Cepeha CM, Farcaş LG, Tseke A, Puljak L. Methodological tools and sensitivity analysis for assessing quality or risk of bias used in systematic reviews published in the high-impact anesthesiology journals. *BMC Medical Research Methodology*. 2020;20(1):121.
<https://doi.org/10.1186/s12874-020-00966-4>
27. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315(7109):629–34.
<https://doi.org/10.1136/bmj.315.7109.629>
28. Fox CS, Larson MG, Leip EP, Meigs JB, Wilson PW, Levy D. Glycemic status and development of kidney disease: the Framingham Heart Study. *Diabetes Care*. 2005;28(10):2436–40.
<https://doi.org/10.2337/diacare.28.10.2436>
29. Schöttker B, Brenner H, Koenig W, Müller H, Rothenbacher D. Prognostic association of HbA1c and fasting plasma glucose with reduced kidney function in subjects with and without diabetes mellitus. Results from a population-based cohort study from Germany. *Prev Med*. 2013;57(5):596–600.
<https://doi.org/10.1016/j.ypmed.2013.08.002>
30. Melsom T, Schei J, Stefansson VT, Solbu MD, Jenssen TG, Mathisen UD, et al. Prediabetes and Risk of Glomerular Hyperfiltration and Albuminuria in the General Nondiabetic Population: A Prospective Cohort Study. *Am J Kidney Dis*. 2015;67(6):841–50.
<https://doi.org/10.1053/j.ajkd.2015.10.025>
31. Tatsumi Y, Morimoto A, Soyano F, Shimoda T, Miyamatsu N, Ohno Y, et al. Risk of proteinuria among individuals with persistent borderline diabetes: the Saku study. *Diabetol Int*. 2016;7(2):181–7.
<https://doi.org/10.1007/s13340-015-0235-x>

32. Ping WX, Hu S, Su JQ, Ouyang SY. Metabolic disorders in prediabetes: From mechanisms to therapeutic management. *World J Diabetes*. 2024;15(3):361–77.
<https://doi.org/10.4239/wjd.v15.i3.361>
33. Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease. *Kidney Int*. 2022;102(2):248–60.
<https://doi.org/10.1016/j.kint.2022.05.012>
34. Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. *Circulation*. 2006;113(15):1888–904.
<https://doi.org/10.1161/CIRCULATIONAHA.105.563213>
35. Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. *Biomed Pharmacother*. 2018;107:306–28.
<https://doi.org/10.1016/j.biopha.2018.07.157>
36. De Cosmo S, Menzaghi C, Prudente S, Trischitta V. Role of insulin resistance in kidney dysfunction: insights into the mechanism and epidemiological evidence. *Nephrol Dial Transplant*. 2013;28(1):29–36.
<https://doi.org/10.1093/ndt/gfs290>
37. Rabbani N, Thornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease. *Kidney Int*. 2018;93(4):803–13.
<https://doi.org/10.1016/j.kint.2017.11.034>
38. Lovshin JA, Boulet G, Lytvyn Y, Lovblom LE, Bjornstad P, Farooqi MA, et al. Renin-angiotensin-aldosterone system activation in long-standing type 1 diabetes. *JCI Insight*. 2018;3(1):e96968.
<https://doi.org/10.1172/jci.insight.96968>
39. Wei S, Fu Y, Zeng Y, Wu W, Cai J, Dong Z. Lipid metabolism in AKI and AKI-CKD transition: Dysregulation, lipotoxicity and therapeutic potential. *Pharmacol Ther*. 2025;275:108930.
<https://doi.org/10.1016/j.pharmthera.2025.108930>
40. Ravender R, Roumelioti ME, Schmidt DW, Unruh ML, Argyropoulos C. Chronic Kidney Disease in the Older Adult Patient with Diabetes. *J Clin Med*.

2024;13(2):348.

<https://doi.org/10.3390/jcm13020348>

41. Gaillard F, Rabah MO, Aubert O, Garcelon N, Neuraz A, Legendre C, et al. Impact of Muscle Mass on the Performance of Creatinine-Based eGFR Equations and Mortality Risk Assessment After Kidney Transplantation. *J Cachexia Sarcopenia Muscle*. 2025;16(5):e70032.
<https://doi.org/10.1002/jcsm.70032>
42. Crews DC, Kuczmarski MF, Miller ER 3rd, Zonderman AB, Evans MK, Powe NR. Dietary habits, poverty, and chronic kidney disease in an urban population. *J Ren Nutr*. 2015;25(2):103–10.
<https://doi.org/10.1053/j.jrn.2014.07.008>
43. Baranowska-Jurkun A, Matuszewski W, Bandurska-Stankiewicz E. Chronic Microvascular Complications in Prediabetic States-An Overview. *J Clin Med*. 2020;9(10):3289.
<https://doi.org/10.3390/jcm9103289>
44. Tuso P. Prediabetes and lifestyle modification: time to prevent a preventable disease. *Perm J*. 2014;18(3):88–93.
<https://doi.org/10.7812/TPP/14-002>

TABLES AND FIGURES WITH LEGENDS

Table 1. Characteristics of the included studies

Study	Design	Country	Participant characteristics	Sample size	Mean age (years)	Men (%)	Mean BMI (kg/m ²)	Criteria for the diagnosis of PreD	No. of participants with PreD	Follow-up duration (years)	Definition of CKD	No. of subjects with CKD	Variables adjusted
Fox 2005	PC	USA	Community-based general population	2398	54.0	47.0	27.5	IFG or IGT	704	7.0	eGFR < 60 mL/min/1.73 m ²	167	Age, sex, baseline eGFR, SBP, hypertension treatment, smoking, BMI, TC, HDL-C, and prevalent MI or CHF
Schöttker 2013	PC	Germany	Population-based sample of general adults (50-)	3082	61.0	44.4	26.5	IFG or mildly elevated HbA1c	1054	8.0	eGFR < 60 mL/min/1.73 m ²	678	Age, sex, baseline eGFR, BMI, SBP, TC, use of

			74 years)									anti-hypertensive drugs, use of statins, smoking status, and history of self-reported CVD	
Melsom 2015	PC	Norway	General population aged 50-62 years	1261	57.9	50.0	27.0	IFG or mildly elevate d HbA1c	595	5.6	eGFR < 60 mL/min/1.73 m ²	33	Age, sex, baseline eGFR, baseline use of ACEI/ARB, BMI, daytime systolic ambulatory BP, smoking, fasting insulin, physical

													exercise, and change in use of antihypertens ive medication and change in FPG from baseline to follow-up
Tatsumi 2016	PC	Japan	Individuals aged 30-79 years undergoing a comprehens ive medical check-up	2849	58.8	54.6	22.9	IFG or IGT	691	4.9	eGFR < 60 mL/min/1. 73 m ²	335	Age, sex, BMI, hypertension, dyslipidemia, smoking status, change in BMI, and newly developed hypertension, dyslipidemia, CVD,

												cerebrovascular disease, and cancer during follow-up	
Michishita 2017	RC	Japan	Middle-aged and older males receiving a periodic health check-up at a university health-care center	303	52.2	100.0	23.4	IFG	29	6.0	eGFR < 60 mL/min/1.73 m ² and/or proteinuria	32	Age, BMI, baseline eGFR, smoking habits, and drinking habits
Jadhakhan 2018	RC	UK	Young adults (18-40 years) from the general population	40092	33.8	46.5	27.5	IFG or IGT	10561	1.7	eGFR < 60 mL/min/1.73 m ² and/or proteinuria	308	Age, sex, ethnic group, deprivation quintile, BMI categories, CVD, HF, AF, hypertension,

													and steroid use
Koshi 2018	RC	Japan	General population undergoing health check-ups	25109	48.0	57.8	22.5	IFG or mildly elevate d HbA1c	10367	5.3	eGFR < 60 mL/min/1.73 m ² and/or proteinuria	2483	Age, sex, insulin sensitivity (SPISE), SBP, eGFR, and serum ALA level
Kim 2019	PC	South Korea	Adults from the general population	7728	52.0	52.6	NR	IFG, IGT, or mildly elevate d HbA1c	2886	8.7	eGFR < 60 mL/min/1.73 m ²	871	Age, sex, hypertension, obesity, regular physical activity, baseline eGFR, and MetS
Chen 2020	PC	China	Community-dwelling adults aged ≥ 40 years	7015	57.3	32.9	25.5	IFG, IGT, or mildly elevate d	4321	3.0	eGFR < 60 mL/min/1.73 m ²	121	Age, sex, BMI, TC, TG, HDL-C, LDL-C, SBP, and DBP

								HbA1c						
Furukawa 2021	RC	Japan	Adults (≥ 20 years) from the general Japanese population who underwent a comprehensive health check-up	40548	7	50.0	61.9	22.8	IFG	116915	2.0	eGFR < 60 mL/min/1.73 m ² and/or proteinuria	25416	Age, sex, BMI, eGFR, hypertension, dyslipidemia, smoking, past history of CVD and stroke
Honigberg 2021	PC	UK	Adults aged 40-69 years from the general population	33670	9	56.3	44.6	27.1	Mildly elevated HbA1c	46911	11.1	ICD codes	8522	Age, sex, race, Townsend deprivation index, smoking, alcohol consumption, vegetable/fresh fruit intake, history of

													cancer, SBP, antihypertens ive medication use, non- HDL cholesterol, cholesterol- lowering medication use, BMI, CRP, and UACR at baseline
Manouc hehri 2022	PC	Spain	Adults (30- 74 years) from primary care centers across Spain	1844	58.1	48.5	28.9	IFG or mildly elevate d HbA1c	1072	5.0	eGFR < 60 mL/min/1. 73 m ²	149	Age, sex, smoking status, regular physical activity, alcohol consumption, adherence to

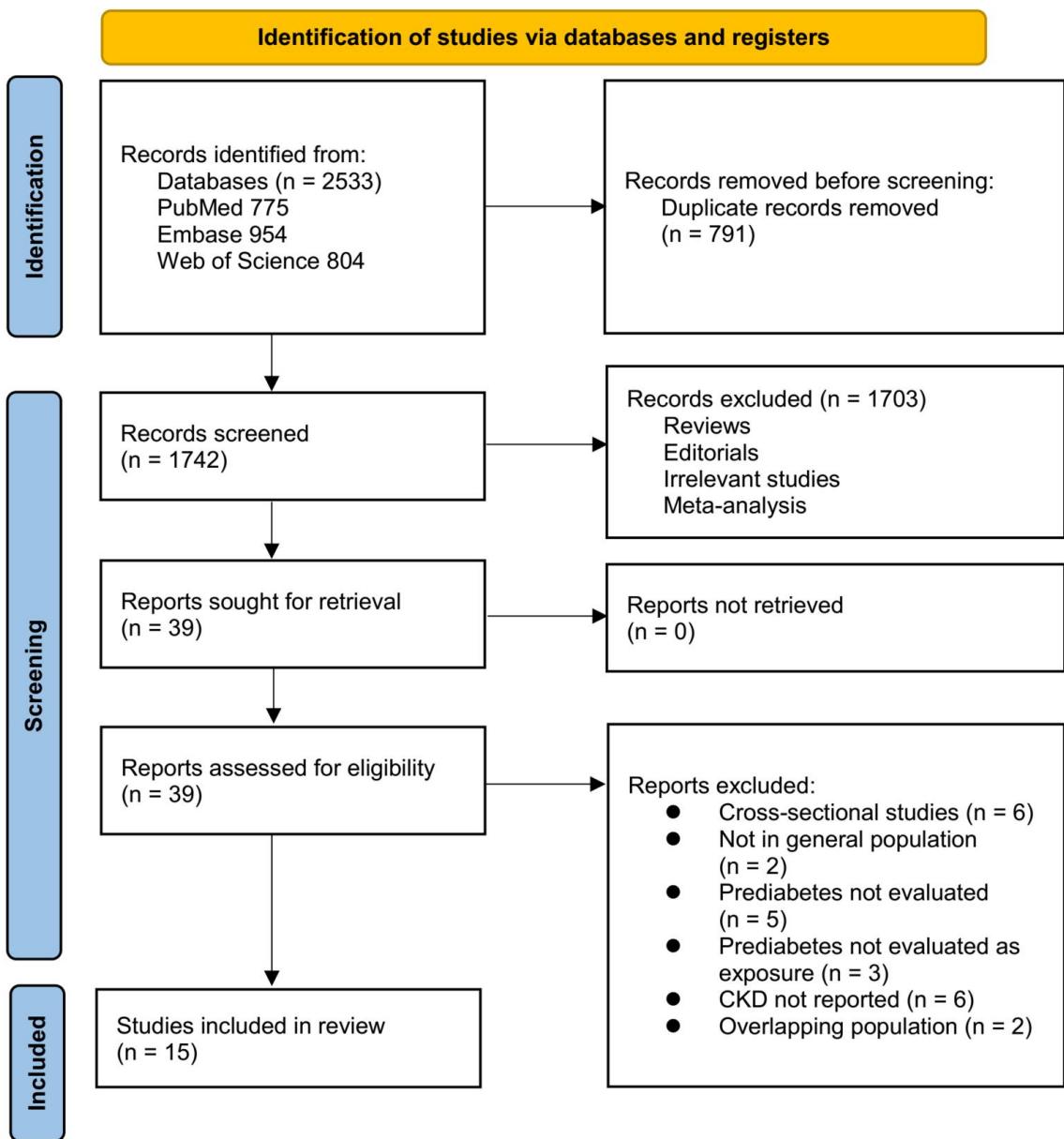
													Mediterranean diet score, daily fruit/vegetable consumption, WC, BMI, hypertension, TC, HDL-C, TG, and use of ACEIs or ARBs
Zhang 2023	RC	China	Adults (≥ 20 years) from the territory-wide Diabetes Surveillance Database	20033 61	58.0	43.7	NR	IFG, IGT, or mildly elevated HbA1c	528948	7.8	eGFR < 60 mL/min/1.73 m ²	18278	Age, sex, calendar year at baseline, LDL-C, TG/HDL-C ratio, Hb, albumin, use of lipid-regulating drugs and blood

												pressure-lowering drugs	
Okawa 2023	RC	Japan	Non-diabetic Japanese citizens (aged 35+) of Zentsuji city who participated in annual health checkups	7176	NR	40.4	NR	Mildly elevated HbA1c	3548	6.1	eGFR < 60 mL/min/1.73 m ²	2374	Age, sex, BMI, self-reported drinking status, self-reported smoking status, hypertension, dyslipidemia, and residential area
Rooney 2025	PC	USA	Community-based adults aged 46–70 years	10310	57.0	44.0	27.2	IFG or mildly elevated HbA1c	6168	15.0	eGFR < 60 mL/min/1.73 m ²	3288	Age, sex, race-center, smoking status, alcohol consumption, physical

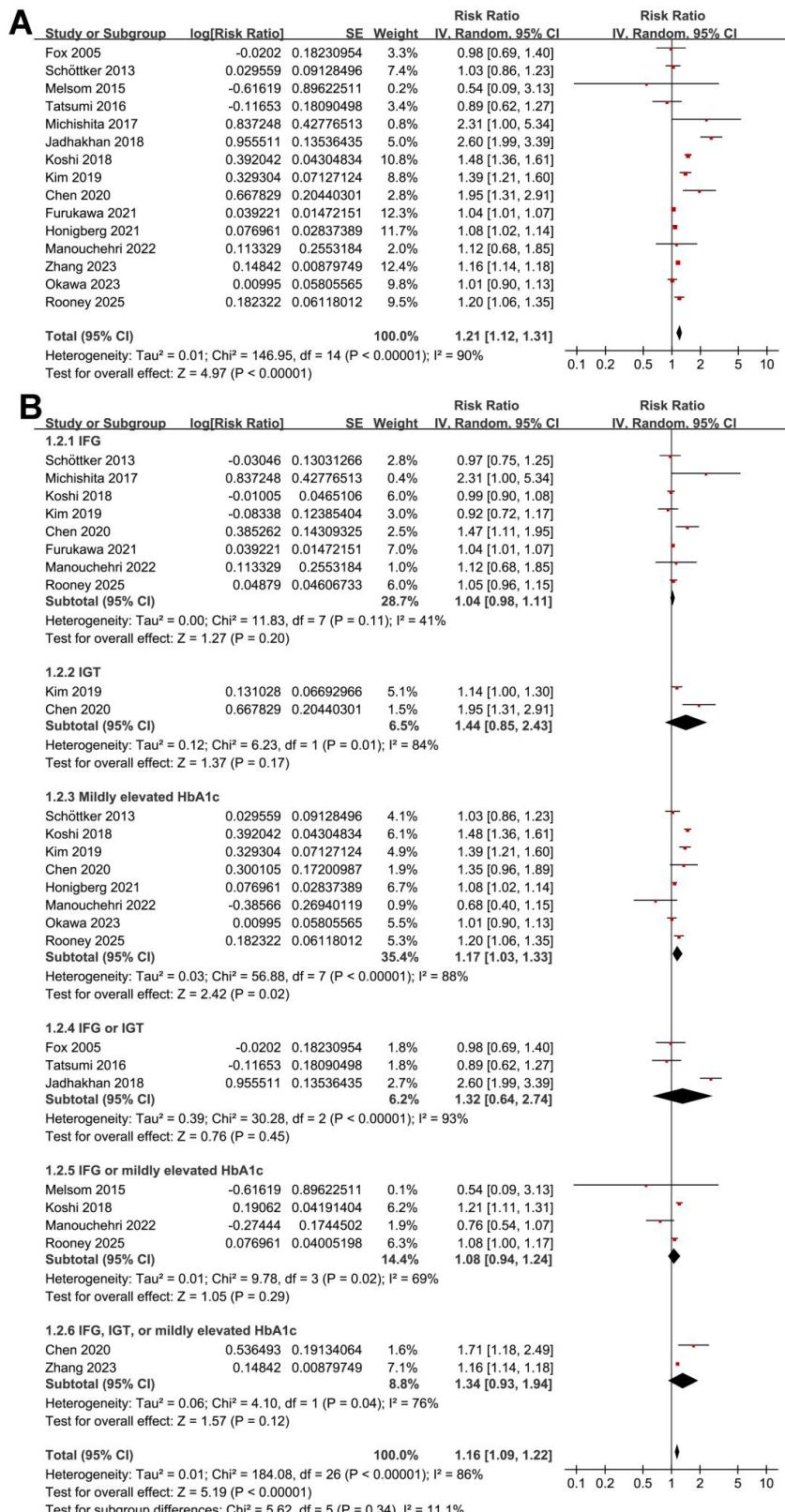
												activity level, BMI, TC, HDL-C, lipid- lowering medication use, and hypertension
--	--	--	--	--	--	--	--	--	--	--	--	---

Abbreviations: NR: Not reported; PC: Prospective cohort; RC: Retrospective cohort; PreD: Prediabetes; IFG: Impaired fasting glucose; IGT: Impaired glucose tolerance; HbA1c: Glycated hemoglobin A1c; CKD: Chronic kidney disease; eGFR: Estimated glomerular filtration rate; BMI: Body mass index; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; TC: Total cholesterol; HDL-C: High-density lipoprotein cholesterol; LDL-C: Low-density lipoprotein cholesterol; TG: Triglycerides; WC: Waist circumference; CRP: C-reactive protein; UACR: Urinary albumin-to-creatinine ratio; CVD: Cardiovascular disease; CHF: Congestive heart failure; MI: Myocardial infarction; HF: Heart failure; AF: Atrial fibrillation; ACEI: Angiotensin-converting enzyme inhibitor; ARB: Angiotensin II receptor blocker; SPISE: Single-point insulin sensitivity estimator; ALA: α -Linolenic acid; MetS: Metabolic syndrome; ICD: International Classification of Diseases.

Table 2. Evaluation of study quality using the Newcastle-Ottawa Scale


Study	Representativeness of the exposed cohort	Selection of the non-exposed cohort	Ascertainment of exposure	Outcome present at baseline	Control for age and sex	Control for other confounding factors	Assessment of outcome	Enough long follow-up duration	Adequacy of follow-up of cohort	Total
Fox 2005	1	1	1	1	1	1	1	1	1	9
Schöttker 2013	1	1	1	1	1	1	1	1	0	8
Melsom 2015	1	1	1	1	1	1	1	1	1	9
Tatsumi 2016	1	1	1	1	1	1	1	0	1	8
Michishita 2017	0	1	1	1	1	1	1	1	1	8
Jadhakhan 2018	1	1	1	1	1	1	1	0	1	8
Koshi 2018	0	1	1	1	1	1	1	1	1	8
Kim 2019	1	1	1	1	1	1	1	1	1	9

Chen 2020	1	1	1	1	1	1	1	0	1	8
Furukawa 2021	1	1	1	1	1	1	1	0	1	8
Honigberg 2021	1	1	1	1	1	1	0	1	1	8
Manouche hri 2022	1	1	1	1	1	1	1	1	1	9
Zhang 2023	0	1	1	1	1	1	1	1	1	8
Okawa 2023	0	1	1	1	1	1	1	1	1	8
Rooney 2025	1	1	1	1	1	1	1	1	1	9


Table 3. Results of univariate meta-regression analysis

Variables	RR for the association between prediabetes and the risk of CKD			
	Coefficient	95% CI	<i>p</i> values	Adjusted R ²
Mean age (years)	-0.030	-0.048 to -0.012	0.004	67%
Men (%)	0.0038	-0.0126 to 0.0201	0.63	0%
Mean BMI (kg/m ²)	0.0047	-0.1067 to 0.1162	0.93	0%
Follow-up duration (years)	-0.026	-0.072 to 0.021	0.26	0%
NOS	-0.098	-0.495 to 0.298	0.60	0%

Abbreviations: RR: Risk ratio; CKD: Chronic kidney disease; CI: Confidence interval; BMI: Body mass index; NOS: Newcastle-Ottawa Scale.

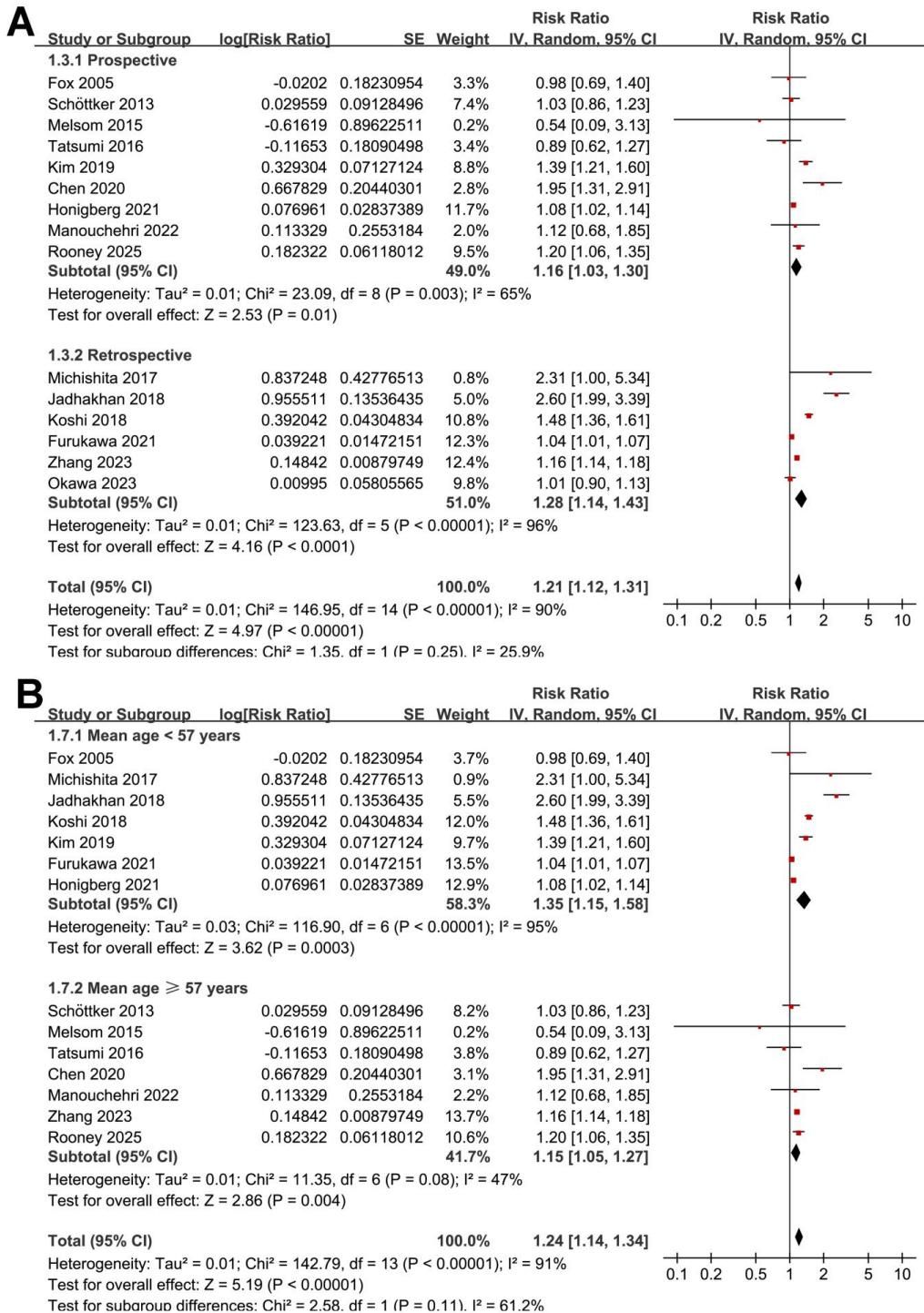
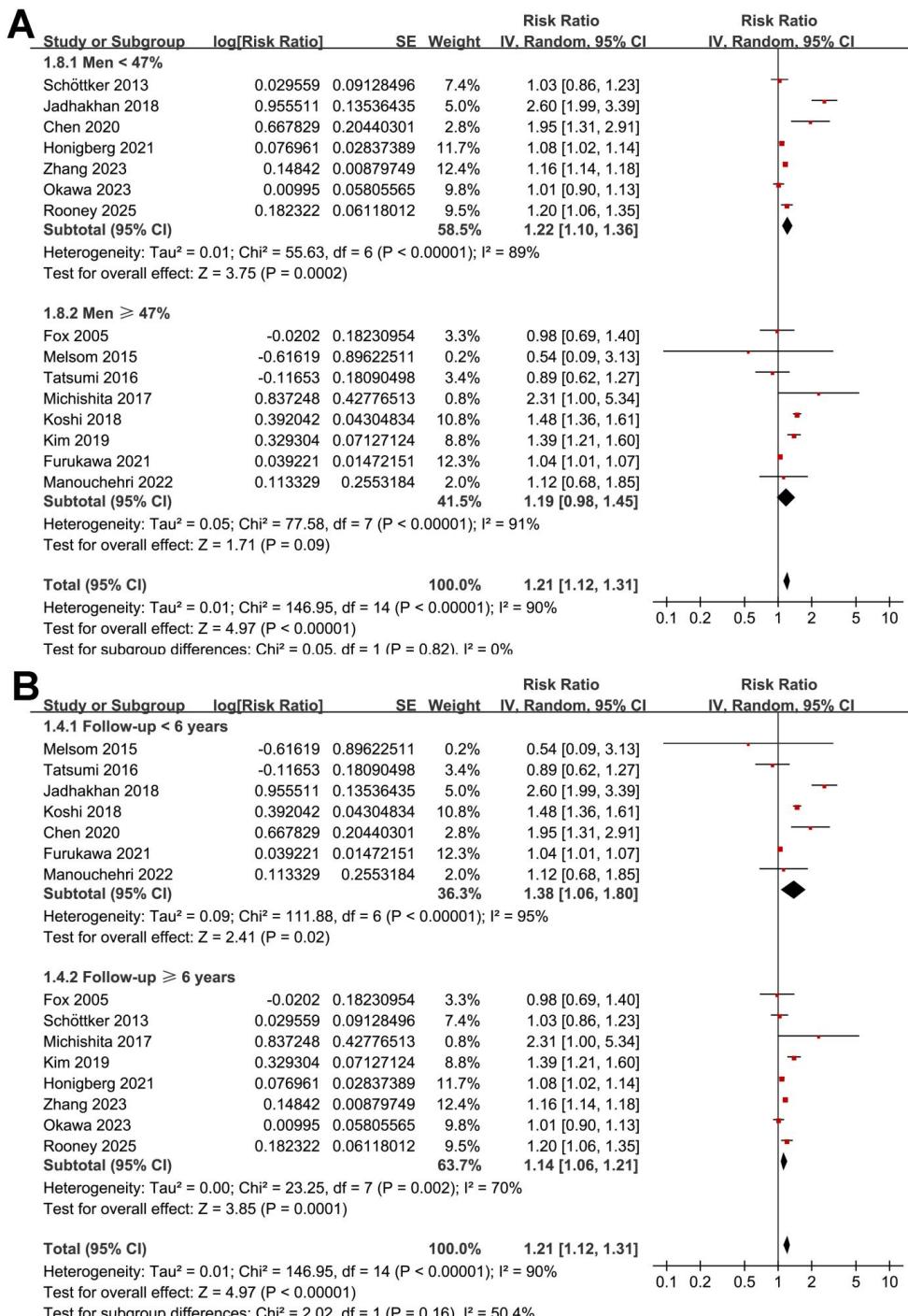
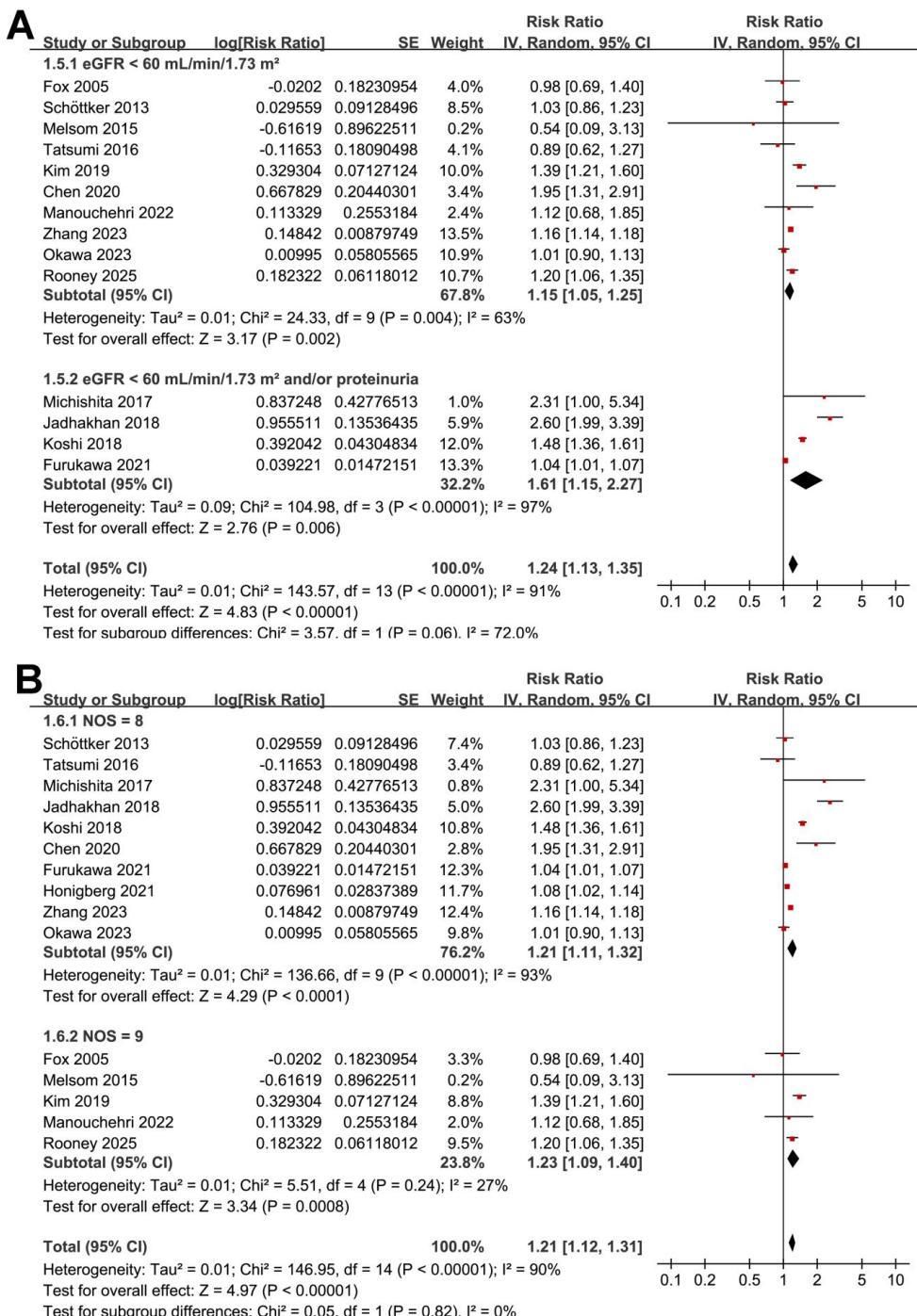


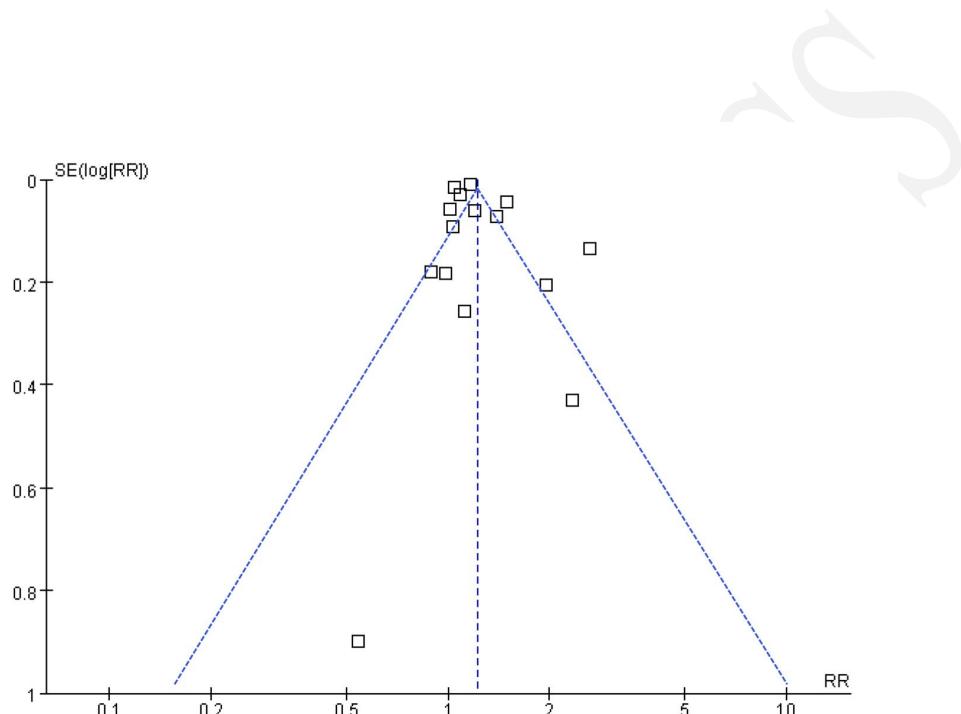
Figure 1. Flow diagram illustrating the study selection process


Figure 2. Forest plots of the association between prediabetes and incident CKD in adults. (A) Overall random-effects meta-analysis of 15 cohort studies comparing prediabetes versus normoglycemia, showing an increased CKD risk (pooled RR =

1.21, 95% CI 1.12–1.31; $p < 0.001$) with substantial heterogeneity ($I^2 = 90\%$; $\tau^2 = 0.01$) and a 95% prediction interval of 1.01–1.47. **(B)** Random-effects subgroup analyses stratified by prediabetes definition (IFG, IGT, mildly elevated HbA1c, and combined definitions) showing no evidence of differences between definitions (p for subgroup differences = 0.34); a significant association was observed only for mildly elevated HbA1c (RR = 1.17, 95% CI 1.03–1.33; $p = 0.02$; $I^2 = 88\%$). Abbreviations: RR: Risk ratio; CI: Confidence interval; CKD: Chronic kidney disease; IFG: Impaired fasting glucose; IGT: Impaired glucose tolerance; HbA1c: Glycated hemoglobin A1c.


Figure 3. Forest plots of subgroup analyses examining the association between prediabetes (vs. normoglycemia) and incident CKD in adults using an inverse-variance random-effects model. (A) Stratified by study design, showing comparable pooled associations in prospective cohorts ($RR = 1.16$, 95% CI 1.03–1.30; $p = 0.01$; $I^2 = 65\%$) and retrospective cohorts ($RR = 1.28$, 95% CI 1.14–1.43; $p < 0.0001$; $I^2 = 96\%$), with no evidence of between-subgroup differences (p for subgroup differences

= 0.25). **(B)** Stratified by mean participant age, with pooled RRs of 1.35 (95% CI 1.15–1.58; $p = 0.0003$; $I^2 = 95\%$) for studies with mean age < 57 years and 1.15 (95% CI 1.05–1.27; $p = 0.004$; $I^2 = 47\%$) for mean age ≥ 57 years (p for subgroup differences = 0.11). Abbreviations: RR: Risk ratio; CI: Confidence interval; CKD: Chronic kidney disease.


Figure 4. Forest plots of subgroup analyses assessing the association between prediabetes (vs. normoglycemia) and incident CKD in adults using an inverse-variance random-effects model. (A) Stratified by the proportion of men in the cohort (<47% vs. $\geq 47\%$), showing comparable pooled effects (RR = 1.22, 95% CI 1.10–1.36; $p = 0.0002$; $I^2 = 89\%$ and RR = 1.19, 95% CI 0.98–1.45; $p = 0.09$; $I^2 = 91\%$), with no evidence of between-subgroup differences (p for subgroup differences

= 0.82). **(B)** Stratified by follow-up duration (<6 vs. ≥ 6 years), with pooled RRs of 1.38 (95% CI 1.06–1.80; $p = 0.02$; $I^2 = 95\%$) and 1.14 (95% CI 1.06–1.21; $p = 0.0001$; $I^2 = 70\%$), respectively (p for subgroup differences = 0.16). Abbreviations: RR: Risk ratio; CI: Confidence interval; CKD: Chronic kidney disease.

Figure 5. Forest plots of subgroup analyses evaluating the association between prediabetes (vs. normoglycemia) and incident CKD in adults using an inverse-variance random-effects model. (A) Stratified by CKD diagnostic criteria, showing a stronger pooled association in studies defining CKD as eGFR < 60 mL/min/1.73 m² and/or proteinuria (RR = 1.61, 95% CI 1.15–2.27; $p = 0.006$; $I^2 = 97\%$) compared with those defining CKD as eGFR < 60 mL/min/1.73 m² alone (RR = 1.15, 95% CI 1.05–1.25; $p = 0.002$; $I^2 = 63\%$), although the between-subgroup difference did not

reach statistical significance (p for subgroup differences = 0.06). **(B)** Stratified by study quality assessed with the NOS, with similar pooled estimates for studies scoring 8 (RR = 1.21, 95% CI 1.11–1.32; p < 0.0001; I^2 = 93%) and 9 (RR = 1.23, 95% CI 1.09–1.40; p = 0.0008; I^2 = 27%), and no evidence of subgroup differences (p for subgroup differences = 0.82). Abbreviations: RR: Risk ratio; CI: Confidence interval; CKD: Chronic kidney disease; eGFR: Estimated glomerular filtration rate; NOS: Newcastle–Ottawa Scale.

Figure 6. Funnel plot assessing potential publication bias in the meta-analysis of the association between prediabetes (vs. normoglycemia) and CKD risk. Each point represents an individual study (log risk ratio plotted against its standard error). The plot appears largely symmetrical around the pooled effect estimate (vertical dashed line), indicating little evidence of small-study effects or publication bias; this was supported by Egger's regression test (p = 0.35).

SUPPLEMENTAL DATA

Detailed search strategy for each database

PubMed

#1 "Prediabetic State"[Mesh] OR prediabetes[tiab] OR "pre-diabetes"[tiab] OR prediabetic[tiab] OR "pre-diabetic"[tiab] OR "borderline diabetes"[tiab] OR "impaired fasting glucose"[tiab] OR "impaired glucose tolerance"[tiab] OR IFG[tiab] OR IGT[tiab]

#2 "Kidney Diseases"[Mesh] OR "Renal Insufficiency, Chronic"[Mesh] OR "Glomerular Filtration Rate"[Mesh] OR "chronic kidney disease"[tiab] OR CKD[tiab] OR "renal function"[tiab] OR "chronic renal failure"[tiab]

#3 "Cohort Studies"[Mesh] OR cohort[tiab] OR prospective[tiab] OR retrospective[tiab] OR prospectively[tiab] OR retrospectively[tiab] OR follow[tiab] OR followed[tiab] OR "follow-up"[tiab] OR longitudinal[tiab] OR risk[tiab] OR incidence[tiab]

#4 #1 AND #2 AND #3

Filters: Humans, Publication date: database inception – 2025/09/28

Embase

#1 'prediabetes'/exp OR prediabetes:ab,ti OR 'pre-diabetes':ab,ti OR prediabetic:ab,ti OR 'pre-diabetic':ab,ti OR 'borderline diabetes':ab,ti OR 'impaired fasting glucose':ab,ti OR 'impaired glucose tolerance':ab,ti OR IFG:ab,ti OR IGT:ab,ti

#2 'chronic kidney disease'/exp OR 'chronic renal failure'/exp OR 'renal function'/exp OR 'glomerular filtration rate'/exp OR 'chronic kidney disease':ab,ti OR CKD:ab,ti OR 'renal function':ab,ti OR 'chronic renal failure':ab,ti

#3 'cohort analysis'/exp OR 'prospective study'/exp OR 'retrospective study'/exp OR cohort:ab,ti OR prospective:ab,ti OR retrospective:ab,ti OR prospectively:ab,ti OR

retrospectively:ab,ti OR follow:ab,ti OR followed:ab,ti OR 'follow up':ab,ti OR
longitudinal:ab,ti OR risk:ab,ti OR incidence:ab,ti

#4 #1 AND #2 AND #3

Limits: Humans, publication year \leq 2025

Web of Science

TS=((("prediabetes" OR "pre-diabetes" OR "prediabetic" OR "pre-diabetic" OR
"prediabetic state" OR "borderline diabetes" OR "impaired fasting glucose" OR
"impaired glucose tolerance" OR "IFG" OR "IGT"))

AND

("chronic kidney disease" OR "CKD" OR "glomerular filtration rate" OR "renal
function" OR "chronic renal failure")

AND

("cohort" OR "prospective" OR "retrospective" OR "prospectively" OR
"retrospectively" OR "follow" OR "followed" OR "follow-up" OR "longitudinal" OR
"risk" OR "incidence"))

Refine by: Document Type = Article; Species = Humans; Timespan = All years to
2025-09-28.