Optimisation of Forensic Genetics Procedures Used in Disputed Paternity Testing: Adjustment of the PCR Reaction Volume

Damir Marjanović^{1*}, Narcisa Bakal¹, Lejla Kovačević¹, Melisa Hodžić, Anja Haverić², Sanin Haverić², Slavica Ibrulj³, Adaleta Durmić⁴

- 1. Laboratory for Forensic Genetics, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Kemalbegova 10, 71 000 Sarajevo, Bosnia and Herzegovina
- 2. Laboratory for cytogenetics and genetic toxicology, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Kemalbegova 10, 71 000 Sarajevo, Bosnia and Herzegovina
- 3. Faculty of Medicine, University of Sarajevo, Čekaluša 90, 71 000 Sarajevo, Bosnia and Herzegovina
- 4. Laboratory for molecular genetics of natural resources, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Kemalbegova 10, 71 000 Sarajevo, Bosnia and Herzegovina
- * Corresponding author

Abstract

Standard molecular techniques, with only a slight modification, are very useful in obtaining and interpreting the final results in the field of forensic genetic. Data obtained through such analysis are highly reliable and can be used as a very powerful tool that produces valuable results. However, success and swiftness of DNA typing of biological evidence either that found at a crime scene or used in disputed paternity testing, depends on the optimization of numerous factors. One of the most important and critical phases that ensures reliability of the whole procedure is the choice of the most suitable volume for the amplification protocol. Buccal swabs were collected from volunteers. DNA was extracted by Qiagen DnaeasyTM Tissue Kit (Qiagen Co. 2001). PowerPlex 16 kit (Promega Corp., Madison, WI) was used to simultaneously amplify 15 STR loci by PCR. Amplification was carried out as described previously (Promega Corp. 2001). The tested total working reaction volumes were 5, 10 and 25µl. The PCR amplification was carried out in PE Gene Amp PCR System Thermal Cycler (ABI, Foster City, CA). Amplification products were analyzed on an ABI PRISM 377 instrument (ABI, Foster City, CA) in 5% bis-acrilamide gel. Amplification was generally successful for all the tested reaction volumes. Lower partial to complete DNA profiles ratio, the quality of obtained STR profiles, significantly reduced amount of reaction's components give advantage to 5µl reaction volume over other two tested volumes in this case.

KEY WORDS: forensic genetics, polymerase chain reaction, working volume, DNA profiling

INTRODUCTION

Forensic genetics greatly benefited from the discovery of technique known as the polymerase chain reaction (PCR). This neat chemical reaction, first described in 1985 by Kary Mullis, has revolutionized molecular biology (1). PCR is an enzymatic process in which specific regions of DNA are duplicated repeatedly to yield millions of copies of a particular sequence in a matter of few hours (2,3). The procedure involves heating and cooling of chemical mixtures in a precise thermal cycling pattern. Hypothetically, approximately billion copies of the target DNA region are generated after 30 cycles. PCR reaction is a mixture of several components dissolved in DNA-free deionized water to reach preferred concentration of each constituent. The final component is the DNA template. The PCR process consists of three steps that are cyclically repeated. First, DNA strands are separated by heating (denaturation). Second, primers (DNA oligonucleotides) hybridize with target sites of these single stranded molecules to define the sequences to be amplified. Each primer performs as a starting point for the third step - the duplication of the target sequence. This last step occurs in the presence of the enzyme DNA polymerase and four nucleotide building blocks (4). STR loci, commonly used today in human DNA typing are usually assembled within one of commercial STR multiplexes. The availability of these STR kits that permit amplification of more than 10 STR loci has truly revolutionized forensic DNA analysis. Incredibly low matching probability (less than one in a billion) and possibility of successful amplification with only 1ng of DNA template promote these kits as powerful tools for various DNA testing applications (2). Also, the kits have significantly simplified preparation of PCR reaction. According to the manufacturers' recommendations, DNA templates just need to be added to a pre-made PCR mix containing all the necessary components for the amplification reactions. These kits are usually highly optimized by manufacturers. Any additional optimization is usually carried out by different user laboratories, according to their needs and purposes. An extremely important feature in the advanced DNA paternity testing, besides extremely high probability of paternity (>99,999%), is swiftness and simplicity of the whole method. Nowadays, as a result of intense optimization of the DNA isolation, amplification and detection procedures, the entire process can be performed within 6-7 hours. Hence, this type of testing is promoted to almost a standard practice in modern society. Our preliminary review represents small, but for our laboratory

BOSNIAN JOURNAL OF BASIC MEDICAL SCIENCES 2006; 6 (2): 76-81

very valuable, contribution to optimization of forensic genetics procedures used in disputed paternity testing.

MATERIAL AND METHODS

SAMPLES COLLECTION

Six volunteers duly informed about the research donated DNA samples. Their buccal swabs were air-dried, sealed in 1,5 ml tubes, and immediately transported to the Laboratory for Forensic Genetics at the Institute for Genetic Engineering and Biotechnology, Sarajevo, B&H. The samples were stored at -200C until DNA was extracted.

DNA ANALYSIS

Qiagen DnaeasyTM Tissue Kit was used for DNA extraction according to the manufacturer's protocol (5). PowerPlex°16 System (Promega Corp., Madison, WI) was used to simultaneously PCR amplify 15 autosomal STR loci and amelogenine. The STR loci are: D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSF1PO, Penta D, vWA, D8S1179, TPOX and FGA. Amplification was carried out as described previously (6) in total reaction volumes of 5, 10 and 25μ l. The PCR amplification was carried out in PE Gene Amp PCR System Thermal Cycler (ABI, Foster City, CA) according to the manufacturer's recommendations: 95°C (11 minutes), 96°C (1 minute), 10 cycles of: ramp 100% to 94°C for 30 seconds, ramp 29% to 60°C for 30 seconds and ramp 23% to 70°C for 45 seconds, 22 cycles of: ramp 100% to 90°C for 30 seconds, ramp 29% to 60°C for 30 seconds and ramp 23% to 70°C for 45 seconds, 60°C (30 minutes) and 4°C maintain. Amplification products were separated on an ABI PRISM 377 instrument (ABI, Foster City, CA) in 5% bis-acrilamide gel (Long Ranger® Single[®] Packs). Raw data were compiled and analyzed using the accessory software: ABI PRISM° Data Collection Software and Gene Scan[®]. Numerical allele designations of the profiles were obtained by processing with PowertyperTM16 Macro. The threshold for the sample analysis was set at 100 rfu (relative fluorescence units).

STATISTICAL ANALYSIS

Alleles were designated by comparison of the sample fragments with those of the allelic ladders provided with the kit. Statistical analysis included analysis of variance (ANOVA), followed by pair-wise comparisons with Newman-Keuls multiple comparison test, point bi-serial correlation coefficients, and simple linear regression conducted with *Winks 4.5 Professional* software (TexaSoft, Cedar Hill, TX, USA).

CANDUTC

RESULTS

The characteristics of all the obtained STR profiles are presented in Table 1. The number of detected loci varies from eight to sixteen per generated PP16 STR profile. The weakest PP16 STR profile was detected for Sample 2 at 10 µl reaction volume. Only eight STR loci were detected for this reaction volume. The highest variation was observed within samples amplified in 10 µl reaction volumes. On the contrary, the highest fidelity was achieved with samples processed in 5 µl total volume - all the generated profiles were complete (16 loci). Means and variability measures (based on peak height) for the three tested volumes are showed in Table 2 and Table 3. Table 2 represents the measures obtained for each individual sample while Table 3 represents the same parameters based on joint results for each tested reaction volume. The calculated statistical parameters based on individual sample results as well as joint results clearly indicate that, at the 0,05 significance level, the means of 5 µl group is significantly different then other two $(25 \ \mu l \text{ and } 10 \ \mu l)$ groups.

DISCUSSION

Application of STR loci in the interpretation of genetic profiles from different biological sources may be extremely valuable not only in a number of investigative procedures (routine paternity testing, forensics and mass disaster human identification), but also in different population studies (7). Numerous previous studies (8, 9, 10) describe PowerPlex^{*}16 System (Promega Corp., Madison, WI) as a very powerful tool that produces valuable results. Previous Bosnian experiences confirm this (11-17). Therefore, we chose this STR multiplex system as a principal method for DNA typing performed in our laboratory. PCR is commonly performed in reaction volume range of $5-100 \mu l$ (2). Evaporation and accurate pipetting may cause a problem, or at least a challenge, with low volumes reaction. Conversely, larger reaction volumes encounter a problem of even heating and cooling throughout the entire volume. Therefore, in most molecular biology protocols PCR reaction volume is maintained in 20-50 µl range (2). According to the results of previous studies, manufacturer of PowerPlex°16 System (Promega Corporation) suggested total reaction volume of 25 µl, which was accepted and applied

TOTAL REACTION VOLUME (µl)

SAMPLES -			
	5µl	10µl	25µl
Sample 1	16/16	10/16	10/16
Sample 2	16/16	8/16	13/16
Sample 3	16/16	12/16	16/16
Sample 4	16/16	14/16	16/16
Sample 5	16/16	16/16	16/16
Sample 6	16/16	16/16	15/16

TABLE 1. Results of nuclear STR profiling based of number of obtained loci in various reaction volumes

in earlier studies (8,9). Thus, in our earlier work we followed the same pattern (12). However, of recently, we have successfully used 10µl as the total reaction volume (15-17). Since the type of biological sample used in these studies was the same type that we usually employ in routine disputed paternity testing, we have decided to compare three different PCR total reaction volumes and select the one that suits our procedures best. Analyzing the number of the obtained STR loci for each sample we observed that the samples processed in 5 µl reaction volume resulted in complete profile. The fraction of detected loci per profile differs in other two tested volumes (10 and 25 μ l). It is important to emphasize that RFU threshold was set at 100 units, and all peaks below the threshold, regardless whether they were detectable/ useful or not were discarded (which was the case with most of the loci described as undetectable). Furthermore, calculated variability measures for different total reaction volumes of each sample, as well as the same parameters calculated for joint results clearly indicate that 5 μ l volume significantly differs from 25 μ l and 10 µl. The most illustrative is variability coefficient, which is significantly lower within 5 μ l then 10 and 25 μ l group. That means that the peak heights between different loci are better balanced and that the profiles obtained in 5 μ l reaction volume are more transparent than those prepared in the other two volumes. Results obtained in this preliminary study suggest that, due to better ratio between the obtained complete and partial DNA profiles, quality of the obtained STR profiles and significantly reduced amount of reaction components, 5 µl total reaction volume is more suitable for using in these particular settings. Those would be our guidelines in our further examination that should include larger number of the examined samples and more relevant parameters (i.e. occurrence of stutter-peaks, balance of peak area etc.).

DAMIR MARJANOVIĆ ET AL.: OPTIMISATION OF FORENSIC GENETICS PROCEDURES USED IN DISPUTED PATERNITY TESTING: ADJUSTMENT OF THE PCR REACTION VOLUME

ç	STATISTICAL PARAMETERS	LABEL TOTAL REACTION VOLUME (µl)			
			5	10	25
		Blue (FL)	2030	546,6	660,8
	Mean -	Green (JOE)	1418 1337,5	<u>115,7273</u> 567,25	176,3636
	-	Yellow (TMR) All labels		388,8621	538,5
		Blue (FL)	<u>1606,828</u> 1177,538	1038,61	443,3103 1243,036
	Standard	Green (JOE)	1201,002	164,9109	252,6279
	deviation	Yellow (TMR)	455,1486	825,8732	728,7335
	deviation -	All labels	1054,189	757,7889	836,4723
		Blue (FL)	372,3676	328,435	393,0797
	Standard error of the mean	Green (JOE)	362,1184	49,7229	76,1707
		Yellow (TMR)	160,9209	291,9931	257,6487
		All labels	195,7567	140,7169	155,328
		Blue (FL)	58,0068	190,0128	188,1108
	Variability coefficient	Green (JOE)	84,6969	142,4996	143,2427
		Yellow (TMR)	34,0298	145,5925	135,3266
		All labels	65,6068	194,8734	188,6878
		Blue (FL)	3189,5	408,1	583,7
	- Mean	Green (JOE)	2169,091	128,9091	153,4545
	Mean	Yellow (TMR)	2489,286	569,4286	595
		All labels	2613,571	338,6786	417,5
		Blue (FL)	1756,509	862,6147	1177,029
	Standard	Green (JOE)	1624,366	181,8232	214,521
	deviation	Yellow (TMR)	1284,257	799,0041	846,6522
SAMPLE 2	-	All labels	1606,096	660,0531	827,6109
		Blue (FL)	555,453	272,7808	372,2066
S Chandrad	Standard error of the mean	Green (JOE)	489,7684	54,8222	64,681
	standard error of the mean	Yellow (TMR)	485,3946	301,9896	319,9986
		All labels	303,5238	124,7384	156,4038
	_	Blue (FL)	55,0716	211,3734	201,6496
	Variability	Green (JOE)	74,8869	141,0476	139,7945
сое	coefficient	Yellow (TMR)	51,5914	140,3168	142,2945
		All labels	61,4522	194,8907	198,2302
	-	Blue (FL)	4139	554,2222	1235,889
Mean	Mean	Green (JOE)	2382,909	126,3636	392,3636
		Yellow (TMR)	2873,75	890,125	1476,625
		All labels	3087,607	482,1071	973,2857
	Standard	Blue (FL)	1517,726	845,7867	1830,723
SAMPLE 2		Green (JOE)	1557,167	196,7233	495,4627
	deviation	Yellow (TMR)	1223,257	524,5086	833,6167
		All labels	1597,77	632,6408	1224,612
	Standard error of the mean	Blue (FL)	505,9087	<u>281,9289</u> 59,3148	610,241
		Green (JOE)	588,543		149,3887
		Yellow (TMR)	432,4908	<u>185,4436</u> 119,5579	294,7308
		All labels Blue (FL)	301,9502		231,43
	Variability	Green (JOE)	<u>36,6689</u> 65,3473	152,6079 155,6803	148,1301 126,2764
	coefficient	Yellow (TMR)	42,5666	58,9253	56,4542
coeffi		All labels	51,7478	131,2241	125,8225
		Blue (FL)	4573,5	964,7	125,8225
	-	Green (JOE)	3423	275,9	472
	Mean -	Yellow (TMR)	3654,571	2175,571	2115,857
devia devia	-	All labels	3909,148	1023,519	1233,704
		Blue (FL)	679,9675	1526,644	2142,26
	- Standard	Green (JOE)	1902,214	473,206	789,0451
	deviation	Yellow (TMR)	1626,129	1555,542	1824,996
		All labels	1516,872	1419,966	1735,907
		Blue (FL)	215,0231	482,7638	677,4373
	-	Green (JOE)	601,5286	149,6398	249,5162
	Standard error of the mean	Yellow (TMR)	614,6077	587,9288	689,771
		All labels	291,9195	273,27	334,0724
	Variability	Blue (FL)	14,8676	158,2506	155,4728
		Green (JOE)	55,5715	171,5136	167,1706
	coefficient	Yellow (TMR)	44,4958	71,5004	86,2533
	-	All labels	38,8031	138,7337	140,7069
Mean		Blue (FL)	4973,444	1644,111	1743,111
	-	Green (JOE)	3544,273	553,0909	685,5455
	Mean	Yellow (TMR)	3046,778	2413,333	1821,889
		1 CHOW (1 WHV)			

IARJANOVIĆ ET A Paternit

References

- Mullis K.B., Faloona F. Specific synthesis of DNA in vitro via a polymerase chain reaction. Meth. Enzymol. 1987; 155:335-350.
- (2) Butler J.M. Forensic DNA Typing Biology & Technology Behind STR Markers, Academic Press. San Diego, 2001.
- (3) Reynolds R., Sensabaugh G., Blake E. Analysis of genetic markers in forensic DNA samples using the polymerase chain reaction. Analytical Chemistry 1991; 63: 2-15.
- (4) National Research Council. The evaluation of Forensic DNA Evidence, National Academy Press, Washington, 1996.
- (5) Promega corporation. PowerPlex 16 system Technical Manual, Promega corporation, Madison, 2001.
- (6) Qiagen Companies. QIAGEN Genomic DNA Handbook, Qiagen Companies, Vienna, 2001.
- (7) Brinkmann B., Pfeiffer H., Schurenkamp M., Hohoff C. The evidential value of STRs: An analysis of exclusion cases. Int. J. Legal Med. 2001; 114: 173-177.
- (8) Greenspoon S.A., Ban J.D., Pablo L., et al. Validation and implementation of the PowerPlex 16 BIO System STR multiplex for forensic casework. J. Forensic Sci. 2004; 49:71-80.
- (9) Okamoto O., Yamamoto Y., Inagaki S., et al. Analysis of short tandem repeat (STR) polymorphisms by the PowerPlex 16 system and capillary electrophoresis: Application to forensic practice. Acta Med. Okayama 2003; 57: 59-71.
- (10) Tomsey C.S., Kurtz M., Flowers B., Fumea J., Gilles B., Kucherer S. Casework guidlines and interpretation of short tandem repeat complex mixture analysis. Croat. Med. J. 2001; 42: 276-280.
- (11) Huffine E., Konjhodžić R., Davoren J., Vanek D. Identification of the missing in the former Yugoslavia. The third European-American school in forensic genetics and Mayo Clinic course in advanced molecular and cellular medicine, Zagreb, Hrvatska. Abstracts 2003: 50.

- (12) Marjanović D., Kapur L., Drobnič K., Budowle B., Hadžiselimović R. Comparative study of genetic variation at fifteen STR loci in three isolated populations of Bosnian mountain area. Human Biology 2004; 76 (1): 15-31.
- (13) Konjhodžić R., Kubat M., Skavić J. Bosnian population data for the 15 STR loci in the Power Plex 16 kit. Int. J. Legal Med. 2004; 118:119-121.
- (14) Marjanović D., Kapur L., Pojskić N., Hadžiselimović R. Diversity in the studies of genetic distance among isolated human population in Bosnia. Humane Evolution 2005; 20 (2-3): 157-166.
- (15) Marjanović D., Bakal N., Pojskić N., Kapur L., Drobnič K., Primorac D., Bajrović K., Hadžiselmović R. Allele frequencies for 15 short tandem repeat loci in a representative sample of Bosnians and Herzegovinians. Forensic Science International 2006; 156 (1): 79-81.
- (16) Marjanović D., Bakal N., Drobnić K., Hadžiselimović R. Use of PowerPlex^{*} 16 and PowerPlex^{*} Y Systems to analyze a complex forensic DNA mixture from an incestuous rape case. Profiles in DNA 2006 (in press).
- (17) Marjanović D., Pojskić N., Bakal N., et al. Preliminary population study at fifteen autosomal and twelve Y-chromosome short tandem repeat loci in the representative sample of multinational Bosnia and Herzegovina residents. Progress in Forensic Genetics 11 2006 (in press).